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Abstract—All traffic models for MPEG-like encoded variable
bit rate (VBR) video can be broadly categorized into 1) data-rate
models (DRMs) and 2) frame-size models (FSMs). Almost all
proposed VBR traffic models are DRMs. DRMs generateonly
data arrival rate, and are good for estimating average packet-loss
and ATM buffer overflowing probabilities, but fail to identify such
details as percentage of frames affected. FSMs generate sizes of
individual MPEG frames, and are good for studying frame loss
rate in addition to data loss rate. Among three previously proposed
FSMs: 1) one generates frame sizes for full-length movies without
preserving group-of-pictures (GOP) periodicity; 2) one generates
VBR video traffic for news videos from scene content description
provided to it; and 3) one generates frame sizes for full-length
movies without preserving size-based video-segment transitions.
In this paper, we propose two FSMs that generate frame sizes
for full-length VBR videos preserving both GOP periodicity and
size-based video-segment transitions.

First, two-pass algorithms for analysis of full-length VBR videos
are presented. After two-pass analysis, these algorithms identify
size-based classes of video shots into which the GOPs are parti-
tioned. Frames in each class produce three data sets, one each for
I-, B-, and P-type frames. Each of these data sets is modeled with
an axis-shifted Gamma distribution. Markov renewal processes
model (size-based) video segment transitions. We have used QQ
plots to show visual similarity of model-generated VBR video data
sets with original data set. Leaky-bucket simulation study has
been used to show similarity of data and frame loss rates between
model-generated VBR videos and original video. Our study of
frame-based VBR video revealed that even a low data-loss rate
could affect a large fraction of I frames, causing a significant
degradation of the quality of transmitted video.

Index Terms—Frame-size traffic model, Gamma distribution,
leaky-bucket simulation, MPEG, QQ plot, variable bit rate (VBR)
video.

I. INTRODUCTION

V IDEO traffic is expected to be the major source for broad-
band integrated services digital networks (B-ISDN) [11],

[1]. Because of large bandwidth requirement for communication
of high-quality uncompressed video over B-ISDN, it is expected
that most, if not all, video will be encoded with MPEG-like data
compression techniques [3]. These compression algorithms can
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provide very high compression ratio while maintaining good
quality of decompressed video. However, MPEG-coding pro-
vides different amount of compression for different frames (see
[3, Fig. 1 and Table 1] for examples) and results in variable bit
rate (VBR) data, known as VBR video.

The MPEG standard permitsintra (I), predicted (P), and
bidirectional (B) encoding of frames. A group-of-pictures
(GOP) structure of cyclic format, composed of
frames, starts from an I frame and ends before the next I frame;
every th frame is a P frame, and frames between
every I–P, P–P, or P–I frames pair are B frames. For instance,
if and , a (6, 3) GOP structure with IBBPBB
sequencing of frames results. Encoding of an I frame being
independent of other frames results in a low compression ratio
but provides a point of access. Encoding of a P frame using
motion-compensated prediction of (most recent) previous I
or P frame provides usually a higher compression ratio than
that of I frames. Encoding of a B frame using bidirectional
prediction based on nearest pair of past and future I–P or P–P
or P–I frames provides usually the highest compression ratio
compared with I and P frames. While the MPEG standard
permits use of many GOP structures for encoding a video,
typically only one GOP structure is used for encoding all
frames of a full-length video. Thus, a cycle or period of
frames appears in an MPEG-coded VBR video.

Accurate traffic models of VBR video are necessary for
prediction of performance of any proposed (and/or designed)
B-ISDN during its operation. Several traffic models have been
proposed in the literature. They include first-order autoregres-
sive (AR) [13], discrete AR (DAR) [6], [10], [16], Markov
renewal process (MRP) [2], MRP transform-expand-sample
(TES) [12], finite-state Markov chain (MC) [1], [6], [14], [16],
Gamma-beta auto-regression (GBAR) [4], and GOP GBAR [3]
models.

