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Constrained Motion Control of Flexible Robot
Manipulators Based on Recurrent Neural Networks

Lianfang Tian, Jun Wang, Senior Member, IEEE, and Zongyuan Mao

Abstract—In this paper, a neural network approach is pre-
sented for the motion control of constrained flexible manipulators,
where both the contact force exerted by the flexible manipulator
and the position of the end-effector contacting with a surface
are controlled. The dynamic equations for vibration of flexible
link and constrained force are derived. The developed control
scheme can adaptively estimate the underlying dynamics of the
manipulator using recurrent neural networks (RNNs). Based
on the error dynamics of a feedback controller, a learning rule
for updating the connection weights of the adaptive RNN model
is obtained. Local stability properties of the control system are
discussed. Simulation results are elaborated on for both position
and force trajectory tracking tasks in the presence of varying
parameters and unknown dynamics, which show that the designed
controller performs remarkably well.

Index Terms—Constrained motion, flexible robot manipulators,
hybrid position/force control, recurrent neural network.

1. INTRODUCTION

ITH the advancement of robot technologies and the de-

velopment of robotic applications, industrial robots can
realize many kinds of manipulation tasks such as, assembly, de-
burring, grinding, to name a few. Many of these applications
require contacts to be made with the environment by the end-ef-
fector of the robot manipulator. For such tasks, if only position
control is considered, the accuracy requirement of the robot con-
trol may not be met. Therefore, force control should also be re-
quired in addition to position control; namely, both the position
control and the force control must be carried out simultaneously
[1], [2]. This research topic has received much attention in the
robot control literature in recent years.

In addition, the demands for lightweight structure, energy
efficiency, and high speed motion have increased recently for
robot manipulators to carry out complex industrial tasks. For
such occasions, the flexibility of the mechanical structures of
robot manipulators is very important for the design of their con-
trol systems [3]-[5]. Flexible manipulators exhibit many advan-
tages over rigid robots, i.e., they require less material, are lighter
in weight, consume less power, require smaller actuators, are
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more maneuverable and transportable, have less overall cost,
and high payload to robot weight ratio [6]-[8]. However, un-
like rigid robot arms, control interaction in flexible robot arms
creates a severe stability problem, because of their high nonlin-
earity and high dimensionality.

The design of control system for robots has played an impor-
tant role in maintaining high control accuracy. However, there
are still many problems to be solved before flexible robots are
widely used in industrial tasks, such as severe nonlinearity, cou-
pling due to flexibility of manipulators, uncertainties of con-
strained environment, changes of system parameters and ex-
ternal payloads, friction in robot joints, gravity, disturbance, and
so on. Any of these can lead to instability of a robot system if the
robot controller is not designed properly. In other words, those
problems will bring difficulties for the design of robot control
systems.

The study on the controller design for constrained flexible
robots, therefore, has profound importance for practical appli-
cations in industries. The conventional approaches to the design
of an automatic control system often involve the construction
of a mathematical model describing the dynamic behavior of
the plant to be controlled and the application of analytical tech-
niques to this plant model to derive an appropriate control law.
Usually, such a mathematical model consists of a set of linear
or nonlinear differential/difference equations, most of which are
derived using some forms of approximation and simplification.
The traditional model-based control techniques may fail, how-
ever, when a representative model is difficult to obtain, or not
accurate, due to uncertainty or sheer complexity. This pushes
the control system designers to seek alternatives to the conven-
tional control methods and to look for solutions elsewhere.

