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ABSTRACT: To segment vascular structures in 3-D CTA/MRA im-
ages, this article presents a new region growing algorithm based on
local cube tracking. In the proposed algorithm, a small local cube is
segmented to detect a vessel segment, and the following local
cube(s) is determined based on the segmentation result. This proce-
dure is repeated until the segmentation is completed. By confining the
segmentation inside each local cube, a robust result can be obtained
even in a tubular structure of steadily changing intensity. For segmen-
tation, a locally adaptive and competitive region growing scheme is
adopted to obtain well-defined vessel boundaries. It should be em-
phasized that the proposed algorithm can detect all branches with
practically acceptable computational complexity. In addition, its seg-
mentation result is represented as a tree structure having many
branches so that a user may easily correct the result branch-by-
branch, if necessary. Experimental results from real images prove that
the proposed algorithm produces prospective vessel segmentation
results for 3-D CTA/MRA images and segments vessels of various
sizes well, including stenoses and aneurysms. © 2003 Wiley Periodicals,
Inc. Int J Imaging Syst Technol, 13, 208–214, 2003; Published online in Wiley
InterScience (www.interscience.wiley.com). DOI 10.1002/ima.10059
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I. INTRODUCTION
Because of the rapid development of 3-D imaging modality and
related software, 3-D medical images are actively used in various
advanced medical systems, such as surgical simulators, computer-
aided diagnosis systems, and computer-assisted surgery systems. To
maximally utilize the 3-D image information in those systems,
however, the segmentation of various human organs is usually
required. In particular, an accurate description of vessel structures in
3-D images is very important in many clinical applications, e.g.,
quantitative diagnosis, surgical planning, and monitoring of disease
progress or remission (Wilson and Noble, 1999; Wink et al., 2000;
Bhalerao et al., 2001).

Therefore, various algorithms have been proposed to segment
vessels from 3-D medical images, such as CT angiography (CTA)

and MR angiography (MRA) in which vessels are enhanced to have
higher intensity values. Model-based algorithms segment vessel
structures by assuming that their shapes can be represented by
generalized cylinders, B-splines, or triangulated surfaces (Verdonck
et al., 1996; O’Donnel et al., 1997; Terzopoulos et al., 1988, Fiebich
et al., 1997). In these algorithms, intensive research has been fo-
cused on the multi-scale analyses of high order derivative operators
like the Hessian matrix to detect tubular structures in 3-D space
(Lorenz et al., 1997; Krissian et al., 1998; Koller et al., 1995; Prinet
and Monga, 1997; Furst et al., 1996). These algorithms are able to
cope with varying widths of vessels by adopting multiscale analyses
in principle. However, they have an inherent risk of missing abnor-
malities, for example, aneurysms and stenoses, because the models
are based on the normal shape of vessels. Furthermore, their heavy
computation is noticed as a practical drawback.

Assuming that the intensity values of vessels are in a distinguish-
ing range, threshold-based algorithms have been widely used in
practical applications (Felkel and Wegenkittl, 2001). They choose
the desired connected components after a binary volume is gener-
ated by applying either automatic or manual threshold values. It is
obvious that these algorithms do not cope with local intensity
variation in 3-D space if a single global threshold value is applied to
the whole volume. To compensate for this problem, an adaptive
segmentation algorithm has been proposed for time-of-flight (TOF)
MRA images (Wilson and Noble, 1999). In this algorithm, the
thresholding parameter is estimated recursively on smaller subvol-
umes of data so that the best model is found for each localized
region, by assuming that the intensity distribution is a mixture of
Gaussian distributions. However, it can be applied only to TOF-
MRA images, in which vessels have the highest intensity values
compared to those of other tissues.