A. Two Categories of Traffic Models

These traffic models can broadly be classified into two cat-
egories: 1) data-rate models (DRMs) and 2) frame-size models
(FSMs). In a data-rate model, only the rate at which data are ar-
riving at a link is generated for performance prediction purpose.
Almost all models, including AR, DAR, MRP, MRP TES, MC,
GBAR, and models in [5] and [7], fall under this category. These
models are good for predicting average packet-loss probability
and ATM buffer overflowing probability. However, they fail to
identify such details as percentage of frames affected. Even a
small rate of data loss involving I frames may affect perceptual
quality of received video significantly, but the same amount of
data loss in B frames would have far less impact. (For an ex-
ample, see Section I-B.)
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In a frame-size model, sizes of individual MPEG frames
are generated, and hence, data-rate information can be ob-
tained from the frame-size information. Moreover, during loss
performance modeling, location of lost data can be precisely
identified for getting a better understanding of the quality of
video at the receiving end. The inherent frame-by-frame burst
nature of MPEG videos are preserved in these category of
models. Models reported in [2], [3], and [9] fall under this
category. Compared with the number of DRMs, only few FSMs
have been proposed. It is believed that the main obstacle in
the development of an FSM is to find some standard statistical
distribution fitting different frame types.

Data rates of short-length videos with small variation between
frames can be modeled by AR models. The GBAR model, being
an autoregressive model with Gamma-distributed marginals and
geometric autocorrelation, captures data-rate dynamics of VBR
video conferences well. However, it is not suitable for general
MPEG video sources [3]. Data rates of videos of longer lengths
with scene variations have been modeled with DAR, MRP, and
MC. All these models were motivated to generate traffic load for
the study of cell-loss rate when multiple videos are multiplexed
over a broadband link in a B-ISDN. Empirical studies simu-
lating leaky buckets have shown these models capture cell-loss
properties of ATM networks quite closely. However, they do not
capture periodicity or cyclic property present within each GOP
of a typical MPEG video.

B. Frame-Size VBR Models

During transmission one needs to consider the fact that
MPEG videos contain very little redundancy. Moreover, loss
of a part of an I frame affects all frames in its GOP, but loss
of a whole B frame affects only that frame. Thus, even an
apparently small rate data loss may affect perceptual quality
of received video significantly (or a large rate of loss of data
may affect it very little). For instance, a 10 bit-loss ratio
(BLR) may appear small enough to be acceptable, but consider
an MPEG encoded video with 15 frames per GOP, and 10
BLR affecting only 1% frames of all video frames. Now, if
all of those affected frames are I frames, it will affect 15% of
the video, which is a perceptually significant degradation of
video quality. Thus, for study of MPEG video transmission a
frame-level model is essential to get the necessary details of
the effect of loss during transmission.

Relatively fewer models have been proposed for modeling
of full-length movies that preserve distributions of I, P, and B
frames. The GOP GBAR model attempts to capture overall sta-
tistical properties of I, P, and B frames of MPEG movies. It
does so by using three GBAR models for the generation of three
random variables that have Gamma-distributed marginals and
geometric autocorrelations. The B frames are obtained from one
of these random variables. The P frames are the sum of two
random variables and I frames are the sum of all three. How-
ever, this model does not attempt to capture shot-level regularity
of sizes of I, P, and B frames, which is a typical characteristic
of the contents of any long video or any full-length movie [2].
The model in [9] assumes that the change of a scene changes
the average size of I frames, but not the sizes of P and B frames.
Reference [2, Table IV] shows that the average sizes of P and B
frames can vary 20% and 30%, respectively, which are statisti-

cally significant; our analysis of frames from a full-length video
shows much wider variations (see Table I). Also, the sizes of the
frames are drawn from log-normal distributions following [8]
which are not quite good fits.1 The model in [2] requires that
the video to be modeled has been segmented into shots based
on texture and motion. Moreover, it uses an AR model which
has been reported to be unsatisfactory for full-length movies;
for instance, see [3].