With the resurgence of research on intelligent control for var-
ious problems of nonlinear nature in recent years, many re-
searchers have applied neurologically inspired approaches for
robot control [9]-[13]. The massive parallelism, natural fault-
tolerance, and implicit programming of neural network com-
puting architectures, both nonlinear and mapping, suggest they
may be good candidates for implementing real-time adaptive
control for large scale nonlinear dynamic systems, especially for
sophisticated robotic systems [15]-[18]. The major advantage
of neural networks, compared with traditional control methods,
is that they require no a priori knowledge about the controlled
system. Rather, they involve using neural networks to complete
modeling and control task autonomously. Researchers from dif-
ferent disciplines have published extensively on the use of the
neuromorphic models for the control of the nonlinear dynamic
robotic systems in the past years, and many promising results in
this field are realized [19]-[22].
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Song et al. [23] designed a nonlinear predictive controller
on the basis of a neural network plant model using the re-
ceding-horizon control approach, the control is calculated by
minimizing a projected cost function that penalizes future
tracking errors. Lin et al. [24] gave an approach combining the
a priori knowledge of the corresponding rigid manipulator’s
model with two multilayered neural networks for the identifica-
tion and control of a flexible-link manipulator. The suggested
method can use fewer neurons and needs shorter learning time
for reducing the error. Kiguchi [25] proposed a fuzzy vector
method that enables the controller to deal with force sensor
signals which include noise and/or unknown vibrations caused
by working tool. Based on the fuzzy vector concept, a fuzzy
neural position/force controller is developed. It is utilized to
apply force to the unknown environment as it adjusts the force
control direction using the fuzzy vector method, and to follow
the geometrically unknown surface of the object. A stable
discrete-time tracking control approach based on dynamics
inversion using dynamic neural networks (DNNs) was devel-
oped by Sun. ef al. [26]. The robot control law is composed
of the dynamic inversion of the DNN, adaptive compensation
and the DNN variable structure control (VSC) components.
The control scheme can guarantee the global stability and
tracking error convergence of the DNN control system. In [27],
a feedforward neural network is used to adaptively compensate
for the uncertainties of the robot dynamics. The connection
weights of the neural network are tuned online with no offline
learning phase required. It is able to deal with both the modeled
and unmodeled uncertainties of the robotic systems. Jung, ef al.
[28], [29] used a neural network (NN) controller to compensate
for the ill effects of model uncertainties. Effects on system
performance for different choices of the NN input types, hidden
neurons, weight update rates, and initial weight values are also
investigated extensively.

In this study, through deep and comprehensive analysis, an
effective controller based on recurrent neural networks (RNNSs)
for constrained flexible manipulators is designed. It can main-
tain the stability of the robot system during the overall process
of execution, and also can improve the performance of control
system and enhance the adaptive capability against the uncer-
tainties from both internal parameters and external environment.

The remaining of the paper is arranged as follows. Section II
gives the dynamic equations of a two-DOF constrained flexible
manipulator and its reduced-order model. Section III describes
the RNN model and its learning rule. Section IV discusses the
results of stability and convergence analysis. Section V elabo-
rate on the force tracking and composite control law. Simulation
results under various conditions and environments are discussed
in Section VI. Finally, conclusions are drawn in Section VII.

II. CONSTRAINED DYNAMIC MODELS

Consider a two-DOF manipulator driven by two motors in a
horizontal plane. The first link is assumed to be rigid while the
second is flexible. The first (rigid) link, having length L; and
moment of inertia .J;, is clamped on a vertical shaft of the first
motor (motor 1) at one end. The second motor drives the second
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Fig. 1. Configuration of a two-DOF flexible manipulator.

(flexible) link at the other end, as shown in Fig. 1. Let .J;, and
M;, be the moment of inertia and mass of the rotor of motor
2, respectively. The flexible link, having length L and uniform
mass density p per unit length, and uniform flexural rigidity £ 1,
is clamped on the vertical shaft of the second motor at one end
and has a concentrated mass M> at the other end. Let (X, Y)
designate an inertial Cartesian coordinate variables and let the
constraint surface be described as

QX,Y) =0. (1)

The end point position vector (X,,, Y},) of the flexible manip-
ulator can be expressed by rotation angles (61, 02) as follows:

X, =Licosbi + Ly cos(f1 + 02) —wr cos(01 + 02) (2)
Yp =Lysinf; + Lo sin(@l + 62) +wg Sin(61 + 02) 3)

where wg denotes the transverse displacement at the end point.
Substituting (2) into (1), we can obtain the constraint equation
as follows:

