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ABSTRACT 

The masquerade attack, where an intruder assumes the identity of a valid user, as well as the insider attack, 

where a user utilizes their privileges to perform malicious acts, remain among the most challenging and 

difficult problems in the area of computer security.  Many methods have been proposed to compare a user’s 

behavior to their past and expected behavior in an effort to distinguish these malicious activities, but none 

have achieved a level of accuracy required for wide distribution.  This paper continues previous research on 

the ability of a specially tuned pair-wise sequence alignment technique to detect and classify instances of 

masquerading in command sequences.  Specifically, we evaluate the effects of various scoring systems on 

the sequence alignment algorithm’s ability to classify masqueraders, as well as discussing modifications to 

the previously published algorithm that would allow it to run in a real-time environment and with a lower 

computational complexity.  These modifications to the sequence alignment algorithm allow it to compete 

against the more prevalent machine learning techniques, besting all but one.  Additionally, we are able to 

gain insight into the most useful features of the dataset used for testing, and its applicability to more 

realistic environments. 
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1. INTRODUCTION 

Masquerade attacks are among the most dangerous attacks posed to information systems today, not merely 

because they are so difficult to detect, but also because they have the ability to undermine some of the most 

advanced information security technologies available today.  In the typical case, security administrators 

rely on firewalls, network and host-based intrusion detection technologies, and strong authentication 

protocols to ensure there that no malicious individuals get unauthorized access to sensitive data.  The 

masquerade attack, however, undermines all of these information security technologies by taking advantage 

of a legitimate user’s access to the systems being secured.  In the traditional masquerade attack, a malicious 

user takes over the user account of a legitimate user to use their privileges and rights in the information 

systems to carry out their malicious agenda.  In a slight variant of the masquerade attack, known as the 

insider attack, a legitimate user chooses to use their privileges for malicious or unauthorized purposes.  For 

the sake of simplicity, we will simply refer to both types of attacks as masquerade attacks.  In both 

situations, the user’s account escapes traditional security measures because there is a level of trust imparted 

upon the account after it has been authenticated.  Moreover, the masquerade attack has been shown to be 

particularly difficult to effectively combat, as shown in the extensive research performed on the topic [4], 

[5], [8], [12]. 

In order to facilitate the detection of these masquerade attacks, a detection mechanism, known as 

anomaly detection, is employed to pick out areas of activity that are significantly different than the 

expected behavior.  In order to provide this anomaly detection, a profile of ‘self’  is created, sometimes 

called a user’s signature, which provides a characteristic sampling of the user’s behavior over a period of 

time.  Additionally, some algorithms make use of a ‘non-self’  profile, which provides a characteristic 

sampling of activities and behaviors that are not performed by the user.  These profiles are then compared 

to the data being inspected for masquerade attacks to pick out anomalous behaviors. 

This paper aims to extend our previous work in utilizing pair-wise sequence alignment in the detection 

of masquerade attacks [3] by better understanding the effects of various scoring systems on the accuracy of 

the sequence alignment technique in masquerade detection, as well as proposing alterations to the algorithm 

to decrease its computational complexity and to allow the algorithm to run in a real-time environment.  In 

our previous work, we showed that the problem of masquerade detection can be viewed as a generalization 

of the longest common subsequence problem [15], and that the Smith-Waterman sequence alignment 

algorithm [13], which is often used in aligning and comparing sequences of biological data, can be utilized 

in the detection of masquerade attacks.  In the initial investigation, we found that the sequence alignment 

algorithm could compete with the best masquerade detection algorithms published, and that it held promise 

of improved performance with more complex scoring systems.  Here, we propose the use of five scoring 

systems, utilizing a broad range of features including command frequencies and probabilities, as well as 

specialized domain knowledge, such as command functionality, to improve upon previously reported 

results. 
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We begin by giving a detailed description and analysis of related works in the area of masquerade 

detection.  We continue by describing the dataset used for testing, as well as analyzing its possible 

weaknesses and their effects on the published results.  The sequence alignment algorithm is then described 

along with modifications to allow the algorithm to run with a reduced computational complexity, thereby 

making it suitable for real-time masquerade detection.  We then describe the scoring systems that will be 

tested along with the intuitions behind their development.  Finally, we conclude with the results of the 

testing, comparisons to other published masquerade detection algorithms, and a brief discussion of future 

work and the viability of masquerade detection using sequence alignment. 

 
2. RELATED WORKS 

This work on follows from a large and varied body of previous research dealing with both anomaly and 

masquerade detection.  Though machine learning techniques, such as Bayesian classifiers and Support 

Vector Machines, are quite prevalent in work done in anomaly detection, there have been notable 

exceptions that, like our algorithm, use statistical and lexicographical techniques to classify anomalies.  The 

earliest and most well-known of these works is the SRI IDES Statistical Anomaly Detector developed by 

Javitz and Valdes [4].  The IDES Statistical Anomaly Detector uses a myriad of behavioral inputs, such as 

file access and CPU time, from each user to compare recent metrics to the user’s historical profile of 

behavior.  These individual metrics are then summarized into a single value that summarizes the 

abnormality of the user’s behavior in the recent past.  The work continues by examining a number of 

methods to delineate time and gives a thoughtful summary of the strengths and weaknesses of each 

measure.  This method, however, relies heavily on the temporal locality of metrics, and therefore may miss 

high-level patterns that may emerge over time.  Additionally, this method has some reliance on multiple 

behavioral inputs, which may not necessarily be available at all times. 

In a similar vein as the work presented in this paper, Lane and Brodley have presented a number of 

methods to detect anomalies using sequences of commands [5], [6], [7].  These methods include both 

statistical and machine learning methods.  Their most salient work, with respect to sequences [5], uses the 

number of consecutive tokens, or commands, matched to create a similarity measure of two compared 

sequences.  In many ways, this method is similar to the sequence alignment method proposed in this paper.  

Both methods seem to have their roots in the longest common subsequence problem, though perhaps with 

different semantics for matching.  Furthermore, both methods assert that the spatial locality of commands is 

an important feature of command sequences.  Their sequence matching method, however, only considers 

continuous sequences of matched commands, therefore ignoring patterns that may emerge from these 

subsequences.  Additionally, the sequence matching method proposed by Lane and Brodley considers only 

lexicographical similarities between commands, whereas the sequence alignment method described in this 

paper allows for the application of additional considerations, such as command frequency or the 

functionality of a command, to influence the alignment through its score. 