C. Outline of This Paper

In the next section, we present our full-length video analysis
algorithms. Following content-based MPEG video traffic mod-
eling reported in [2] and [15], our first objective is to partition
video into clips. It is assumed that most, if not all, video clips are
at least one GOP long. With this assumption, the first two steps
in our analysis are as follows. 1) The sizes of all frames in a GOP
are added to obtain a sequence of GOP sizes for a movie, and ad-
jacent GOPs of similar size are combined, by a moving average
method, to identify video clips.We use only the size of GOPs and
not the content type to group GOPs in clips.A full-length movie
generates thousands of video clips. Next, these video clips are
grouped into a smaller number (seven, in our case studies) of
classes. We use geometrically separated class-size boundaries.
All frames of each type (I, B, or P) belonging to a class are sep-
arated to obtain a data set. This approach groups similar-sized
I, B, and P frames together (see Section II-C). Each frame type
in a class is modeled with an axis-shifted Gamma distribution.
For our case study, a total of Gamma distributions
are used.

For analysis of transition between classes, adjacent clips in a
class are merged together to form video segments. The lengths
of video segments are modeled with Gamma and geometric dis-
tributions. The inter-class transitions of video segments are an-
alyzed to construct two state-transition probability matrices.

In Section III, we propose two models, one for each
inter-class transition matrix. For validation of these models,
full-length syntheticmovies are generated using the proposed
models. In Section IV, two standard measures—QQ plot and
leaky-bucket simulation—are used to show that the geomet-
rically separated classification technique nicely captures the
behavior of I, B, and P frames of all classes into Gamma distri-
butions. This is significant, especially for I and B frames which
had hitherto remained less amenable to mimicking any regular
statistical distribution. Both QQ plots and the leaky-bucket
simulation results show that our models are closer to the real
movies as compared with other known models in the literature.
Only the results for two full-length movies—Crocodile Dundee
and ET—are reported in this paper. We discuss our observa-
tions, possible uses of proposed VBR video models, and future
extensions of our work in Section V.

II. A NALYSIS OF VBR VIDEO

This section outlines our two-pass analysis algorithms
for extracting the parameters of a full-length VBR video.
Let be the sequence of frames
obtained from MPEG encoding of a full-length video for

1It must be acknowledged that one distribution is yet to be found that fits all
frames of either I or B types of a movie well.
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modeling. Since estimation of DLR requires only the size of a
frame and not the actual data, a frame for the modeling purpose
is represented by its serial number, type—I, B, or P—and
size in bytes after the MPEG encoding. While not required by
the MPEG standard, the underlying GOP usually follows an

cyclic format in which the first frame of a GOP is an I
frame, every th frame is a P frame, and the rest are B frames.
For this study, it is assumed that a movie has been encoded
with one GOP structure. The size of a GOP is the sum of the
sizes of all frames in the GOP. We denote successive GOPs
by for our reference in this paper. Without
any loss of generality, we assume , as the last few
frames of an incomplete GOP which may remain at the end of a
full-length movie with 175 000–200 000 frames can be ignored
for the purpose of modeling without any noticeable impact on
the model.

A. Formation of Clips

A clip of length is any consecutive sequence ofGOPs,
, that is, , for some

. We denote successive clips by and a
set of clips by . We use the notation to indicate
belongs to , andlength to indicate the number of GOPs
in .

We group similar-size GOPs to obtain a set of video clips.
During clip construction, let the average size of a GOP in
the partially formed clip of length starting with be

. The next GOP, ,
is included in the current partial clip if the size of
does not differ from by more than a user-provided
thresholdvalue. The smaller the value ofthreshold, the smaller
the lengthof each clip and, consequently, the higher the total
number of clips formed. The choice of a value forthresholdfor
the modeling is not very critical and we have observed that any
value close to the average size of a B frame can be used with
good results. For the results reported in this paper, the value
of thresholdwas 4500 forCrocodile Dundee, whose average
B-frame size is 4445.82 bytes, and 2000 forET with average
B-frame size 2003.14 bytes. The pseudocode below explains
the method of clip formation.

Algorithm Clips_From_GOPs
Input

, the set ofGOP;
threshold: user provided value;

Output
, the set of clips;

begin
; / index of the current clip/

;
/ , the current clip starts with /

;
/ average size of GOP in current clip/

for
if abs

/ continue expanding the current clip/
;

/ expand by inserting into it /

;
/ recompute for /

else
/ begin a new clip with /

;
;

/ the new clip starts with /
;

/ initialize for /

/ for /
end;

The next step in our VBR video data analysis, outlined below,
is partitioning of the clips intoshot classes.

