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Abstract

It is well known that optimal server placement is NP-
hard. We present an approximate model of content
distribution network for the case when both clients
and servers are dense, and propose a simple server
allocation and placement algorithm based on high-
rate quantization theory. The key idea is to regard the
location of a request as a random variable with prob-
ability density that is proportional to the demand at
that location, and the problem of server placement as
source coding, i.e., to optimally map a source value
(request location) to a codeword (server location) to
minimize distortion (network cost). This view leads
to a joint server allocation and placement algorithm
that has a time-complexity that is linear in the num-
ber of users.

1 Introduction

Content distribution network (CDN) reduces propa-
gation delay, relieves server load, balances network
traffic, improves service reliability, and disperses
flash crowds. Content from a provider is distributed
to multiple servers in the network, and a user request
is served by a ‘nearest’ server. Here, proximity may
refer to geographical distance, hop count, network
congestion, server load or a combination. A central
issue in the design and optimization of CDN is how
to allocate and place servers in the network.
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The pro
cide how
tribution n
is known
ory: given
a request
and assign
the total w
their serve
problem is
eral graph
polynomia
find appro
case. The
ble to larg
for two re
gorithms a
grangian r
large (N2

der of 108

requires d
execution
able nor ad
cerned wi
single web
have great
to exploit t
mate goal
that can b
scale dyna
and user d

In this p
ing on the
istribution Network ∗

David Wei
EE
ology

ch.edu

blem of optimal server placement is to de-
many servers to employ in a content dis-
etwork and where to locate them. This
as the K-median problem in graph the-
a graph with N nodes, each node i with

rate r(i), pick K(< N) nodes as servers
each node to one of these servers so that
eighted distance between all nodes i and
rs, weighted by r(i), is minimized. This
shown in [6, 8] to be NP-hard for gen-

s. Subsequent efforts have been to find
l algorithms to solve special cases and to
ximation algorithms to solve the general
se algorithms, however, are not applica-
e scale self-organizing CDN we envision,
asons. First, the best approximation al-
re based on primal-dual schema and La-
elaxation whose running time is not only
log N or N3, where N can be on the or-
), more importantly, it is centralized and
etailed global information throughout the
of the algorithm. Hence it is neither scal-
aptive. Second, these algorithms are con-

th the placement of K servers to serve a
site (content provider). In CDN, websites
ly varying popularity [2] and it is crucial
his diversity in server allocation. Our ulti-
is to develop simple distributed algorithms
e used to self-organize CDN on a large
mically based on current network traffic
emands.

aper, we take a different approach, focus-
case where both user and server densities



are high. In this regime, server placement can be
regarded as a high-rate vector quantization problem.
The key idea is to regard the location of a request as
a random variable with a probability density that is
proportional to the demand at that location, and the
problem of server placement as source coding, i.e.,
to optimally map a source value (request location) to
a codeword (server location) to minimize distortion
(network cost). This view has led to a simple joint
server allocation and placement algorithm with time
complexity linear in NM where N is the number of
users (e.g., client side proxies) and M is the number
of content providers; in particular, it is linear in N .
Preliminary simulation results suggest that it has a
good performance-complexity tradeoff.

2 High density model

The proposal of [1] suggests the integration of stor-
age with network where every router is potentially a
small cache. Network nodes such as routers are in a
best position to monitor traffic and self-organize as a
CDN. The results of [10, 3] suggest that a relatively
small client population is sufficient to attain a high
hit rate. These motivate the study of large scale self-
organizing CDN where there is a large number of
servers, each serving a small population, that adapt
their configuration to changes in user requests, net-
work congestion, and server load. The main savings
come from reduced network traffic and propagation
delay, and the central issue is the optimal allocation
and placement of these servers. This problem can
be viewed as a high-rate vector quantization with di-
mension two [4]. In this section, we explain how this
view leads to a simple server allocation and place-
ment algorithm, presented in the next section. Fi-
nally we compare the performance of this algorithm
with the best published approximation algorithm for
the K-median problem.

We start with the case of a single website, and ex-
tend to the case of multiple websites. A ‘website’ in
our model may represent a content provider, an en-
tire website, a collection of files or applications, or a
single file or application. A ‘node’ may represent an
end user of the website, or more likely, a client-side
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set V of points (called nodes) in the �2

xed by i = 1, 2, . . . , I . Let zi ∈ �2 be
nate of node i, and Z = {zi | i ∈ V } be
oordinates of all nodes; we will refer to a
by i and by its coordinate zi. Node i ac-
(single) website at a rate of r(i) requests
. We are to place K ≥ 1 servers at loca-
(s1, . . . , sK), where sk ∈ Z, and the goal
se these locations s so as to minimize the
rk cost of serving the requests, defined as

j) be the ‘distance’ of serving a request of
a server located at node j. Given server
, the distance measure d(i, j) partitions V
are called Voronoi cells Vk ⊆ V defined