 

 3

Yet another approach, proposed by Wepsi, Dacier and Debar [18], leverages the pattern discovery 

capabilities of the Teiresias algorithm, which is used in the realm of bioinformatics to discover patterns in 

DNA and protein sequences, to discover abnormalities in the audit trail of running processes.  The 

algorithm creates a signature for a particular process by choosing significant patterns, or patterns of 

maximal length, that define its key features at runtime.  This signature is then checked against the runtime 

audit trail for differences in the significant patterns displayed by the given process.  A divergence from the 

significant patterns is labeled an anomaly when more than a predefined number of audit events differ from 

the signature.  Again, there are several similarities between the Teiresias system and the sequence 

alignment method proposed here.  Most notable are the common roots of bioinformatics and pattern 

discovery.  Many areas in the analysis of biological data rely heavily on the use of pattern discovery and 

matching, so it is not a surprise that two algorithms that originated in the realm of bioinformatics provide 

similar functionality.  Like the sequence matching work from Lane and Brodley, however, the Teiresias 

system relies on a lexicographical matching of patterns to determine what is anomalous and what is not, 

thereby using the patterns alone as an indication of anomaly. 

There have also been a number of approaches to the specific problem of masquerade detection 

presented by Schonlau et. al. [12].  Schonlau et. al. propose a number of approaches ranging from simple 

algorithms, such as comparing the compressed size of the command sequences to determine anomaly, to 

more complex Markov chain models, in which command transition probabilities create a model which is 

then used to label anomalies in the testing data.  While many approaches were proposed, we will focus on 

the ones that are applicable to the work presented in this paper, namely the Compression and Uniqueness 

techniques.  In the Uniqueness method [11], each command in the sequence is given a uniqueness value, 

which increases with the uniqueness of the command among all of the users’  commands.  The most unique 

commands are thought to best differentiate between a legitimate user and a masquerader.  These uniqueness 

scores are then added if they have occurred in the user’s signature, or subtracted if they have not, to create a 

score for the sequence of commands.  This score is then compared to a static threshold to determine if the 

activity is anomalous.  The Compression method [12] approaches the problem from a different angle by 

taking advantage of repeated commands in the sequence.  In this approach, current command sequences are 

appended to historical command sequence data and then compressed.  The compression ratio is then 

compared to a threshold, which is determined by the compressibility of the historical data, to discover 

anomalous behavior.  Both of these techniques forgo traditional lexicographical comparison in favor of 

using novel metrics about the given data to discover anomalies.  However, as is evidenced by research 

mentioned above, as well as the poor performance of the Compression and Uniqueness methods, it seems 

that it is necessary to take into account patterns of commands rather than individual occurrences of 

commands alone. 

In response to the work by Schonlau et. al., Maxion and Townsend published a paper that included a 

thoughtful analysis of the Schonlau results, as well as a new approach to the masquerade problem [8].  The 
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approach views the masquerade problem as a type of text classification.  The method utilizes a Naïve Bayes 

classifier, and is currently the best-known method for discerning masquerading users from legitimate users.  

The Naïve Bayes approach uses independent command probabilities, determined from a training corpus, to 

determine the overall probability of a command sequence being created by a given user.  A threshold is 

determined by cross-validation of the training corpus, and sequences are classified based on the ratio of the 

probability that the sequence is from a given user to the probability that the sequence is not from a given 

user.  This particular method, like the Compression and Uniqueness methods mentioned above, takes into 

account only individual occurrences of commands, rather than the patterns that emerge from these 

commands.  The important difference, however, is that it creates what can be thought of as a pseudo-pattern 

by creating a probability metric for a given sequence.  These metrics would then be similar for similar 

command sequence patterns.  Additionally, this method makes extensive use of the training data by 

building profiles of both behavior that constitutes being the user, and behavior that constitutes not being the 

user, and updating these profiles with new data as it is scrutinized to make the system more robust to new 

and exotic commands issued by the user. 

Most recently, Wang and Stolfo [16] have presented interesting work that attacks the masquerading 

problem with one-class training algorithms.  Unlike Maxion et. al., Wang and Stolfo used only the positive 

training data from each user to create a profile for that user, but they do not view other training data to 

build a profile of behavior that constitutes not being that user.  In their approach, they make slight changes 

to the traditional two-class Naïve Bayes and Support Vector Machine classifiers so that they can perform 

masquerade detection with only one-class training.  In the case of the Naïve Bayes classifier, they created a 

user profile using only that particular user’s training data, and then performed classification by taking the 

ratio of the probability that a given command is from that user to the probability that the command is not 

from that user.  Because no explicit profile for not being the user has been created, they simply use an equal 

probability that any command is not from the user, essentially the inverse of the number of distinct 

commands.  For the one-class Support Vector Machine, they mapped data points, both training and testing, 

related to the command occurrences onto a high-dimensional space.  The Support Vector Machine then 

found a hyperplane that maximally separates the training data points from the origin of the high-

dimensional space.  After experimentation, they showed that one-class classification methods perform 

comparably to two-class methods.  More specifically, their one-class Support Vector Machine using binary 

features bested all previous algorithms aside from the Maxion and Townsend Naïve Bayes classifier that 

updates command probabilities during processing. 

Szymanski and Zhang also made use of the one-class Support Vector Machine technique, but with the 

addition of a novel recursive data mining method [14].  The method recursively mines a string of symbols, 

or commands in the case of the masquerade problem, and finds patterns of these symbols that occur with 

certain frequency.  These patterns are then encoded with a new, unique symbol that represents the pattern, 

and the string is rewritten with the newly encoded pattern symbols.  This process continues recursively 
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until a predefined recursive depth is reached.  The final strings produced by the recursive data mining 

method characterize the structure and high-level patterns present in the user’s signature and the monitored 

sessions, and the one-class Support Vector Machine is then used to measure the similarity of these 

characterizations.  This combination of lexicographical pattern discovery and machine learning was able to 

produce results that were superior to all previous masquerade detection algorithms, aside from the Naïve 

Bayes classifier with updates. 

While these machine learning methods, rooted in probabilistic reasoning, currently provide the best 

results, we believe other methods, such as sequence alignment, which are based on statistical and 

lexicographical methods of anomaly discovery, can provide equally successful results. 