A fast central axis tracking algorithm has been proposed using a
new center-likelihood measure (Wink et al., 2000). The algorithm is
very robust to abnormalities, and it can produce accurate centerlines
for vessels very fast because it does not search the whole volume
data but the candidate planes only. Although a “search-tree” has
been introduced as an extension in the article to cover branching
cases, the algorithm cannot manage every branching case because
the center-likelihood function ignores perpendicularly outgoing
branches. A new algorithm that uses iterative tracking of vesselCorrespondence to: J.-B. Ra; E-mail: jbra@ee.kaist.ac.kr
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centerlines has been proposed to detect all branches inside each local
parallelepiped (Flasque et al., 2001). However, this algorithm is also
preceded by a thresholding algorithm, so it is not adaptive to local
intensity variation.

In most cases of image segmentation, region growing procedures
(Adams and Bischof, 1994; Hojjatoleslami and Kittler, 1998;
Gonzalez and Woods, 1993) usually produce well-defined object
boundaries if the intensity change inside the object of interest is not
considerable. However, in vascular structures that consist of very
long and narrow pipe-like objects, even slow intensity variation may
cause an unwanted stop of the region growing process unless the
parameters used for homogeneity test are adaptively adjusted (see
Fig. 1). Recently, the concept of fuzzy-connectedness has also been
employed to segment vessels (Saha et al., 2000; Lei et al., 2000).

Although local fuzzy affinity is used in fuzzy connectedness, the
final segmentation is usually acquired by adjusting a single global
parameter interactively. Hence, it may not be proper for the seg-
mentation of a long vessel with slow intensity variation, which is not
unusual in CTA.

In this article, we propose a new region growing algorithm based
on local cube tracking. The algorithm confines the region growing
process to each local cube, to cope well with the intensity variation
in 3-D space. It can detect any branches including backwardly
outgoing ones and provide a simple and easy way to correct erro-
neous segmented branches based on a tree-structured result.

The article is organized as follows: In Section II, we explain the
proposed algorithm based on local cube tracking in detail. Then,
Section III shows experimental results for various medical image
datasets. Finally, conclusions are given in Section IV.

II. PROPOSED ALGORITHM
A. Overall Procedure. The proposed algorithm adaptively
builds and segments successive local cubes, one by one. And, for the
segmentation in each local cube, a region growing technique is
adopted. The overall flow-chart for the proposed algorithm is shown
in Figure 2, and related notations are as follows:

LCij The ith local cube of the jth branch

��x, y, z��xmi, j � x � XMi, j, ymi, j � y

� YMi, j, zmi, j � z � ZMi, j� ,

where xmij, ymij, zmij XMij, YMij and ZMij are
decided adequately for each local cube.

LC00 Initial local cube determined by the user-given
seed point

Figure 2. Flow chart of the proposed algorithm.

Figure 3. Local cube tracking. It is depicted in the 2-D space for
simplicity.

Figure 4. Examples of connected component labeling on the six
cube-faces.

Figure 1. Even slow intensity variation may cause an unwanted stop
of the region growing process in vascular structures.
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{BQ} Branch queue, storing newly branching local cubes
LCij 3 {BQ} Operation to push a local cube to the branch queue
LC0j 4 {BQ} Operation to pop a local cube from the branch

queue
bc Branch count (Number of detected branches since

the process begins)

First, to determine the initial local cube, LC00, the vessel area is
selected around the user-given seed point at the slice, by using a
simple threshold-based method. Then, the center of LC00 is placed
at the user-given point and the length of every edge is set to double
the diameter of the selected vessel area. As shown in Figure 2, the

iterative procedure begins from LC00 and is applied repeatedly to
succeeding local cubes. At each procedure, after a local cube of the
proper size is determined, vessel segmentation and branch detection
are performed in it. Then, the positions of next local cubes are
estimated based on connected component labeling, which will be
described in detail in the next subsection. Here, each connected
component is regarded as a seed area of each next local cube.
Among the detected next local cubes, one local cube is chosen as a
successor and the others are put to the branch queue {BQ} for later
processing. If no next local cube is found in the current one, the
processing for the current branch stops and the processing for a new
branch begins by popping a local cube from the branch queue {BQ}.
The whole procedure finishes when no more local cubes remain in
the branch queue {BQ}. The local tube tracking procedure in 2-D
space is depicted in Figure 3.