The flexible deflection of the second link can be described as
w(r,t) = Z »i(r)qi(t) ®)
i=1

where n denotes the number of significant modes,
Y;(r) (i = 1,2,...,n) denote the mode shape functions,
qi(t) express time dependent generalized coordinates. In the
literature, different choices of spatial basis functions, including
the mode shapes of fixed-free [30], pinned-free [31] and a
combination of fixed-free and fixed-hinged beam [32], have
been made. However, research related to an optical choice of
basis functions for reduced-order modeling of flexural robotic
systems of general configuration remains to be done. Of course,
a good choice of basis functions can lead to an accurate model
with smaller number of flexural modes which simplifies the
controller design problem. We consider the low-order accurate
dynamic modeling as a separate problem. In this study, we
chose the mode shapes v; of a clamped-free as an illustration.
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Based on the previous discussions, using the Lagrange ap-
proach, the dynamic motion equation of the manipulator is given

as follows.
[Mn(z) M12(Z)} {9] n [Fl(zvz)} n
Mo (2z) Maa(z) | | g Fy(z,2)
o] [ -[E] (8] @
where z = [§7,¢7]" is the vector of generalized coordinates,

M;;(2)(i,j = 1,2) is the positive definite symmetric inertial
matrix, F(z, 2) = [, F{ ]T consists of the Coriolis and cen-
trifugal forces, 7 is the vector of the generalized forces applied
to each joint, A is the Lagrange multiplier associated with the
constraint. K(z) is an n x n elasticity matrix. Noting that the
potential energy only includes the strain energy and the gravi-
tational effect in this derivation, the longitudinal and torsional
deformations are neglected.

Equation (6) can be transformed into two parts in the fol-
lowing form:

M11(Z)é+M12(2)('j+F1(z,z) :T_l_)\%ém )

Moy ()8 + Mas(2)i + Fa(2,2) + K(2)g=0.  (8)

From (8), we can get
i =—Mg'(2) (Mo () + Fa(2,2) + K(2)q] . ©)

Substituting (9) into (7), we have

M+ 0 =74 2220

a0 (10)

where M = M11 — M12M2_21M21, é = F1 — M12M2_21(F2 +
Kq)

Because the end-effector of the flexible manipulator is re-
stricted to move on the constraint in the whole process, #; and
5 can not be independent in a nonredundant manipulator, there-
fore, one of them can be expressed by the other one. Without loss
of generality, 65 is described as the function of ;. So we have

o = W(6:) (11)

where wg is omitted, as it can be calculated by employing (5)
and (8).

To facilitate our subsequent analysis, we reformulate (10) by

introducing a new set of variables v = [v1, 5], as defined in
[33] and [34]

[92 —9&1(91)] =T(0). (12)

So

AR N

1543
Thus, the transformation matrix is given by
1 0
T, = |:0\II(V1) J - (14)
ov
1

After the substitution of (13) into (10), and multiplication of
T, from left, the reduced-order model can be obtained as
M*()o + C*(v,q,0,4) = T/ T+ T,LEX (15
where M* TTMT,, C* TT(MT v + C),
& = 0¥Y(v1)/0v1, and note that s = 5 = vy = 0.
Through a series of complicated transformations, the motion
equation can be decomposed into the following form

vy = (miy—pm3y) " [ —prat(pe;—c)] (16)
A =by t [mb v +ch—1o] (17)
where m;;(i = 1,2;j = 1,2) are the elements of matrix M*,
by = 90(0)/061, by = ON(0) /305, p = (b1 + Eba)by .

The composite controller of the two-DOF flexible manipu-
lator can be designed according to (16) and (17).

III. RNN-BASED ROBOT CONTROL
A. Adaptive Control Scheme

The incredible learning and adaptive capability of biological
neuronal mechanisms have inspired many scientists and engi-
neers to apply control methodologies on the biological counter-
parts. In the efforts to understand the biological control aspects,
artificial neural networks have offered the most exciting avenues
for new technologies in the intelligent control paradigms [35],
[36]. It is well known that a multilayer neural network model
is basically a nonlinear extension of a linear adaptive model.
It possesses so many advantages in the controller design, com-
pared with conventional control methods, such as the capability
of approximating arbitrary nonlinear functions, fault-tolerance,
parallel computing and so on. Therefore, the applications of
neural networks have received considerable attentions in the
control of complex robotic systems [37]-[41].