 
3. TEST DATASET 

3.1 Description 

In order to test the performance of our algorithm, a dataset must be chosen to provide results that can be 

fairly compared to other efforts in the field of masquerade detection.  Unfortunately, there are a limited 

number of standard datasets available, and therefore a limited range of test data that can be used to compare 

different efforts.  In the case of masquerade detection, a dataset created by Schonlau et al. (SEA) has 

become the de-facto standard.  The SEA dataset was created by recording users’  commands as they were 

provided to the UNIX shell.  These commands were recorded via the acct utility with all command 

arguments removed for the sake of user privacy.  Commands were recorded for seventy distinct users, fifty 

of which were chosen as the users that would be used in the dataset.  For each of these fifty users, 5,000 

commands were recorded to make up the set of commands that are considered free of any anomaly or 

intrusion - we will call this anomaly-free command sequence the user’s signature.  An additional 10,000 

commands were also recorded from each user to make up the set of commands that are to be tested for 

anomalies or intrusions – we can call this set the test data.  Finally, the commands that have been recorded 

from the remaining twenty users are randomly interspersed into the fifty users’  test data, thereby removing 

those users’  commands and replacing them with those of the twenty users not represented in the dataset.  

This interspersion is probabilistic in nature, and is discussed in detail in the Schonlau et al. work [12]. 

The commands, in both the user’s signature and the test data, are broken into 100-command groupings, 

which we will call blocks.  We can now think of the dataset as consisting of fifty users, where each user has 

a user signature made of 50 blocks, and test data made of 100 blocks.  Additionally, any of the 100 blocks 

in the test data may or may not have another user’s command(s) embedded within it.  The only information 

about the intrusions that are given to users of the dataset is a marking of which test blocks have at least one 

command that was created by a different user.  No statements are made as to which commands, or even 

how many commands constitute the masquerade within the test block. 
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3.2 Analysis and Commentary 

Many factors make the problem of anomaly detection, or the specific case of masquerade detection 

extremely difficult, not the least of which is the lack of reliable test data with which to compare results.  In 

the case of masquerade detection, the only widely used dataset is the SEA data that has been described in 

the previous section.  Unfortunately, the manner in which this dataset was created makes the task that much 

more difficult. 

The most significant problem with this dataset is the interspersion of non-anomalous commands.  It is 

difficult, if not impossible, to determine that a common command, used by many users, is anomalous given 

only the commands with no additional data.  For instance, it is easy to imagine the case where all seventy 

users frequently used the commands cd and ls to traverse the file systems on their workstations.  It is this 

case where additional command line data, such as the directories that the users are traversing, becomes 

useful in masquerade detection.  Since as little as one command could be interspersed within the test block, 

it is not hard to see why this is considered such a difficult problem.  What should also be remembered, 

however, is that the results gathered from this data have no direct correlation with results that would be 

achieved in a more realistic testing environment.  Other statistical methods, such as the SRI Statistical 

Anomaly Detector [4] perform quite well given data with a reasonable amount of information, so it would 

be shortsighted to assume that the results from this dataset are directly representative of the capabilities of 

any algorithm tested with it.  Maxion and Townsend [8] discuss similar deficiencies that they found in the 

SEA dataset. Later, we will revisit some of those comments and their relation to our sequence alignment 

algorithm.  Unfortunately, until a more reasonable and reliable dataset is created, the SEA dataset is the 

most appropriate dataset to use to facilitate comparisons with other efforts in anomaly and masquerade 

detection. 

 

4. SEQUENCE ALIGNMENT ALGORITHM 

4.1 Overview 

Sequence alignment is typically used in bioinformatics to determine the similarity between two DNA or 

protein sequences, in a global, semi-global, or local context, by aligning the nucleotides or amino acids in 

each sequence.  This alignment then produces a score that indicates how well the sequences align with one 

another, and, consequently, how similar they are.  This very same concept can be used to align sequences 

of commands to produce a score that indicates the similarity of the two command sequences.  By aligning a 

small segment of commands with the user’s signature, we can use the score of the alignment as an indicator 

of the presence of an intrusion within the segment that we are testing. 

Sequence alignment algorithms have the ability to lexicographically compare strings to find and score 

matched patterns, and to take into account specific domain knowledge in this matching.  This domain 

knowledge can be used to allow for different alignments of the data, which can then bring about new high-

level pattern matching.  For instance, in the domain of biological data matching a user can encode the 
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probabilities of mutation from one nucleotide or amino acid to another in the scoring between two strings.  

This domain-specific scoring gives even lexicographical mismatches validity in the pattern matching based 

on the domain knowledge imbued in the scoring.  In addition, we can use this technique not simply to 

match commands, but also to match generalized patterns that a user might be prone to over the course of a 

number of computing sessions. 

 

4.2 Algorithm Description 

We use a modification to the Smith-Waterman local sequence alignment algorithm [13] to compute a semi-

global alignment for the command sequences.  For intrusion detection, it is critical that we align the 

majority of the tested block of commands to the user’s signature.  If we were to allow a large prefix and 

large suffix of the tested block of commands to be ignored then the intrusion itself might be ignored. The 

problem with using a purely global alignment is that there may be large portions of the signature that do not 

necessarily align with a segment of the user’s commands.  In the case of the Schonlau et. al. data, there is a 

large disparity in sizes between testing blocks and the user signature, which makes global alignments 

totally inappropriate because it would unfairly penalize the unused portion of the user’s signature.  Thus, 

we want to design a scoring system that rewards the alignment of commands in the user segment but does 

not necessarily penalize the misalignment of large portions of the signature. In the remainder of this section 

the signature sequence, which represents the user’s typical command behavior, will be referred to as 

UserSig.  The monitored command sequence, which may contain a possible subsequence of masquerader 

commands, will be referred to as TestBlck. 