{j ∈ V | d(j, sk) ≤ d(j, sl), ∀l}
K
k=1Vk = V . If d(j, sk) = d(j, sl), ties
arbitrarily so that Vk are disjoint. Hence
f Voronoi cell Vk are nearest neighbors of

st of serving a Voronoi cell Vk is
)d(j, sk). When there are K servers, the
st is

= min
s

K∑
k=1

∑
j∈Vk

r(j)d(j, sk) (1)

minimization is over all server locations
. . , sK) in V .1 This cost, in units of rate-
s a measure of minimum network capacity
he minimum amount of network traffic, or
ed weighted by demand, when there are K

mulation assumes that the location of the origin
nt provider) can also be optimized. This is opti-
e effect of this approximation is insignificant for a
k.



2.2 High-density approximation

We now approximate (lower bound) the network cost
for the case when both nodes and servers are dense.
Let every point z = (z1, z2) ∈ �2 be a node. The re-
quest rate of node z is r(z). Interpret the normalized
request rate

f(z) = ρ−1r(z) where ρ :=
∫

r(z) dz (2)

as the spatial density of requests. The idea is to re-
gard the location Z of a request as a random variable
with probability density f , and the problem of server
placement as a source coding, i.e., to optimally map a
source value (request location) to a codeword (server
location s) to minimize distortion (network cost). We
now apply the techniques of high-rate vector quanti-
zation [4, Chapter 5] to derive a server allocation and
placement algorithm.

The network cost is defined in an analogous way
to (1) as, for a single website and K servers,

c(K, s) := ρ
K∑

k=1

∫
Vk(s)

f(z)d(z, sk) dz

Here, s = (s1, . . . , sK) are the locations of the K
servers, Vk(s) = {z|d(z, sk) ≤ d(z, sl), ∀l} is the
Voronoi cell containing server location sk. We as-
sume that K is large so that Vk(s) is small, and that
f(z) is smooth so that f(z) 	 f(sk) over Vk(s). We
further assume that the distance function is the Eu-
clidean distance, d(z, s) = ||z − s||. Then

c(K, s) 	 ρ

K∑
k=1

f(sk)
∫

Vk(s)
||z − sk|| dz

Next we approximate the region Vk(s) by a circular
disk with the same area centered at sk described by:

{z | ||z − sk|| ≤ ak} with ak :=

√
|Vk(s)|

π

where |A| denotes the area of set A. Then c(K, s) is
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cify server location in this continuum
server density λ(z), with the interpreta-
e fraction of servers in an infinitesimally
dz around z is λ(z)dz. Hence the number
in any region A is K · ∫

A λ(z)dz. Note
)dz = 1 so λ can also be regarded as the

density of server location. We approx-
) by λ(sk) over the small Voronoi cells
nce, since there is exactly one server in

noi cell, we have

K ·
∫

Vk(s)
λ(z) dz 	 K · λ(sk) |Vk(s)|

(s)| 	 1√
λ(sk)K

g into (3), and when K is large so that
all, we have

s) 	 2ρ

3
√

πK

K∑
k=1

f(sk)√
λ(sk)

|Vk(s)|

	 2ρ

3
√

πK

∫
f(z)√
λ(z)

dz

der’s inequality, it can be shown that the
side is lower bounded by [4, Chapter 5]

) =
2

3
√

π

(∫
f(z)2/3dz

)3/2

· ρ√
K

(4)

wer bound is achieved with the server den-

= a f(z)2/3 (5)

the following expression is a lower bound because,
f the same area, the moment of inertia about sk of

the smallest when it is a circular disk centered at sk

.3.1].



where a :=
(∫

f(z)2/3 dz
)−1

is a normalization
constant. Using (2), we can also express c∗(K) and
λ∗(K) directly in terms of the request rate r(z). We

have
(∫

f(z)2/3 dz
)3/2

ρ =
(∫

(ρf(z))2/3 dz
)3/2

=(∫
r(z)2/3 dz

)3/2
. Hence c∗(K) in (4) can be rewrit-

ten as

c∗(K) =
2

3
√

π
· ||r||2/3√

K
(6)

where ||r||p is the Lp norm defined by

||r||p =
(∫

r(z)p dz

)1/p

and λ∗(K) in (5) can be rewritten as

λ∗(z) = a′ r(z)2/3 (7)

where a′ :=
(∫

r(z)2/3 dz
)−1

is a normalization
constant. For ease of reference, we will called λ∗

the optimal server density and c∗(K) the minimum
cost in this paper.

This suggests a server placement strategy, when
cost is measured by the Euclidean distance, where
server density λ∗(z) is proportional to the 2/3-power
of the request density, f(z)2/3, or equivalently, of
the request rate, r(z)2/3. The strategy incurs an ap-
proximate (lower bound on) cost c∗(K) that is pro-
portional to ||r||2/3 and inversely proportional to the
square root of K. Expressions (4–7) highlight the
importance of spatial distribution of requests.