As an extension of static neural networks, recurrent neural
networks (RNNs), which contain a state feedback, may pro-
vide more computational advantages than a feedforward neural
networks [42], [43]. A nonlinear RNN structure is particularly
appropriate for identification, control and filtering applications
due to its ability of distributed and multiple super-imposed in-
formation processing as a biologically plausible neural system.
In these neural machines, the physics of the machine and algo-
rithm of computation are intimately related. Next, we will dis-
cuss the proposed controller architecture of flexible manipula-
tors.

Formally speaking, (16) represents the direct dynamics of
the controlled manipulators in the reduced-order variable form;
namely, it actually refers to a nonlinear transformation (map-
ping) from inputs (joint torques 7 of the manipulator to the out-
puts (joint motion). In brevity, (16) can be written as follows:
(18)

v=V(,v,T1).
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Then, based on the argument and (10), the inverse dynamics

of the manipulator can be obtained as

=V v, v,D) (19)
where V~1(x) denotes the inverse transformation obtained by
inverting the robot direct dynamics V (). These nonlinear trans-
formations are time-dependent. However, in the ensuing discus-
sions, the arguments of V() and V ~! (x) and their variants will
sometimes be dropped for the brevity of notation.

If an accurate dynamic formulation of the manipulator and its
accurate parameters are available, then a controller can directly
be designed by employing the conventional control methods
(such as PID, adaptive control, robust control), all of which are
based on computed torque scheme. However, if such a model
is not available, the system dynamics has to be adaptively
identified in order to achieve a feedforward compensation. In
this study, the robot manipulators are a highly nonlinear and
heavily coupled complex systems. Therefore, its accurate dy-
namic model is difficult to obtain. In such case, an RNN model
is considered to effectively approximate the inverse mapping
V-1 (x) as closely as possible [44], [45]. The inverse dynamics
of a manipulator, described by the nonlinear transformation
V~=1(x), can be decomposed into n transformations given in
the following form:

o1\ ,)
r=V= v, p) =

_ (20)
[l U2 787)

where each g; *(i = 1,---,n) defines the inverse dynamics of
the corresponding joint, n is the number of joints of the manip-
ulator.

According to the analysis in [41] and [44], here, we can
employ a diagonal RNN, which has a feedback in its hidden
layer, to model each entry g;'(x) of the vector function
V~=1(x). Therefore, the inverse dynamics model of the overall
system can be represented by

N Y, 0,0, w)

T=[V] v, i) = 21

gt (v, 0, i, w)

where [¥] denotes the estimated model, and V; (x)(i = 1, - - -, n)
represents the output of the each RNN model that is employed to
model the inverse dynamics of the manipulators, w is denoted as
the vector of the adjustable weights of the corresponding RNN
model and will be defined explicitly in the sequel.

Note that, using a RNN to model the dynamics of a system
can basically realize a direct implicit transformation from the
joint position vector to the joint torques. This model does not
convey any explicit information on the estimated dynamic com-
ponents of the manipulator such as the inertia matrix. Hence, a
direct adaptive control architecture which would be based on a
computed torque-like model is difficult to obtain, a neural net-
work model is utilized to approximate the dynamics of the ma-
nipulator. Then, the feedforward torques can be used to com-
bine with a feedback control signal to obtain the torques that
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will finally drive the motors. Therefore, the control scheme can
be given as

7= [V]7 () + Kye + Kgé = N(x) + Kye + Kgé (22)
where [V]71(%) is the neural network approximation of the ac-
tual inverse dynamics of the manipulators, K, € R™*™ and
K4 € R™™™ are the diagonal gain matrices with entries K, and
K4, respectively, denoting a servo feedback that is introduced to
stabilize the system. e = 03 — 0,, ¢ = 03 — 0, representing the
tracking error and velocity error, respectively. ; € R? is de-
fined as the desired trajectories, 0, € R? as the actual outputs,

Now, making use of (20) and (21), it can be given as

N, v, i,w)+ Kye + Kqé = V™ v, i, D) (23)