 
Fig. 1.  Sequence alignment algorithm applied to masquerade detection 

The algorithm, which has previously been described in a paper presented at the Annual Computer 

Security Applications Conference [3], is shown in Fig. 1.  The algorithm starts by initializing a matrix of 

floats, which is used to store the score throughout the alignment process.  Each position (i, j) in the matrix 

corresponds to the optimal score of an alignment ending at UserSigi and TestBlckj. This optimal score is 

Input:  s t r i ng User Si g of  l engt h m,  st r i ng Test Bl ck of  l engt h n 
1.  I ni t i al i ze a mat r i x ,  D,  of  t ype i nt eger  
2.  for i =0 to m 
3.   for j =0 to n 
4.    i f ( j =0 or  i =0)  
5.     D[ i ] [ j ] =0;  
6.    el se 
7.     i f ( j =n or  i =m)  
8.      t op=D[ i ] [ j - 1] ;  
9.      l ef t =D[ i - 1] [ j ] ;  
10.     el se 
11.      t op=D[ i ] [ j - 1]  – gUser Si g;  
12.      l ef t =D[ i - 1] [ j ]  – gTest Bl ck;  
13.      i f ( t op<0)  t op=D[ i ] [ j - 1] ;  
14.      i f ( l ef t <0)  l ef t =D[ i - 1] [ j ] ;  
15.     di agonal =D[ i - 1] [ j - 1]  + mat chScor e( User Si g i - 1, Test Bl ck j - 1) ;  
16.     D[ i ] [ j ] =maxi mum( t op, l ef t , di agonal ) ;  
17.  return D[ m] [ n] ;  
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computed by starting at the upper left corner of the matrix (i.e., at the point (0,0)) and then recursively 

making a step yielding the maximum from the three following options:  

 

Option 1 (diagonal step):  The score ending at position (i-1,j-1) plus matchScore(UserSigi-1,TestBlckj-1), 

which is a penalty or reward for aligning the UserSig’ s command at i-1 with the TestBlck’ s command at j-1. 

 

Option 2 (top-down step):  The score ending at position (i, j-1) plus gUserSig, which is the penalty for 

introducing a gap into the UserSig. 

 

Option 3 (left-right step):  The score ending at position (i-1,j) plus gTestBlck, which is the penalty for 

introducing a gap into the TestBlck. 

  

If Option 1 yields the largest value, then the optimal alignment matches UserSigi-1 with TestBlckj-1.  If 

Option 2 or Option 3 yields the largest score, then the optimal alignment associates either UserSigi-1 or 

TestBlckj-1 with a gap. 

There are three essential parameters used in the scoring system. The matchScore(UserSigi-1,TestBlckj-1) 

function returns a negative value if the two commands do not match well and a positive value if they do.  

The gUserSig and gTestBlck are negative gap penalties associated with inserting gaps into the UserSig and 

TestBlck, respectively. 

If Option 2 or Option 3 results in a negative value, then the alignment score is reset to zero. This 

zeroing of the score allows a prefix of both the UserSig and TestBlck to have an arbitrary number of un-

penalized gaps.  The assumption is that a portion of the UserSig can be ignored without penalty.  Since the 

UserSig is significantly longer than the TestBlck, it is expected that most of the commands in the UserSig 

will not participate in the alignment. In addition, a small portion of the TestBlck can be ignored.  However, 

there is a difference in ignoring portions of UserSig and TestBlck, since a high alignment score should not 

be achievable if a large portion of the TestBlck is ignored.  Thus, any alignment that ignores a large prefix 

of the TestBlck should have a relatively low score.  Similarly, when the algorithm reaches the right-most 

column or the bottom-most row of the matrix, the gap penalty is not applied.  Thus, either a suffix of the 

UserSig or a suffix of the TestBlck is ignored.  Once again, if the latter is true then the alignment score will 

be relatively low. 

Each gap inserted into the UserSig corresponds to a TestBlck command that is ignored. Similarly, each 

gap inserted into the TestBlck corresponds to the ignored UserSig command.  To minimize the number of 

ignored TestBlck commands, the gUserSig penalty is set higher than the gTestBlck penalty. The overall 

scoring scheme is designed to reward a TestBlck that can be almost entirely aligned to the UserSig with a 

minimal number of gaps and mismatches. 
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4.3 Real-time Algorithm Implementation 

The current implementation of the sequence alignment algorithm in the context of the Schonlau et. al. 

dataset, is offline, therefore the data being evaluated is static and is not being generated in real-time.  This 

is an appropriate mechanism for the evaluation of the accuracy of masquerade detection algorithms, but this 

may not be realistic in discovering intrusions in a timely manner.  In order to modify the sequence 

alignment algorithm for use in a real-time environment, all that would have to be done is to wait for some 

preset number of commands to be processed, and then simply use a sliding window to perform one 

alignment for each window of commands of the preset size.  For instance, let us assume a preset window 

size of 100 commands.  We wait until 100 commands have been entered by the monitored user, and upon 

the 100th command being entered, we perform an alignment on that sequence and the user’s signature.  For 

each new command that is added to the 100-command sequence, we remove the oldest command from the 

sequence.  Hence, when the 101st command is entered, we remove the first command from the sequence, 

and when the 102nd command is entered, we remove the second command from the sequence, etc.  This 

will present a consistent 100-command sequence that can be aligned with the user’s signature, and provide 

scoring commensurate with the sequence algorithm as described above. 

 
4.4 Algorithm Complexity and Heuristic Approaches 

The longer an intrusion goes undetected, the more damage an intruder can do.  Additionally, real-time 

intrusion detection systems have the burden of keeping up with data as it is being produced, thereby 

requiring computationally efficient algorithms.  Time complexity is of utmost importance in intrusion 

detection, and is therefore an important part of the discussion of our algorithm.  In its basic form, the 

sequence alignment algorithm has a time complexity of O(mn), where m and n are the sizes of the 

respective sequences being aligned.  While this is not extremely computationally efficient, when 

considering the sizes of the sequences in the Schonlau et. al. dataset, this is an acceptable time complexity, 

utilizing only 500,000 iterations per alignment. 

While this may be appropriate for this particular dataset or for an offline use of our algorithm, in a real-

time environment an O(mn) complexity could be too slow.  To facilitate the use of our sequence alignment 

algorithm in a real-time environment, we must investigate the use of heuristic optimizations of the 

sequence alignment algorithm to reduce the time complexity.  All of the optimizations discussed here have 

the potential to reduce the time complexity of the sequence alignment algorithm to near-linear complexity, 

depending on the statistical properties of the data, thereby speeding up the algorithm significantly and 

allowing its use in real-time environments. 

FASTA is a heuristic two-stage algorithm for aligning two biological sequences [10].  The name is 

derived from the term “ fast all,”  which initially implied that it was a fast algorithm for aligning all types of 

biological sequences.  In the first stage, the algorithm searches for all exact matches between two segments 

of length k, called k-tuples.  Fig. 2. shows the location of k-tuples (k=1).  The value of k can be determined 
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experimentally through testing or empirically if there is prior knowledge about the input sequences and the 

expected length of exactly matching segments. Exactly matching segments can be efficiently discovered 

using a hash table with entries for every possible k-tuple.  Thus, there is a practical restriction on the 

maximum value of k. In the second stage, the locations of these exactly matching segments are used to 

identify a sub-space of the dynamic programming matrix.   In highly similar sequences, this sub-space will 

consist of a few closely spaced diagonals, as shown in Fig. 3.  There are a variety of different ways to 

define and refine the sub-space [10]. Computing an alignment within the sub-space is likely to produce a 

near optimal alignment but requires significantly less computation than computing the entire dynamic 

programming matrix. If no exactly matching k-tuples are found there will be no sub-space to compute. 