B. Formation of Shot Classes From Clips

A shot classof length , , is a union of distinct, but
not necessarily consecutive, clips. We represent shot classes by

and denotes all GOPs belonging to clip
belong to shot class . Every clip belongs to one and only one
shot class.

We construct the shot classes by partitioning the entire range
of GOP sizes into the desired number( for the studies re-
ported) subintervals, one for each shot class. We experimented
with several partitioning methods and found that a geometric
partitioning (explained below) results in a statistically signifi-
cant number of GOPs in each partition such that each partition
is amenable to a statistical modeling.

We have observed that the presence of a fewtoo smalland
too largeGOPs introduces undesirable biases in any model un-
less those extreme sizes are treated more like exceptions. In our
algorithm, the smallest and the largest 1-percentile GOPs are
initially set aside as being too extreme. The GOP sizes cor-
responding to these 1 and 99 percentile points are referred to
by variables and , respectively, in the pseudocode below.
The remaining interval of GOP sizes, namely, , is parti-
tioned into subintervals. The successive partitioning bound-
aries of these intervals increase in a geometric progression with

as the first term and as the th term. This
results in subintervals , , ,
where is the common ratio of the progres-
sion. The first subinterval is now extended to the left to include
the range of 1%small GOP sizes initially set aside. Similarly,
the last subinterval is extended to the right. A clip is now made
to belong to a shot class if the average size of a GOP in this clip
falls in the interval for that shot class. It may be noted that a
partitioning with subintervals of equal length produced rather
unsatisfactory results. Moreover, very few GOPs would then
belong to shot classes which correspond to large average GOP
sizes, making any statistical observation less meaningful.

The algorithm Get_Shot_Classes shows how shot classes are
formed.

Algorithm Get_Shot_Classes
Input

, the set of GOPs;
, the set of clips;

: number of shot classes;
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Output
, the set of shot classes

begin
percentile value of ;

/ GOPs smaller than are too small/
percentile value of ;

/ GOPs bigger than are too big/
compute such that ;/ ;

common ratio of shot class boundaries./
;

/ subinterval for the first shot class/
for

/ subintervals for intermediate shot classes/
;

;
/ subinterval for the last shot class/

for
/ for each clip compute its average GOP size/

;
for

/ for each clip /
find , such that ;

/ shot class for clip /
insert into ;

/ all GOPs of would belong to /

end;

The I, B, and P frames in the GOPs of each shot class
, are now separated to obtain three sets of frames, ,

and denoting the I, B, and P frames in, respectively. Thus,
the shot-class-finding algorithm partitions the clips intoshot
classes, eventually separating the frames intodata sets. As
discussed next, the strength of this partitioning stems from the
fact that these data sets can be modeled quite accurately.

C. Statistical Characterization of I, P, and B Frames

In this section, we present the observations and analysis
of data sets obtained from our shot classification algorithm.
Table I shows that geometrical separation of class boundaries
kept enough data points in each class (the smallest has 1579)
for doing meaningful statistical analysis and modeling. Before
we discuss the statistical models, we present distributions of I,
P, and B frames of all seven classes.

Seven plots in Fig. 1 are for the I frames of the movie
Crocodile Dundee(CD). These plots show three facts.

1) The ordering created by our size-based classification of
GOPs is preserved in the distribution of sizes of I frames.
In other words, cumulative distribution of is quite
regular and is to the left of that of , for all ,

.
2) Frequency distributions of two sets of I frames coming

from two adjacent classes of GOPs have some overlap.
3) Frequency distributions of two sets of I frames coming

from two nonadjacent classes of GOPs have very little
(less than 10%) or no overlap.

These three characteristics of I-frame data sets are also present
in P- and B-frame data sets (see Figs. 2 and 3). Plots in Fig. 4

TABLE I
I-, B-, AND P-FRAME CHARACTERISTICS INALL SHOT CLASSES(CD)

Fig. 1. Separation of I frames (CD).

Fig. 2. Separation of P frames (CD).

show mean sizes of I, P, and B frames of all seven classes of
CD. We can see that for all frame types, the mean sizes increase
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Fig. 3. Separation of B frames (CD).