Kye+ Kqé = Vv, 0,0) = N(v,0,i,w) = N(v, 0, i, w)
(24)
Equation (24) characterizes a decoupled linear system driven
by the nonlinear vector function N (v, 7, ,w) € R". This func-
tion represents the error between the actual inverse dynamics
V~=1(x) and its estimated model N(x) and can be explicitly
written as

[ Ni(v, v, i, w)

N(v, i, i,w) = :
Nop(v,0,i,w)

:9;1(1/7 v, ) — Ni(v, 0,1, w)

- : (25)

_thl(VJ./?i))_Nn(Vvl./ﬂ')?w)

where N;(v, 0,0, w), withi = 1,2,---,n denotes the error in
inverse dynamic modeling for each joint.

It makes intuitive sense that instead of using one neural net-
work to approximate the inverse dynamics of the whole manip-
ulator system, one ought to use a separate network for each joint
of the manipulator. With this in mind and by using (25), the error
equation for the sth joint of the manipulators is expressed as

Kipei + Kigé; = Nj(v,0,0,w) i=1,2,---,n (26)
where e; and ¢; denote the position and velocity errors at the ¢-th
joint, rgspectively, kip, kiq are the constant servo gains accord-
ingly, N (v, v, ,w) is the local approximation error of the RNN
assigned to the ¢-th joint. Hence, let us define a time-varying
surface R(¢) in the e; and é; space, it gives as follows:

R(t):r(e,é,t) =0 27
with r(t) = r(e, é) = kipe; +kiqé;. Therefore, the scalar signal
r(t) can be considered as the distance to the surface R(¢). The
problem of tracking is then equivalent to that of minimizing the
distance to the surface defined by r(¢) = 0. Now, let us define
g; = kipe + kiqé;, then (26) can be written as

g = N;(v,0,0,w).

(28)
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Fig. 2. Diagram of the controller architecture.

Fig. 3. Architecture of a diagonal RNN model.

Noting that €; = &;(¢), one can conclude that ;(¢) consti-
tutes a measure of the tracking error that reflects the mismatch
between the actual inverse dynamics of the manipulators and its
local neural network approximation. The block diagram of the
RNN-based robot control system is shown in Fig. 2.

The question that remains to be answered at this point is how
to update, or modify, the weights of the RNN model online, so
that the error measure ¢;(¢) converges to 0 as ¢ — oo. Here,
a gradient-descent approach comes immediately to mind. To do
this, let us define the following cost function E;(¢) for each joint
of the manipulators at each sampling instant [41]

(29)

This cost function gives the squared distance to the surface
r(t) = 0. Minimizing the cost function F;(t) over the weight
space of the corresponding RNN model forms the basis of the
weights updating algorithm. In doing so, let us derive the update
law.

The architecture of the RNN is illustrated in Fig. 3. The input
vector of the RNN X = [z1,22,23]T represents the position,
velocity and acceleration of the manipulators at each joint, re-
spectively. Note that the calculation of position and velocity can
be easily obtained, but that of the acceleration is not easy.

In this paper, as an approximation it is computed by differenti-
ating the velocity using a first-order filter. Although this is not a
desirable process due to possible side-effects such as increasing
susceptibility noise, such measurements are successfully used
in various adaptive control algorithms in some real-time appli-
cations [45].

1545
DRNN [z
@ |
+ Vi Vys W 9
Feedback A U JRobor | A %%
ISystem '&} /
Controller |y e+ u '1Sys -
B. Learning Rule for RNNs
The forward computation is described as follows:
Input layer
I.(k) = zm(k) (m=1,2,3). (30)

Hidden layer
Hj(k) = Fj (net;(F))
net;(k) =wP Hi(k = 1) + Y wian(k). (31
J

Output layer

O(k) = Ni(v, v, i,w) = > w® H(k) 32)
J

where net;(k) and H;(k) are the input and output of the hidden
layer at the jth unit, respectively, O(k) is the output of the RNN,
namely, the approximation of inverse dynamics at each joint,
F;(x) is sigmoid function, written as F(x) = 1/(1+exp(=*),

4@ ang 1

Wy WS, ;' are the weights from input to hidden layer,
last state to present state of hidden layer, hidden to output layer
of the RNN, respectively.