However, if k is carefully selected, the lack of matching k-tuples indicates that there is no significant 

similarity.  While this strategy has proven effective for biological sequences, it is not clear if this strategy 

would work for the types of event sequences inherent in the masquerade detection problem.  One of the 

main issues is whether exactly matching segments are prevalent in different event sequences taken from the 

same user.  A closer examination of the underlying statistics could reveal whether or not a heuristic 

approach such as FASTA is appropriate for masquerade detection. 

 
Fig. 2.  Location of k-tuples in search space (k = 1). 

 

 
Fig. 3.  Sub-region of search space (k = 2). 
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BLAST, the Basic Local Alignment Search Tool, uses a k-tuple based heuristic similar to that of 

FASTA [1]. The algorithm generates a gapped alignment by first finding the maximum matching segment 

pair without gaps. Maximal segment pair alignments have the very valuable property that their statistics are 

well understood [17]. The maximal segment match and its significance probability can be computed 

efficiently [1].  In turn, the un-gapped alignment can be used to help pin-point the search for a high scoring 

gapped alignment. The tradeoff of efficiently computing a significance probability is that the initial 

alignment cannot have gaps.  Thus, there is the implication that two similar sequences must have rather 

long segments that align without introducing any insertions or deletions.  While this turns out to be a 

reasonable assumption given biological sequences, it is once again unclear whether or not this heuristic 

approach is appropriate for other types of input sequences.  For example, the modifications to the heuristic 

that improve the sensitivity for protein sequences do not work as well for nucleic acid sequences. While a 

BLAST-like algorithm could be applied to the masquerade detection problem, the algorithm may require 

significant modification. 

A more generic approach to improving the efficiency of alignment algorithms is to reduce the size of 

the dynamic programming matrix through direct learning.  This approach was successfully applied to 

reducing the computational complexity of the longest common subsequence problem [2].  The alignment 

problem is merely a generalization of the longest common subsequence problem and the approach can be 

applied to many different dynamic programming algorithms.  Given a pair of sequences and an algorithm 

for computing an optimal alignment, we can generate a solution trace, i.e., a computational path through the 

dynamic programming matrix that will “ realize”  the optimal solution while performing the minimum 

number of computations.  In the alignment algorithm introduced in the paper, the solution trace would be 

the chain of adjacent matrix entries needed to compute the final alignment score for a particular input.  

After accumulating several solution traces, any number of clustering algorithms can be used to identify a 

sub-space of the dynamic programming matrix that includes a high percentage of solution traces and 

excludes a large portion of the matrix.  After a period of learning, we can use only the discovered sub-space 

to compute future alignments. 

The intrusion detection problem is an ideal application for this type of learning.  It has been observed 

that the solution traces of similar sequences cluster near the center diagonal of the dynamic programming 

matrix [2], which can yield a sub-space that is significantly smaller than the entire dynamic programming 

matrix. Since the intrusion detection problem only requires the alignment score, which is used as a 

similarity metric, it is not essential to obtain an optimal alignment.  Rather, it is only important that the 

alignment algorithm consistently returns an alignment score that is near optimal.  In fact, if a high scoring 

alignment does not exist close to the center diagonal then the two sequences are likely to be globally 

dissimilar [2].  Thus, by restricting the search for an optimal alignment to the center diagonal, we do not 

explicitly diminish the algorithms ability to differentiate similar sequences from dissimilar ones.  Finally, 
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since we repeatedly compare the signature sequence with various user sequences, we can learn customized 

sub-spaces for each signature sequence as we tune our masquerade detection system. 

 
5. SCORING SYSTEMS 

5.1 Overview 

In order to properly score two aligned command sequences, we must develop a general concept of the 

characteristics that make a good alignment and the characteristics that make a poor alignment.  The most 

obvious characteristic of a good alignment is a multitude of lexicographically matched commands in the 

two sequences being aligned.  If all commands match, then the alignment is the best that can possibly 

occur.  It isn’ t always the case that we can find perfectly matching commands, so the next characteristic 

would be mismatched commands that are in some way similar to each other.  Additionally, if two 

mismatched commands are in no way similar to each other, then a gap may be introduced in either 

sequence.  It is important to note, however, that a gap in the sequence of commands being tested is much 

better than a gap inserted into the user’s signature sequence due to the importance placed on the groupings 

of commands in the user’s signature. 

From these characteristics, we are able to develop a rough concept that matched, and similar 

mismatched commands should be rewarded, while dissimilar mismatched commands and gaps should be 

penalized.  Furthermore, gaps in the user’s signature should be more heavily penalized than gaps in the 

sequence of commands to be tested.  The techniques used in this paper for scoring alignments focus on the 

use of the various features of the SEA dataset in the scoring of matched and mismatched command 

alignments.  The penalties for gaps in the tested blocks and in the user’s signature remain constant at -2 and 

-3, respectively.  The match and mismatch scoring, however, takes advantage of such features as command 

frequencies, groupings of commands based on their functions, and command probabilities.  There is also a 

temporal relation among commands in the SEA dataset, which is defined by the chronological ordering of 

commands in the sequences.   The sequence alignment technique takes into consideration this temporal 

relation in the sequences by providing a linear alignment of commands.   Each of these features is given 

due consideration in the various techniques described below. 

 To facilitate proper detection, a threshold score must be determined to define at which point a score is 

indicative of an attack.  Rather than choosing an arbitrary and static threshold score, we have decided 

instead to determine the initial threshold score for each user by cross-validating the user’s signature against 

itself.  We do this by taking 20 randomly chosen, 100-command sections of the user’s signature and 

aligning them to a randomly chosen 1,000-command sections of the same user’s signature.  This allows us 

to create an initial average score that is similar to the score that the user’s testing data should produce.  

Additionally, we update this average while new testing blocks are checked by averaging the current test 

block’s score, and all tested block scored before it, with the initial average produced by the training data.  

We then take a percentage of that average as the threshold score.  This allows us to customize the threshold 
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for each user so that if a particular user did not have consistently high scoring alignments with their 

signature, this user’s testing blocks will not be unduly flagged as intrusions.  This, in particular, allows our 

algorithm to be somewhat forgiving of concept drift.   