B. Branch Detection and Next Local Cube Selection. Now
let us consider a proper selection of the positions and sizes of next
local cubes. We first assume that vessel segmentation in the current
local cube is properly performed by a localized region growing
process. Then, to detect positions of next local cubes, we perform
connected component labeling on the six faces of the current local
cube. Because adjoining faces of a cube are regarded as being
connected to each other, a connected component may span two or
three adjoining faces. Figure 4 shows two examples of connected

Figure 5. Examples of where the rule for a proper LC does not hold;
(a) abrupt change in size and (b) wrong estimation of local cube
position. They are depicted in 2-D space for simplicity.

Figure 6. Proposed locally adaptive region growing scheme.

Figure 7. Two typical local cubes and their corresponding cost
histogram graphs. Here, seed locations are marked with white circles.

Figure 8. Voxels whose cost values are close to zero. They repre-
sent the object vessel well.

210 Vol. 13, 208–214 (2003)



component labeling on six cube-faces, which have three and two
connected components, respectively. By examining the results from
the connected component labeling, we can detect all branches in the
current local cube and estimate the positions of next adjacent local
cubes. The local cube, which corresponds to the component having

the largest number of labeled points, is chosen as a successor for the
current branch, and the others are pushed into the branch queue
{BQ} for later processing.

To estimate the proper positions of next local cubes, let Ci denote
the center position of the current local cube, Sj the jth connected
component, and {pk � Sj} the points belonging to Sj. Then, we
decide the center position of the next local cube, Ci�1,j as follows:

Ci�1,j � � �
1

Card�Sj�
�

Pk�Sj

�pk � Ci� � Ci , (1)

where � is a constant and Card(Sj) denotes the number of points
belonging to Sj. Here, the value of � is set to 1.2 in order to overlap
next local cubes with the current one. The size of a next local cube
is determined so that it may include the corresponding connected
component, Sj. Then, its seed area is set to Sj. The next local cube
with the position and size determined above may not be proper for
branch detection. This could occur due to abrupt vessel size change
as in an aneurysm or the sharp bending of a vessel (see Figure 5). To
avoid this problem, the cube after region growing must satisfy the
following rule:

Rule for a proper LC:
A single component cannot span on both of the opposite faces of

the local cube simultaneously.
If any connected component does not satisfy the rule above, the

result from the region growing is discarded and the local cube is
enlarged twice in each direction and the region growing performed
again.

C. Locally Adaptive Region Growing. For vessel segmenta-
tion in each local cube in Figure 2, a locally adaptive region growing
scheme is adopted. Usually, region growing schemes are classified
into two categories; single-seeded and competitive region growing.
A single-seeded region growing scheme begins from a single kind of
seed points in an object and grows them by merging their neigh-
boring points until a predefined measure is met (Adams and Bischof,
1994; Hojjatoleslami and Kittler, 1998; Gonzalez and Woods,
1993). On the contrary, a competitive region growing scheme
(Meyer and Beucher, 1990) begins from multiple kinds of seed
points and grows them simultaneously until all the points are merged
into one of the seeds. Although the competitive scheme produces

Figure 9. The shape of phantom.

Figure 10. Experimental results for phantom data sets. Upper fig-
ures are MIP images of original phantom data sets added with Gauss-
ian noises. Lower figures are MIP images of corresponding segmen-
tation results. Standard deviation of Gaussian noise, �, varies from 5
to 25.

Table I. Results for phantom data sets.

Noise Standard
Deviation

The Slice at which the
Segmentation Stops Critical CNR

� � 5 188 2.40
� � 10 179 2.10
� � 15 169 2.07
� � 20 152 2.40
� � 25 149 2.04

Table II. Dimension and resolution of the test images.