Fig. 4. Mean size of I, B, and P frames in shot classes (CD).

monotonically with shot-class index. Thus, geometrically sepa-
rated GOP-size boundaries classified I, P, and B frames well. A
very useful observation is that in a class of small-size GOPs, I, P,
and B frames are also small. It must be noted that such a regular
statistical behavior may not hold for a GOP-by-GOP compar-
ison. Figs. 5–7 show similar separation of I, P, and B frames of
the movie ET. The monotonical growth of the mean sizes with
shot-class index are depicted in Fig. 8.

The next task is to model distributions of I, P, and B frames in
each class. In other words, we need to find some standard sta-
tistical distributions to fit ( ) 21 empirical distributions.
The observed patterns and quite successful frame-size models
in [3] motivated us to model each frame-size distribution with a
Gamma density function

Gamma (1)

Let be the estimated mean andbe the estimated variance
of a data set. If the data set has been drawn from a Gamma-
distributed population, its parametersand can be estimated
as and .

Fig. 9 shows that this conventional estimation of parameters
shifts the distribution function to the left and height of the peak

Fig. 5. Separation of I frames (ET).

Fig. 6. Separation of P frames (ET).

Fig. 7. Separation of B frames (ET).

is smaller than that of the data set. A close look and some ed-
ucated guessing led us to shift each point of the data set by a
constant number of bits. (We discuss later how we chose the
value of shift .) Estimates for two Gamma parameters, after
shifting each point by units, are given by and

. The selection of is complicated by the fact
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Fig. 8. Mean size of I, B, and P frames in shot classes (ET).

Fig. 9. Gamma fit for P frames in shot class 5 (CD).

that in most data sets there are a few points that are too far to the
left or right. These data points should be excluded during anal-
ysis and modeling. There are many sophisticated techniques to
identify these points. However, we resort to a simple heuristic:
Ignore 1% of the data points and set the value of the shiftat
one percentile value. Table I shows shift values, mean, and stan-
dard deviation for all data sets of CD. These distributions are
used for generation of synthetic VBR videos. Results reported in
Section IV demonstrate that they nicely capture statistical prop-
erties of the data that they model.

The analysis technique used for modeling the duration of
video segments is described next.

D. Formation of Video Segments

A video segmentin a shot class is amaximal consecutivese-
quence of clips belonging to that shot class. It is maximal in the
sense that no proper subset of a segment qualifies as a segment,
and hence, it is also a maximal consecutive sequence of GOPs in
the shot class. Thelengthof a segment is the number of GOPs
it contains. We examined the clips in each shot class to form

TABLE II
PROBABILITY TRANSITION MATRIX P FOR MODEL A (CD)

TABLE III
PROBABILITY TRANSITION MATRIX P FOR MODEL B (CD)

the video segments and recorded their lengths. The segments
were constructed because the length of a segment captures the
burst length of similar-size GOPs in a video more accurately
than does the length of a clip. Following [2], a Gamma distri-
bution with parameters and estimated from observed
lengths of segments in class, is used later in this paper for
estimating the lengths of video segments in one of our models.
In the next section, we present two methods for estimation of
inter-class transitions of video shots.

E. Inter-Shot Class Transitions

Let be a transition probability matrix where
gives the probability of transition from to . The

matrix has the stochastic property that for
. We compute the transition matrix by

two different methods and call the resulting matrices and
, respectively. The matrix supports self-transitions but
excludes self-transitions. That is, the principal diagonal

elements in are zeros. The implications of these two
different kinds of transition probability matrices are discussed
in Section III.

The algorithms for computing and are quite similar.
They both compute the transition probabilities from normalized
relative frequency of transitions among shot classes as one se-
quentially traverses all GOPs in the original
video. For , we set , where is the total
number of transitions from to , and is the total number
of transitions out of . The transition matrix is computed
in a similar manner except that all self-transitions are ignored.
The matrices and for Crocodile Dundeeare shown in
Tables II and III; those forET are quite similar and have not
been shown.

III. M ODELING OF FULL-LENGTH VIDEO

Two models, called models A and B, for generation of video
frame-size sequences are described next. Both the models use
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Markov renewal processes. Model A uses only the matrix
for inter- and intra-state transitions. Model B uses Gamma-dis-
tributed random variables for lengths of video segments and
for inter-state transitions. In both models, we used a function

to find the next state for a transition from
the current state using the probability transition matrix P.
The function is implemented by generating
a random number in the real interval [0, 1] and then finding
the smallest integer as the next state such that .
In both models, each shot class corresponds to a state of the
underlying Markov chain.