The gradient-descent updating equations are

OFE; 00(k
8w]- 8wj
oE; o 00(k) 0H;(k)
ng-z) ° OH;(k) 3w§-2)
= — ;w8 (k) (34)
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OE; [ aO(k)] O, (k)
0B _ [
oul) ~ 2 O]

= — Z [Eiw§3)} ﬂffli(k) (35)

J

where subscript 7 denotes the neural network which approxi-
mates the +th joint of the manipulator

i) oH,(k)
6]’ (k) = 8w§-2)
= F' (net;(k)) [H]-(k —1) + w60 (k — 1)}
(@) 1y _ OH;(F)
By (k) = ﬁ

= F' (net; (k) [xm(k) +w® . (k - 1)} .

Then, the weights of the RNN can be updated according to
the following expression:

w(k +1) = w(k) — aVE;(w) (36)

where w = [U’S; wj(?), w§3)]T, « is an adaptive learning rate.

Therefore, the connection weights are updated according to
a simple first-order differential equation involving the param-
eter a, the current value obtained from a servo feedback loop,
and the local response of the corresponding network. It is im-
portant to point out that the above development depends on the
assumption that the RNN is capable of approximating the in-
verse dynamics of the controlled system. It is well known that
neural network can be capable of approximating any reasonable
function. However, as it will be made evident shortly, it is not
sufficient for stability. Stability imposes additional requirement
that the error in the approximation of the inverse dynamics has
to remain bounded. Not surprisingly, it turns out that the con-
dition on the boundedness of the approximation error can be
satisfied by carefully choosing the network parameters, so as to
guarantee a desired uniform approximation in a target set.

Note that the above update equations define a system of cou-
pled nonlinear differential equations, this hampers a global sta-
bility analysis. However, local stability properties of closed loop
system can be investigated.

IV. STABILITY AND CONVERGENCE ANALYSIS

The learning law (36) calls for a proper choice of the learning
rate . For a small value of a the convergence is guaranteed
but the convergence speed is slow. On the other hand, if « is
too big, the control system becomes unstable. This section will
develops a guideline for selecting « properly, which will lead to
an adaptive learning rate [46].

A discrete-type Lyapunov function can be given by

Vi (k) = s&i (k). (37)
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Thus, the change of the Lyapunov function due to the training
process is obtained by
AVL(k) =Vi(k+1) = Vi (k) = < [eZ(k+ 1) — €7 (k)] .
(38)
The error difference due to the learning can be represented by

1
2

OF;
ow

ei(k+1) =ei(k) + Ae; (k) = e;(k) + [ } Aw  (39)

where Aw represents a change in an arbitrary weight vector.
From the update law (33)-(35)

Aw = —ag;(k) (ZEZ = asl(k)%(k)
w w

(40)

Then, we have the following general convergence lemma
[471:

Lemma 1: Let o be the learning rate for the weights of the
RNN and 2., be defined as z,.x = max]||z(k)||?, where
z(k) = 00(k)/0w, and || * || is the usual Euclidean norm in
R™. The convergence is guaranteed if « is chosen as

O<a<

2 (41)

Now, by using the lemma we can determine the learning rate
« to guarantee the convergence of RNN learning.

Theorem 1: Let oz be the learning rate for the RNN weights
w(®). The dynamic backpropagation algorithm converges if 0 <
lw;(3)] < 1(j = 1,2,---, h) and the learning rate 3 is chosen
as

2
0<as<— (42)
h
where h is the number of the recurrent neurons in hidden layer.
Proof: From (33)

_ oo
T ow®

where H(k) = [hi(k), ho(k),---, hn(k)]T, and h;(k) is the
output value of the jth neuron in the hidden layer. Since 0 <
hj(k) < 1 (this can be verified from the nonlinear sigmoid
function F(x) = 1/(14exp(~*)). By the definition of the usual
Euclidean norm in R, ||2(k)|| < V/h and zmax(k) = h, Then,
from Lemma, (42) can be obtained. O

Similarly, the learning rates ao and «y for the weights w®
and w(1) can be chosen according to the following expressions,
respectively.