We are also able to choose a threshold percentage that is proportionate with the amount of sensitivity 

that we would like to express in the detection process by specifying the percentage of the threshold value to 

use as the cut off for determining what is and what is not a masquerade attack.  For instance, if we are more 

concerned with keeping a secure environment, then we would not mind an additional amount of false 

positive alarms in exchange for increased masquerade detection, so we can then use a higher percentage 

threshold.  With such a threshold, the required alignment score would have to be much closer to the user’s 

average score to be considered a non-intrusion.  Conversely, we can choose a lower threshold percentage, 

which would allow for a more lax security environment with less intrusive alerts by allowing the score to 

be significantly lower than the average score of the user. 

 
5.2 Techniques 

5.2.1 Expected Frequency 

With the expected frequency technique, we provide a blanket reward for commands that match, as well as 

an additional reward or penalty for how often the test block’s command occurs in the user’s signature.  

More specifically, we reward the match or mismatch if the test command occurs more often than the 

average in the user’s signature and penalize the match or mismatch if the test command occurs less often 

than the average.  Additionally, we limit the reward that can be gained in such a way that a match will 

always score higher than a mismatch, despite the number of occurrences of the test command in the user’s 

signature. 

This technique draws upon the command frequencies found in the user’s signature to boost the score of 

a sequence alignment, despite the fact that it may not have a large number of the user signature’s most 

frequent commands.  For instance, a user may have utilized a few commands many times during the 

creation of their user signature, but in the command sequence currently being tested they may have used 

that same small set much less, perhaps due to a change in a project they were working on.  If we were to 

rely solely on matched commands, the two sequences would score very poorly in an alignment because the 

test command sequence does not contain these same few commands occurring many times.  With the 

expected frequency technique, however, the matches of these commands are weighted more than other 

matches or mismatches, therefore raising the score of the overall alignment.  Many permutations of this 

technique were tested, including use of command frequencies in the test command sequence, and similarity 

of frequencies in the two sequences being aligned.   The best performing expected frequency formula for 

matches and mismatches is given in Fig. 4. 
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Fig. 4.  Expected frequency formula. 

In this formula, we use the average frequency of occurrence of commands in the user’s signature as a 

measure of how much weight should be given to the scoring of a particular match or mismatch.  

Specifically, we find the number of times the test block command occurs in the user’s signature, and divide 

it by the average frequency, which is found by dividing the size of the user’s signature, 5,000 commands, 

by the cardinality, or the number of distinct commands, that the UserFreq set contains.  This will then 

provide us with a ratio that we subtract one from.  Finally, we limit the upper bound of the scale to one to 

provide a scoring scale of -1 to +1.  In the case where the test block’s command occurs more frequently 

than the average we add to the alignment score, and in the case where the test blocks’  command occurs less 

frequently than the average we subtract from the score.  This allows us to give preference to alignments that 

include test block commands that occur very frequently in the user’s signature and to discourage 

alignments that include commands that are rarely or never used in the user’s signature. 

 
5.2.2 Odds Ratio 

The log-odds ratio is a method often used for the scoring the alignments of biological data, as well as in the 

field of statistical analysis.  It is, therefore, a natural choice for usage in the alignment of command 

sequences.  The log-odds ratio, as the name suggests, takes the log to some arbitrary base of the odds ratio 

for the actual probability versus the expected probability of matching any two characters, or commands in 

the sequences being aligned.  The odds ratio is found by dividing the actual probability of matching the two 

characters, or commands being aligned by the probability of matching any two characters, or commands in 

the sequences at random, also known as a null hypothesis. 

Unfortunately, the log-odds ratio does not provide a method of scoring that is directly useable in our 

current scoring system due to its tendency to assign very large values for scoring, thus outweighing the 
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static gap penalties and undermining the scoring scheme.  Fortunately, a method developed by Yule [19], 

known as Yule’s Q, provides us with the ability to utilize the odds ratio of matching commands while 

keeping the scoring of these commands in the range of -1 to +1, which fits quite nicely with our current 

scoring system framework.  Yule’s Q takes the ratio of the odds ratio minus one with the odds ratio plus 

one to give a positive score to any alignment that has a higher probability of aligning than the null 

hypothesis, and a negative score to any alignment that has a lower probability of aligning than the null 

hypothesis.  Many features were used to determine the best probabilities to use for the odds ratio, including 

the total number of distinct commands among all user signatures, the number of distinct commands in the 

particular user’s signature, the probability of finding a command in the user’s signature, and the probability 

of finding a command in the test sequence.  The best method is shown in Fig. 5. 

 
Fig. 5.  Odds ratio formula. 

With this odds ratio formula, we utilize only the frequency with which commands occur in the current 

user’s signature.  If an exact match between the commands is found, an immediate reward is given.  We 

then use the frequencies of the two commands being aligned to determine their individual probabilities by 

dividing them by the size of the user’s signature, 5,000 commands.  We then multiply these probabilities to 

get the probability of both aligning, and divide this by the null hypothesis, that is, the average probability of 

aligning two commands in the user’s signature.  The result then provides us with the odds ratio, to which 

we can then apply Yule’s Q formula by subtracting one and dividing it by the odds ratio plus one.  This 

scoring system allows us to reward alignments of two commands that have a high combined probability of 

aligning based on the user’s signature, and penalize the alignment of two commands that have a low 

combined probability of aligning.  Essentially, we reinforce the natural tendency of the alignment algorithm 

to match commands that occur very frequently in the user’s signature, despite the spatial constraints of the 

commands themselves, while discouraging the alignment of commands that occur very rarely, or not at all. 
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5.2.3 Binary Scoring 

To test the importance of frequencies and probabilities are in the definition of good and bad alignments, a 

simpler approach was chosen as a base-line against which we can test the other scoring methods.  In the 

binary scoring method, command alignments are scored solely on exact lexicographical matches, and the 

membership of the test block’s command in the user’s signature.  This method rewards an exact match by 

adding one to the score for the alignment.  One is also added to the score if the command occurs in the 

user’s signature, and one is subtracted from the score if the command does not occur at all in the user’s 

signature.  This means that an exact match adds two to the score, a mismatch in which the test sequence 

command occurs in the user’s signature adds one to the score, and a mismatch where the test sequence 

command does not occur in the user’s signature subtracts one from the score.  Simply put, this system 

discourages alignments of commands that are not contained in the user’s signature while encouraging 

alignments that have occurred at some point in the user’s signature.  While this seems extremely simple, it 

provides the same type of scoring as the previous two scoring techniques without the granularity of 

defining how often the commands should occur in the user’s signature to be considered good. 