2.3 Multiple websites

Consider J websites indexed by j = 1, 2, . . . , J .
Suppose requests to website j has a total volume of
ρj and a spatial density fj(z) (or equivalently, a re-
quest rate rj(z) = ρjfj(z)). Out of a total of K
servers, kj servers are devoted to serve website j
such that

J∑
j=1

kj = K

and they are placed according to the optimal server
density λ∗

j so that the cost associated with website j
is

cj(kj) =
αj√
kj
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∗
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α
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1. Recall that ρj represents the popularity of web-
site j, and fj represents the spatial density of
requests for website j. They are related through
the request rate rj(z) = ρjfj(z). Hence, op-
timal allocation depends critically on website
popularities as well as spatial densities of re-
quests. Specifically, the fraction of servers de-
voted to website j should be proportional to∫

r
2/3
j (or equivalently, to

∫
f

2/3
j . The min-

imum cost is proportional to
(∑

j

∫
r
2/3
j

)3/2

and inversely proportional to the square-root of
K.

2. We can combine equations (7) for optimal
placement and (9) for optimal allocation to ex-
press optimal number of servers in a unit area
for each website j directly in terms of the total
number K of servers:

λ∗
j (z)k∗

j =
rj(z)2/3

∑
l

∫
r
2/3
l

· K

Hence, the optimal density is proportional to
rj(z)2/3, as a fraction of total request rate for
all websites.

3 Allocation and placement algo-
rithms

The approximate model in the last section suggests
the following joint server allocation and placement
algorithm where a fraction of servers that is propor-
tional to

∫
r
2/3
j is allocated to each website j, and

the spatial distribution of these servers should be pro-
portional to the 2

3 -power of the spatial distribution of
requests.

Given:

1. I points (nodes) in �2, indexed by i =
1, 2, . . . , I .

2. J websites, indexed by j = 1, 2, . . . , J ;

3. I × J request rate matrix r where r(i, j) rep-
resents the request rate from node i to website
j;
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each local region decide how many servers to employ
and what contents to store based only on the fraction
of local user requests for different contents, as a frac-
tion of total volume on the network, a piece of non-
local information. The scheme naturally adapts to
changes in user request pattern to reduce propagation
delay and balance network load. We will develop a
distributed version of this algorithm that is suitable
for real-time implementation on a large scale.

References

[1] S. Bhattacharjee, K. Calvert, and E. W. Zegura.
Self-organizing wide-area network caches. In
Proceedings of IEEE Infocom, March/April
1998.

[2] Lee Breslau, Pei Cao, Li Fan, Graham Phillips,
and Scott Shenker. Web caching and Zipf-like
distributions: Evidence and implications. In
Proceedings of the IEEE Infocom, March 1999.

[3] Syam Gadde, Jeff Chase, and Michael Rabi-
novich. Web caching and content distribution:
A view from the interior. Computer Communi-
cations, 24(2), February 2001.

[4] Robert M. Gray. Source coding theory. Kluwer
Academic Publishers, 1990.

[5] J. Kangasharju, K. W. Ross, and J.W. Roberts.
Locating copies of objects using the domain
name system. In Proceedings of the 4th Inter-
national Caching Workshop, March 1999.

[6] O. Kariv and S. L. Hakimi. An algorithmic ap-
proach to network location problems. II: the p-
medians. SIAM J. Appl. Math., 37(3):539–560,
December 1979.

[7] Balachander Krishnamurthy and Jia Wang. On
network-aware clustering of web clients. In
Proceedings of ACM SIGCOMM 2000, August
2000.

[8] C. Papadimitriou. Worst-case and probabilistic
analysis of a geometric location problem. SIAM
J. Comput., 10:542–557, 1981.

[9] A. Sh
effec
Proc

[10] A. W
well,
perfo
Oper
cemb
aikh, R. Tewari, and M. Agrawal. On the
tiveness of DNS-based server selection. In
eedings of IEEE Infocom, April 2001.

olman, G. Voelker, N. Sharma, N. Card-
A. Karlin, and H. Levy. On the scale and
rmance of cooperative web proxy caching.
ating Systems Review, 34(5):16–31, De-
er 1999.


	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	Detailed Author Index
	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	New Search
	Next Search Hit
	Previous Search Hit
	Search Results
	------------------------------
	------------------------------
	------------------------------

	header1: 2002 Information, Decision and Control
	footer1: 0-7803-7271-9/01/$17.00 © 2001 IEEE
	pagenumber1: 1
	pagenumber2: 2
	pagenumber3: 3
	pagenumber4: 4
	pagenumber5: 5
	pagenumber6: 6