2(k) = H(k). 43)

2
1 1
0<as < E {m} (44)
2
0< < ! 1 45)
RNEE WAk T ma

where w2, = max||w® (k)|, wl,. = maz||w® k)|, and

|| * | is the sup-norm. The detailed proof can be referred to the
Appendix of [47].
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V. FORCE TRACKING AND COMPOSITE CONTROL
A. Force Tracking

Now, we consider the relation of the constrained force f,,, the
axial force (), and the Lagrange multiplier A. From (1) and (2),
the constrained condition can be written as

Q(Hl ) 027 wE)

=X, Y})
= Q (L cos b1+ Ly cos(01+02) —wg sin(6+62)
Lisinfi+Ls sin(91 +92) +wg COS(91 +92)) =0.

The reaction force from the constraint surface is given by

b(017 027 ’lUE):|

46
0(017 027wE) ( )

fan = /\[
where b(f1,02,wg) =
0N(X,,Y,)/0Y.
Because the axial force () is the orthogonal projection of the
reaction force f,,n on the unit vector —i5 as shown in Fig. 1, it
can be represented as

0N(X,,Y,)/0X, c(01,02,wE) =

Q = —faizn.
Using (46) and (47), we have

(47)

Q ==\ [b(Hl, 02, wE)cos(91 +92) +C(91, 02, wE)Sin(Hl, 92)]

(43)

As we assume that the deviation wg from deformation is

small compared with L1 and Lo, the relation in (48) can be ap-
proximated as

- -Q
o 6(017 02) COS(01 + 02) + 5(01, 92) sin(91 + 92)

where 5(91,92) = b(61,92,wE), and 5(91,92) =
¢(01,02,wg). Because the axial force can be measured
by using a force sensor mounted at the tip of the second link,
it is possible to obtain the value of the Lagrange multiplier A
from this equation. The unit vector of the constraint surface is
given as

(49)

1 b(61, 02)]
S . 50
N B(00.0,) + (61, 6) L(f)h 62) 0
From (46) and (50), we have
fou = M/B2(61,62) + 2 (61, 6). 51)

Therefore, combining with (17), the contact force of the end-
effector with the constraint can be obtained.

B. Composite Control

The control objective is position and force trajectory tracking.
Therefore, we will define v(t) = [v14(t), v24(t)]T, as the de-
sired trajectory for the reduced-order variable v defined in (12).
Note that oy = 9 = 24 = 0, for the end-effector to move on
the constraint all along during the whole execution. Likewise,
we define the desired Lagrange multiplier to be A4. Then, the
force tracking problem involves requiring that the generalized
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multiplier A can track the desired ;. Therefore, we define the
force tracking error as

e\ = )\d - A (52)

Given the above definition, and combining with (14) and (22),
the composite control law is given as follows:

kplel + kg1€1 + Nl(*)

T:TT_T
€X

(53)
where €1 = Viq — 1/1(: gld — 91(1), similarly for 6.1, klp, kld
are the corresponding constant gains, Ny (x) is the output of the
corresponding RNN.

VI. SIMULATION RESULTS

We begin describing a series of simulation tests to study the
adaptive behaviors of the proposed composite control scheme
based on the RNN model and its effectiveness for controlling
constrained flexible robot manipulators. These tests are per-
formed on the model of a two-DOF flexible manipulator. We
will focus our attention on the tracking accuracy of the manip-
ulators in both position and force, and deflection of the flexible
link of the robotic system. As to the selection of the number
of modes, for the flexible manipulator system there will be an
infinite number of modes of vibration of the flexible manipu-
lator due to the distributed nature of the system. However, in
practice, the contribution of higher modes to the overall move-
ment is found to be negligible while the computational com-
plexity is cubic in the number of modes [48]. Therefore, a re-
duced-order model incorporating the lower modes is preferred.
Here, we choose the first two modes to describe the vibration of
the flexible manipulator.