 
5.2.4 Command Grouping 

In another diversion from the usage of frequencies and probabilities, the command grouping technique 

utilizes an intuitive approach to scoring command alignments.  Unlike the other techniques, the command 

grouping technique applies only to mismatches, and not to exact command matches.  In this technique, a 

static reward is given to exact matches.  Commensurate with the other scoring techniques, this reward is set 

to two.  During a mismatch, however, the groups to which the two commands belong are compared to 

determine their scoring.  These groups were created from a set of common Unix commands found among 

all of the commands in the dataset.  Each of these groups reflects the general usage of the commands within 

it.  For instance, a group with the commands sh, tcsh, ksh, csh, and bash would be representative of various 

Unix shell programs. 

With these command groups, we now have a model of mutation from one command to another, namely 

from one command in a group to another in the same group.  Furthermore, we can say that an alignment of 

two commands is good when a command found in the user’s signature aligns with a mismatched command 

in the test sequence that is in the same group, thereby representing an expected mutation from the user’s 

command sequence.  If a mismatch occurs in which the commands do not have the same grouping, then an 

unexpected mutation has occurred and this should be penalized.  In our system, we reward mismatched 

commands that are in the same group by adding one to the alignment score, and penalize commands that 

are in different groups by subtracting one from the alignment score.  This provides us with an intuitive 

system of dealing with the possibilities of a user utilizing different programs with similar functionality as 

their daily usage changes from their user signature. 
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5.2.4 Split Scoring 

The final technique presented here draws upon the idea that it is quite possible that the properties that make 

for a desirable exact match may vary from the properties that describe a desirable mismatch.  For instance, 

a good exact match may be characterized by how frequent the command occurs in the user’s signature, 

while a good mismatch may be measured by the functional similarity between the commands.  This method 

provides us with the ability to better distinguish between good and bad matches and mismatches, thereby 

allowing us to give preference to alignments that contain not only good matches, but also which contain 

good mismatches, as defined by the methods used to score them. 

Each of the previously mentioned techniques were tried, as applicable, to score both the matches and 

mismatches.  Furthermore, some intuition was used to develop additional techniques used to score 

mismatches based on the two commands’  similarity to one another based on frequency of occurrence, 

probability, or function.  The best of these combinations, described in Fig. 6., utilizes the already shown 

expected frequency technique to score matches, while utilizing an additional technique to score the 

mismatches.  The additional technique essentially rewards two commands that occur with a similar 

frequency in the user’s signature.  This mixture of techniques ensures that matching commands that are 

especially prevalent in the user’s signature will be given preference over other matching commands during 

alignment.  Additionally, mismatches are considered good when both commands’  frequencies are similar, 

and they are considered bad when those frequencies are substantially. 
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Fig. 6.  Split scoring formula. 

In the formula presented in Fig. 6., matches receive an immediate reward by adding two to the 

alignment score.  This is then modulated by the ratio of the command’s frequency in the user’s signature to 

the average frequency of commands in the user’s signature, just as in the expected frequency technique 

discussed earlier.  This score is then limited to a -1 to +1 scale, thereby allowing exact matches to add 

between one and three to the alignment’s score.  For mismatches, we add one to the alignment score, and 

then take the ratio of the frequencies of both commands in the user’s signature.  We then subtract one from 

this ratio and take the absolute value, and, finally, limit the ratio to a maximum of two.  This provides us 

with a score that is commensurate with the similarity of the frequencies of both commands, as found in the 

user’s signature.  If both commands have the same similarity, then we don’ t subtract anything from the 

alignment score, thereby raising the alignment score by one.  If the frequencies of the two commands are 

significantly different, the alignment score would be lowered by a maximum of one. 
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5.4 Results 

Based on common-sense knowledge of how a user utilizes various commands, it would stand to reason that 

the command grouping scoring scheme would perform the best out of the techniques presented above due 

to its use of a mutation model that allows the user to utilize different commands with similar functionality 

to create the best alignment of command sequences.  Conversely, it would make sense that the binary 

scoring model would perform poorly because it does not use the various features, such as command 

frequencies or probabilities, available in the dataset to make its determination of what constitutes a good or 

bad match or mismatch.  The other techniques should perform similarly due to their use of similar types of 

features in the dataset, with the split scoring technique edging out the others due to its ability to provide a 

more granular description of good and bad matches and mismatches.  The performance of these techniques 

in relation to one another should provide some insight into the features and concepts which best 

differentiate good and bad matches and mismatches in the Schonlau et. al. dataset.  To properly compare 

these techniques to one another, as well as to other masquerade detection algorithms, a scoring framework 

must be utilized.  Maxion and Townsend [8] created a scoring framework that rates the overall performance 

of a masquerade detection algorithm as a function of its false positive rate and its false negative rate, or 

miss rate.  In this scoring framework, a false positive is considered substantially more costly than missing a 

masquerade attack.  In fact, the framework calculates the overall cost, or score, of a masquerade detection 

algorithm as six times the false positive rate plus the miss rate, as shown in Fig. 7.  This score provides a 

realistic assessment of the various masquerade detection algorithms, with lower scores indicating a good 

mix of masquerade detection and false positives. 

 
Fig. 7.  Maxion-Townsend scoring system formula 

To choose the best sensitivity for each technique being compared, we simply choose the sensitivity 

setting that provided the lowest Maxion-Townsend cost.  We then took the best costs for each of the 

techniques mentioned above and compared them to each other with some very interesting results.  The bar 

graph shown in Fig. 8. depicts the comparison of the best costs from each technique.  Surprisingly, the 

command grouping technique that we anticipated would perform quite well performed the worst of all 

techniques compared.  Maybe even more surprising is that the binary scoring system performed very near 

the best technique, split scoring.  As predicted, the expected frequency and odds ratio techniques performed 

similarly to each other.  These results imply some interesting features of the Schonlau et. al. dataset, 

namely that utilizing the frequency and probabilities available in the dataset provide no distinct benefit in 

the determination of good and bad matches and mismatches.  In fact, these results seem to imply that the 

most reliable indicator of good matches and mismatches are the commands’  membership in the user’s 

signature.  The split scoring technique seems to outshine the binary scoring technique only because of its 

more granular analysis of both matches and mismatches.  It is important to note, however, that the training 

process used to create the threshold scores chooses random data, so the difference can very well be 

MissesiveFalsePositCost += )*6(  
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attributed to the difference in data used to create the threshold.  In fact, upon closer inspection, the binary 

scoring method actually achieves a lower average cost, as seen in Tables I and II, among many of its 

sensitivity levels than the split scoring technique, thereby rendering it the best technique discussed in this 

paper. 