A. Generation of Synthetic Video: Model A

In this model, the next state is determined by using the state
transition matrix after generating all frames of a GOP in
the current state and the process is repeated until the desired
number of frames is generated. Since the diagonal elements of

are nonzero (see Table II) might find any
state including as the next state. It may be noted this state tran-
sition scheme generates video segments whose lengths would
be geometrically distributed. The size of an I-, B-, or P-type of
frame in a state is estimated in two stages: first, the parameters
of the shifted Gamma distribution for that frame type and state
(as obtained in Section II-C) are used to draw a value from this
distribution, and then this value is added to the offsetto incor-
porate the axis translation (see Section II-C).

The MPEG traces used in this paper have (6,3) cyclic MPEG
format, so is 6 in the algorithm that follows.

Algorithm Generate_Full_Video_Using_
Input

: number of frames to be generated;
: Gamma

parameters and offset for I, B, and P
frame types in each class;
: probability transition matrix;

Output
: a sequence of frame sizes;

begin
initial random state, ;

;/ number of frames generated/
;

while ( ) / generateoneGOP in state ,
the current state/

/ generate frames in each GOP/
case (type of th frame in GOP):
I:draw ;
/ draw from Gamma distribution/

;
/ add offset to estimate frame size/

B:draw ;
;

P:draw ;
;

insert count,frame type, into ;
count count 1;

;
/ change current state using /

end;

B. Generation of Synthetic Video: Model B

In this model, inter-state transitions are controlled by the state
transition matrix . The number of GOPs generated while in
a state is modeled by a Gamma distribution of segment length
for this state. The parameters for these distributions for all states
were estimated from the segment lengths of the original video
(see Section II-C). After the frames corresponding to a segment
in a shot class are generated, the transition matrixis used
to determine the next shot class or state. Since the diagonal el-
ements of are zeros (see Table III), unlike Model A, the
next state would always be different from the current state in
this model. The process is repeated until the desired number
of video frames is generated. Procedure Generate_Video_Seg-
ment, detailed below, generates the frames corresponding to a
segment of a given state. This is followed by algorithm Gen-
erate_Full_Video_Using_ which uses this procedure in any
state and then makes a transition to the next state in order to
generate frame sizes for the whole video.

1) Generation of Individual Segments:Procedure Gen-
erate_Video_Segment determines the number of GOPs to be
generated at the current state by using the Gamma parameters
of segment length distribution for this state. As in model A, the
individual I, B, and P frames are generated by their respective
Gamma models.

Procedure Generate_Video_Segment(s,Q)
Input:

: the current state;
: Gamma parameters

and offset for I, B, and P frame types in state;
: Gamma parameters of segment length

for state ;
Output:

: sequence of frame sizes for a segment
generated in state;

begin
;

draw ;
/ estimated segment length for current state/

for
/ generate GOPs in state s/
for
/ generate frames in each GOP/
case (type of th frame in GOP)
I:draw ;
/ draw from the Gamma distribution/

;
/ addoffsetto estimate frame size/

B:draw ;
;

P:draw ;
;

insert count, frame type,
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into ;
;

/ global counter/

end;

2) Generation of Full Video:The full video in this model
is generated by starting from an initial random state and then
making the state transitions using . In any state , the se-
quence of frames corresponding to a segment inis gen-
erated by calling procedure Generate_Video_Segment .
The process is repeated until the desired number of frames is
generated.

Algorithm Generate_Full_Video_Using_
Input:

:number of frames to be generated;
:transition probability matrix;

Output:
: a sequence of frame sizes;

begin
initial random state, ;

;/ number of frames generated/
;

while ( )
call Generate_Video_Segment(s,Q);

/ generate , a segment of frames for state/
insert all frames of into ;

;
;

/ change current state using /

end;

IV. M ODEL VALIDATION

We have presented multilevel characterization techniques for
full-length VBR video data sets. Also, two models for genera-
tion of synthetic full-length VBR videos have been proposed. To
validate these models, model-generated VBR videos have been
compared with original VBR videos. Following standard tech-
niques in the literature, we show quartile-quartile (QQ) plots and
data loss observed from simulation of leaky bucket.