Dimension Resolution (mm)

CTA body 512 � 512 � 416 0.66 � 0.66 � 1.00
CTA carotid 512 � 512 � 80 0.28 � 0.28 � 1.00
MRA head 512 � 512 � 200 0.39 � 0.39 � 0.60
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better-defined object boundaries, a proper seed area for every ho-
mogeneous object must be extracted in advance. Figure 6 depicts the
flow diagram of the proposed scheme, which consists of nonvessel
seed extraction based on a minimum path histogram and competitive
region growing for segmentation.

From the viewpoint of local cube tracking, we use the segmented
vessel from the previous local cube as a seed area for the vessel
object in the current local cube. Based on the seed area, we calculate
a cost, Cost(p), on every point p in the cube. Let PSk(p, q) be the
path-strength value along a path connecting two points, p and q, and
an ordered list Pk � {po � p, p1, . . . , PN, PN�1 � q} be a path
connecting p and q. Then, Cost(p) can be computed as follows:

Cost�p� � Min
k,s�Seed

�PSk�p, s�� , (2)

PS�p, q� � �
i�0

N

Diff�pi, pi�1�, p0 � p, pN�1 � q, pi � Pk ,

(3)

Diff�pi, pi�1� � � �I�pi� � I�pi�1��, if �I�pi� � I�pi�1�� � Th
0, otherwise ,

(4)

where I(p) denotes the intensity value at point p. We empirically set
Th to 3, even though it is found that the final segmentation result is
not so sensitive to its value. The procedure to compute a cost value,
Cost(p), on every point p can be efficiently implemented using a
dynamic programming technique (Saha et al., 2000; Lei et al., 2000;
Cormen et al., 1994).

Two typical local cubes from a 3-D CT angiographic data and the
corresponding cost histogram graphs are shown in Figure 7. Note
that the upper image includes unwanted spine nearby in addition to
the object vessel, and the lower one includes another vessel as well
as the spine. It should be noticed that cost values of the voxels inside
the vessel of interest tend to be close to zero since an anatomical
structure usually has homogeneous intensity values in a localized
region. On the contrary, cost values outside the vessel become larger

Figure 11. Several slice images selected from the original CTA data.

Figure 12. (a) A volume-rendered image of original CTA body data. (b) The segmented result is overlaid on a semi-transparent image.

Figure 13. Several slice images selected from the CTA carotid data.
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owing to intensity differences across region boundaries. Each image
in Figure 8 shows the voxels whose cost values are closed to zero.
As expected, selected voxels represent the object vessel. By using a
cost histogram graph in Figure 7, two major peaks can be automat-
ically detected and used to select a threshold value for extracting
nonobject seed areas. By using the extracted nonobject seed areas
and the tracked vessel as the object seed area, competitive region
growing is performed to segment the current local cube. Notice that
the computing time for cost values at all points is not so heavy
because the procedure is confined to a small localized volume.

D. Tree-structured Segmentation. In the proposed algorithm,
the parent-child relationships between local cubes are stored for later
use. Therefore, a tree-structured segmentation result can be obtained
by giving each detected branch a unique label. Also, a user can
easily correct the segmentation result by adopting a pruning-strategy
(branch-by-branch removal), if needed. In addition, the centerlines
of the vessel structure can be approximated by connecting the center
positions of local cubes, and can be used in various applications,
such as automatic flyway generation in a virtual angioscopy system.