TABLE I 

SPLIT SCORING – FULL RESULTS 

SENSITIVITY % MISS 
% FALSE 

POSITIVE %HIT COST 

0% 85.8% 0.1% 14.2% 86.7 

10% 84.8% 0.4% 15.2% 87.3 

20% 80.6% 0.6% 19.4% 84.5 

30% 75.2% 1.0% 24.8% 81.1 

40% 58.7% 1.4% 41.3% 67.2 

50% 41.2% 2.4% 58.8% 55.7 

60% 29.5% 4.9% 70.5% 59.0 

70% 18.6% 10.9% 81.4% 83.8 

80% 11.5% 20.2% 88.5% 132.6 

90% 9.5% 31.9% 90.5% 200.9 

100% 7.4% 47.6% 92.6% 292.8 

AVERAGE COST:  112.0 
 
 

TABLE II 

BINARY SCORING – FULL RESULTS 

SENSITIVITY % MISS 
% FALSE 

POSITIVE %HIT COST 

0% 85.8% 0.2% 14.2% 86.8 

10% 72.8% 1.0% 27.2% 78.6 

20% 61.9% 1.3% 38.1% 69.4 

30% 56.3% 1.9% 43.7% 67.7 

40% 50.7% 2.4% 49.3% 65.0 

50% 39.7% 2.9% 60.3% 56.8 

60% 36.3% 3.5% 63.7% 57.5 

70% 26.4% 5.6% 73.6% 60.1 

80% 19.2% 12.3% 80.8% 93.1 

90% 9.7% 25.1% 90.3% 160.3 

100% 6.1% 48.7% 93.9% 298.1 

AVERAGE COST:  99.4 
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Fig. 8.  Scoring techniques compared using the Maxion-Townsend scoring system. 

Use of the binary scoring system also allows the sequence alignment algorithm to overtake a number of 

competing masquerade detection algorithms, falling short of only the Naïve Bayes method, which updates 

its command probabilities based on the classifications it makes.  Table III provides a listing of masquerade 

detection algorithms, ranked by the Maxion-Townsend score, as provided by the works of Schonlau et. al. 

[12], and Maxion and Townsend [8].  Exact results could not be gathered from the Support Vector Machine 

work by Wang and Stolfo [16], but the receiver operator characteristic curve that they provide seems to be 

fairly close to the curve for our sequence alignment algorithm when utilizing the binary scoring system, as 

provided in Fig. 9.  These results rank our sequence alignment algorithm near the top of all masquerade 

detection algorithms. 

TABLE III 

COMPARISON OF MASQUERADE DETECTION ALGORITHMS 

ALGORITHM % HIT 
%FALSE 

POSITIVE COST 

NAÏVE BAYES (WITH UPDATING) 61.5% 1.3% 46.3 

SEQUENCE ALIGNMENT 60.3% 2.9% 56.8 

RECURSIVE DATA MINING 62.3% 3.7% 59.9 

NAÏVE BAYES (NO UPDATING) 66.2% 4.6% 61.4 

UNIQUENESS 39.4% 1.4% 69.0 

HYBRID MARKOV 49.3% 3.2% 69.9 

BAYES 1-STEP MARKOV 69.3% 6.7% 70.9 

IPAM 41.1% 2.7% 75.1 

SEQUENCE MATCHING 36.8% 3.7% 85.4 

COMPRESSION 34.2% 5.0% 95.8 
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Fig. 9.  Receiver operator characteristic curve for the sequence alignment algorithm utilizing the binary scoring technique plotted 

against other masquerade detection algorithms. 

 
6. CONCLUSION 

Through our testing of the five scoring systems, we have found the binary scoring system to perform the 

best at masquerade detection with a hit rate of 60.3% and a false positive rate of 2.9%.  Interestingly, Wang 

and Stolfo [16] also used both command frequency and binary representational data in their Support Vector 

Machine approach and found that the use of binary scoring data actually performed better than the use of a 

one-class Naïve Bayes or a Support Vector Machine with the command frequency representation.  It is also 

interesting to point out that the receiver operator characteristic (ROC) curve created by the Support Vector 

Machine with the binary scoring approach is very similar to the ROC curve provided by our sequence 

alignment method.  This correlation in results seems to indicate that the binary representation of commands 

in the user’s signature is the best feature available in the Schonlau et. al. (SEA) dataset, even though it is 

not the intuitive choice for feature selection. 

We have also found that the pair-wise sequence alignment technique described in our previous work [3] 

has bested all but the Naïve Bayes classification technique with updating when using the Maxion-

Townsend scoring system.  One important note, however, is that while our algorithm provides a fluctuating 

threshold for each user, we do not update the original 5,000 command user signature, while the best Naïve 

Bayes classifier updates its command probabilities after each block is classified.  This distinction may very 

well explain the difference in performance between the Naïve Bayes classifier with updating and our 

sequence alignment technique.  An important area of future research with respect to the use of our sequence 

alignment technique in masquerade detection is the development of a technique for updating the user’s 

signature as the algorithm classifies the blocks of commands being tested.  If a reliable updating method 

can be found, it may help to provide better results than the Naïve Bayes classifier with updating. 
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Finally, we have found that the use of the SEA dataset continues to provide lackluster results despite the 

numerous and varied approaches attempted.  This lackluster performance seems to stem from the 

inconsistent interspersion of masquerade attacks and the limited amount of information provided by the 

truncated command lines.  Maxion and Townsend [8] provide a detailed analysis of the SEA dataset, 

including a description of why certain users in the dataset perform so poorly and why some users perform 

so well in masquerade detection, essentially echoing our beliefs about the shortcomings of this dataset.  

They also point out the fact that the lack of command line information could very well hamper the process 

of masquerade detection.  Maxion has since performed research on the effects of additional command line 

parameters on masquerade detection [9] and found that the additional information constitutes a 9.1% 

decrease in the Maxion-Townsend score, as described above.  This helps to confirm the opinion that 

additional data about the commands entered would help to pick out masquerading users, and to make 

masquerade detection viable in more realistic scenarios. 
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