A. QQ Plots

The QQ plot of two data sets is a visual inspection method
for verification of their similarity. In this method, for a given
percentile rank (say, 10%), a pair of values of data (say,
1293,1243) from two data sets are obtained. Usually, several

pairs of values are collected for desired range of percentile
values and are plotted. If two data sets are identical, a straight
line, described by , is obtained. Thus, the closer the plot
to the line , the better the similarity between the data sets.

First, the traces of the movie CD are discussed. The plot in
Fig. 10 depicts the similarity of the original VBR video data
set with that synthetically generated using our Model A (which
assumes geometrically distributed video shot lengths). As can

Fig. 10. QQ plot for the whole movie generated using Model A (CD).

Fig. 11. QQ plot for the whole movie generated using Model B (CD).

be seen, the frame sizes of the two videos are almost identical;
the only exceptions are a few large-size frames in the synthetic
movie. These exceptions may practically be ignored, since the
number of such frames is only a small fraction of a percent.
The Model-B generated video produced a similar QQ plot (see
Fig. 11). Although Model A overestimated the frame sizes and
Model B underestimated them, these deviations were very small
and, practically, the frame-length distributions of synthetic and
original videos are indistinguishable for both models. The simi-
larity of the synthetic and original data sets of the movie ET are
illustrated in Figs. 12 and 13 for Models A and B, respectively.

B. Buffer Overflow Loss

A QQ plot depictsglobal similarity of two data sets. How-
ever, if the elements of these two data sets are ordered by frame
index, as in the case of actual video frames, a QQ plot does not
reveal any information about local distributions of the frames.
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Fig. 12. QQ plot for the whole movie generated using Model A (ET).

Fig. 13. QQ plot for the whole movie generated using Model B (ET).

For instance, one dataset may have all the large data values to-
gether and another dataset may have these large and small data
values nicely interleaved, and yet both may show identical QQ
plots. For communication of VBR videos over B-ISDN, tem-
poral ordering of the frames plays a critical role in DLR; for
a given data transmission rate, the occurrence of long runs of
large-size frames (known as burstiness) has higher DLR than the
absence of them. Hence, temporal burstiness of original VBR
video must be preserved in the data generated by a good model.
The most commonly used test for measuring this behavior is
passing the data through a generic buffer with capacityand
drain rate factor . For our study, buffer capacity is expressed
in terms of mean frame size of the VBR source and is indepen-
dent of . For a 25-frames/s source, ms corresponds to
one half of a mean frame size of the VBR video. The drain rate
factor is the ratio of the number of bytes actually drained per
second to the average data rate of the VBR video.

TABLE IV
PERCENTAGE OFBIT LOSS INORIGINAL AND GENERATEDMOVIES (CD)

TABLE V
PERCENTAGE OFFRAMES AFFECTED INORIGINAL MOVIE (CD)

Tables IV–VII show data loss rates for various buffer capac-
ities and drain rates for original and synthetic traces of CD.
Each cell of Table IV shows percentage data loss for original
and full-length synthetic movies from the two models. For in-
stance, when ms and , the original movie suffers
1.326% data loss. With an identical buffer and transmission set-
ting, full-length movies generated by Model A and Model B
suffer 1.301% and 1.024% data loss, respectively. Although the
differences are very small, one can see that 1) Model A shows a
higher data loss than the original movie, and 2) Model B shows
a lower data loss than the original movie. This observation also
holds for other communication settings.

During our simulation study, percentage of total frames lost
and percentage of each type of frames lost were recorded. Some
of the results are reported in Tables V–VII. The additional in-
sight obtained from the frame-specific data-loss pattern is quite
revealing. For the original movie, when ms and ,
only 3.04% of all frames are affected; a closer look reveals that
most of them are I frames—as many as 18.031% I frames have
been affected. The impact of an affected I frame propagates
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TABLE VI
PERCENTAGE OFFRAMES AFFECTED IN MOVIE GENERATED WITH

MODEL A (CD)

TABLE VII
PERCENTAGE OFFRAMES AFFECTED IN MOVIE GENERATED WITH

MODEL B (CD)

across the whole GOP containing the I frame. Thus, one can
conclude that as high as 18.031% of the movie would be af-
fected. To reduce the percentage of affected I frames, it is nec-
essary to increase the buffer size (creating the effect of video
smoothing) or the drain rate (increasing bandwidth allocation),
or both. The plots in Fig. 14 show that the data loss affects
I frames several times more than it affects P or B frames. The
least affected frames are B frames.