In our simulations, the constrained rigid surface is taken as
a straight line X + Y = 1. The specific constrained condition
corresponding (1) is expressed as

QX,Y) =Q(b1,02,wp)
=Lysinfy 4+ Lasin(f; + 63) — wg cos(fy + 62)
+ Ly cosfy + Lacos(8; + 05)
+wgsin(f; +62) — 1 =0.

For the end-effector of the manipulator to move on the con-
straint all the time, #; and 65 are not independent. Therefore,
the angle 6 can be expressed as a function of 6

6 =Q(61)
. 1 1—=1Li(costy +sinb)
=7 —sin
\/(Ll + wE)2 + (L1 — wE)2
1 L1 —wg
—f#; —tan~"'
! . L+ wg

The physical parameters are listed in Table I. the desired posi-
tion trajectory is givenas v; = 0.4+ 0.3 sin(0.047t), and the de-
sired contact force iskeptas f; = 10 N during the whole process.
First, to compare the performance of the PID with the proposed
control law, the simulation is carried out, the results are shown
in Figs. 4 and 5, respectively. In which, (a)—(d) are the position
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Fig. 4. Transient responses with a PID controller.

TABLE 1
PARAMETERS OF THE FLEXIBLE MANIPULATOR SYSTEM
Physical parameters | Link 1 Link 2
Length Ly =0.45m Ly =0.38m
Moment of inertia J1=0.3kg-m2 | Jp =0.05kg-m?
Density p=0.17kg - m?
Elastic modulus EI =10N-m?
Mass Mp, = 0.2kg

tracking errors of joints 1 and 2, contact force tracking, and vibra-
tion, respectively (similarly hereinafter). Using a PID controller,
it appears an attenuation signal with amplitude of 0.02 rad, and
after about 4 s the steady state can be reached. While using the
proposed controller, the position error of joint 1 can be controlled
within £0.0001 rad, and the error for joint 2 is within £0.0006
rad. Force error can be controlled within +0.2 N for both con-
trollers. Though it appears overshoot of about 0.4 N by the pro-
posed control law, the rising time is shortened greatly. The deflec-
tion of the flexible manipulatoris also considered. The simulation
results are encouraging. It indicates that maximum deflection is
0.0005 m, only one third of that by using a PID controller. It can
be concluded that the performance of the control system can be
improved greatly by using the proposed control law.

To investigate the adaptive capability of the proposed con-
troller, simulations were also carried out by increasing the con-
centrated mass mj; and moment of inertia .J;, while keeping
other physical and controller parameters unchanged. The simu-
lation results are depicted in Figs. 6 and 7. It can be seen that the

0 0.5 1 15 2 25 3 3.5 4

&

0.5 1 1.5 2 25 3 35 4
Time (second)

(d)

o

maximum position tracking errors of joints 1 and 2 increase to
0.0015 rad, 0.5% of the amplitude of the input signal, while the
contact force and the deflection is neatly unchanged for both two
cases. Even though the position tracking errors increase much
more than the previous case, it can still meet the requirement to
normal industrial applications.

Similarly, to see the performance of the proposed controller
when the velocity of the end-effector of the flexible manipu-
lator is increased, simulations were conducted. Fig. 8 illustrates
the results with doubled velocity compared to the previous case.
From Fig. 8 it is shown that the position tracking errors in-
crease to 0.002 rad and 0.0038 rad, respectively. However, they
are larger than the previous case, only 0.45% and 0.85% of the
input signals, it still keeps high accuracy. The contact force is
nearly unchanged. The maximum vibration increases to 0.0015
m. Based on this, it can be concluded that it is not favorable for
weakening the vibration of the flexible manipulator increasing
velocity. So, in order to make the deflection smaller, it is better
not to pursuing higher velocity.

Fig. 9 shows the simulation results when an initial position
error exists, the result is obtained when 0.02 rad initial position
error, 5.7% of the amplitude of the input signal, is given. It indi-
cates that the position trajectory tracking and the contact force
are almost not affected by the initial position error. But, the vi-
bration increases from 0.0005 m to 0.0015 m, tripled the pre-
vious case. In short, from Figs. 8 and 9, it is demonstrated that
it is desirable to avoid higher velocity and initial position error
in order to obtain excellent performance, especially the small
deflection.
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