III. EXPERIMENTAL RESULTS
In the experiment, we use a phantom whose shape is shown in
Figure 9. In the phantom, a pipe (or a vessel) is located at the center
through upper 200 slices out of 220, where the intensity value is
gradually decreasing from 1200 to 1000 and the background inten-
sity is fixed to 1000. And zero-mean Gaussian noises with various
standard deviations, from � � 5 to � � 25, are added. Here, these

values are regarded to cover the range of noise levels in real medical
images. The seed point for the first local cube is assumed to be
placed on the top slice. The upper row of Figure 10 shows maxi-
mum-intensity projection (MIP) images of the phantom for various
� and the lower one shows the corresponding segmentation results.
To evaluate the performance of the proposed method, we adopt the
contrast-to-noise ratio (CNR) that is defined by

CNR�n� �
contrast�n�

�
. (5)

Here, the contrast(n) is the intensity difference between the pipe and
background at a slice, n, in the original phantom. Because the
segmentation proceeds from the top slice where the CNR value is
the maximum, we can evaluate the performance of the proposed
method by calculating the CNR value (or critical CNR) on the slice
at which the segmentation stops. Here, the slice at which the seg-
mentation stops is the first slice that the number of erroneously
segmented pixels becomes more than 20% of pixels in pipe. Table
I shows the slices at which the segmentation stops depending on
various � and the corresponding critical CNR values. It should be

Figure 14. (a) A volume-rendered image of the CTA carotid data. (b)
The segmented result is overlaid on a semi-transparent image. Here,
the jawbone is manually removed to effectively demonstrate the
segmented result. Note that the segmented vessel shows stenoses
caused by calcification.

Figure 15. Several slice images selected from the MRA head data.

Figure 16. Volume-rendered images at two different view directions
for (a) the MRA head data and (b) its segmented result.

Figure 17. Volume-rendered images for segmentation at an aneu-
rysm in the MRA head data.
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noticed that the critical CNR values are in the range of 2.04 to 2.40.
Hence, the proposed method can segment an object well unless the
contrast between the object and background is less than about two
times of the noise standard deviation.

In the experiment for real images, we use the three different sets
of data: CTA body images, CTA carotid images, and MRA head
images. Dimensions and resolutions of the sets are listed in Table II.
Parts of these images are shown in Figures 11, 13, and 15, respec-
tively. For segmentation, the seed point for the first local cube is
given by a user. Also, the parameters, � in Eq. (1) and Th in Eq. (4),
are kept the same irrespective of images. In Figures 12, 14, and 16,
volume-rendered images of the original image sets and their seg-
mentation results are given in the left and right sides, respectively.
Here, white arrows represent user-selected initial points. It is noted
that the proposed algorithm can provide good and robust segmen-
tation results for all three data sets of vascular structures. Compared
to existing algorithms, the proposed algorithm provides the robust
results for the vessels having slowly varying intensities and can
detect fairly thin branches including even backwardly outgoing
branches. Also, the results comprise abnormalities, such as stenoses
shown in Figure 16 and aneurysms shown in Figure 17. It is also
interesting to note that, because the proposed algorithm divides the
segmentation results into branches, different colors can be assigned
to different branches without additional computation (see Figure
18). Thereby, the result can be easily edited, if necessary.

The computation time is 22 sec for CTA carotid images, 37 sec
for MRA head images and 4 min 48 s for CTA body images,
measured on a standard PC with a CPU of 1.63 GHz. It is noticeable
that the CTA body images require more processing time compared
to the other cases. This is mainly because some local cubes grow
bigger because of improper segmentation (see subsection II.B) and
big local cubes require much time in the minimum path analysis.
Therefore, a better scheme to predict the position and size of next
local cubes in the branch detection may reduce the chance of
improper segmentation, thereby reduce the whole processing time.

IV. CONCLUSIONS
In this article, we propose a vessel segmentation algorithm based on
local cube tracking. The algorithm segments the vessel in the sub-
sequent local cubes iteratively, starting from the initial local cube
determined by a user-selected point. Thereby, it provides prospec-
tive results even for a long vessel structure with slowly varying
intensity. Contrary to existing algorithms, the proposed algorithm

can detect most branches in any direction, whereas the computation
complexity is small compared to various model-based approaches.
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