Simulation studies with traces of the movie ET show sim-
ilar results. To conserve space, we do not show them here as ta-
bles. Instead, we illustrate some of these observations as plots in
Figs. 15–20. It may be noted that for a reasonably high drain rate
factor hardly any P or B frames are affected but still the loss of I
frames could be significant. For example, Figs. 19 and 20 show
that for a drain rate factor of 4.5, a large percentage (5%–20%)

Fig. 14. Affected frames versus drain rate in Model A. Buffer capacity=20 ms
(CD).

Fig. 15. Data loss versus drain rate. Buffer capacity= 20 ms (ET).

of I frames were affected, but hardly any P or B frames were af-
fected, consequent to which the plots for P and B frames prac-
tically coincided with the horizontal axis. From these figures,
we can see that model-generated traces very closely follow the
data-loss trends of the original movie. Although differences are
very insignificant, Model-A generated traces show higher and
Model-B generated traces show lower data (and frame) loss
rates than that of the original movie.

V. DISCUSSION ANDCONCLUSIONS

Frame-size-based models of VBR videos, especially
full-length movies, are essential for understanding the effect of
data loss during transmission of MPEG-like compressed VBR
videos over B-ISDN. However, no satisfactory frame-size-based
model has been reported in the past. The limited success of
past efforts in frame-by-frame modeling of full-length VBR
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Fig. 16. Data loss versus buffer capacity. Drain rate= 4.5 (ET).

Fig. 17. Affected frames versus drain rate in Model A. Buffer capacity=
20 ms (ET).

video is not due to lack of effort, but because of the complex
nature of frame-size data sets. Three different compression
techniques applied to I, P, and B frames produce different
amounts of compression. Moreover, different segments of a
full-length movie produce frames of different sizes, because
of composition or content of picture and temporal similarity
of adjacent pictures. A universal VBR video model must have
enough parameters to capture all classes of video segments,
and all three frame types (I, B, and P) in each class of video
segments.

In this paper, we have presented algorithms for analysis of
full-length VBR videos. After two-pass analysis of a VBR
video, our algorithms identify and partition (size-based) classes
of video shots. Frames in each class produce three data sets,
one each for I-, B-, and P-type frames. Each of these data sets

Fig. 18. Affected frames versus drain rate in Models A and B. Buffer capacity
= 20 ms (ET).

Fig. 19. Affected frames versus buffer capacity in Model A. Drain rate= 4.5
(ET).

fits an axis-shifted Gamma distribution, whose parameters are
estimated form the data set it models.

Using these Gamma distributions and Markov renewal pro-
cesses, we have proposed two models for generation of synthetic
VBR videos. These, being frame-size models, generate sizes of
I, B, and P frames. Thus, one can study types of frames being
affected during communication.

We have used QQ plots to show visual similarity of model-
generated VBR video data sets with original data set. Similarity
of local burstiness of model-generated VBR videos and original
video have been validated using leaky-bucket simulation tech-
nique. Full-length videos generated by both models preserved
local burstiness of original video. Our study of frame-based
VBR video revealed that even a low data-loss rate could affect



SARKAR et al.: MODELING FULL-LENGTH VIDEO USING MARKOV-MODULATED GAMMA-BASED FRAMEWORK 649

Fig. 20. Affected frames versus buffer capacity in Models A and B. Drain rate
= 4.5 (ET).

a large fraction of I frames causing a significant degradation of
the quality of transmitted video.

In summary, we provide not only two good models for gen-
eration of synthetic VBR video for study of B-ISDN, but also a
tool for understanding of the quality of transmitted video when
communication is subject to data loss. We are now analyzing
more full-length videos for modeling them. Once a good number
of videos have been modeled, we plan to study bandwidth gain
obtainable from multiplexing them.
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