
QoS Middleware Support for Pervasive Computing Applications

Behrooz Shirazi, Mohan Kumar, Byung Y. Sung

University of Texas at Arlington

Department of Computer Science and Engineering

Box 19015 Arlington, TX 76019-0015

{shirazi|kumar|sung}@cse.uta.edu

Abstract
Today, pervasive computing technologies are being

developed to provide automated, real-time, continual,

and unobtrusive user services in dynamic

heterogeneous environments such as telemedicine,
manufacturing, space endeavors, crisis management,

and military. However, the full potential of pervasive

computing cannot be realized without enabling

middleware technologies – henceforth referred to as

“middleware services”; i.e., they provide services for

high level applications. In this paper we introduce
middleware services that are required to address the

challenges related to adapting to dynamically

changing situations, meeting communication QoS

requirements, and achieving scalability in large-scale

pervasive computing applications over heterogeneous
network infrastructures. Our approach in developing

middleware support for pervasive computing is based

on the community computing concept, which provides

us with a unified method to dynamically integrate the

middleware services with each other and with high

level applications on a just-in-time basis. The
proposed middleware services for pervasive computing

are highly modular, lightweight, and easily deployable

to meet the needs of pervasive computing applications

in networked environments. In this paper we will

describe our proposed QoS algorithms and techniques

for synergistic integration of middleware services into
pervasive computing applications. In addition, we

propose new performance metrics and a benchmark

suite approach to evaluate middleware services in

pervasive computing. Finally, we present some early

prototype results from our proof of concept
implementation.

1. Introduction and Motivation

Over the past few years pervasive, or

ubiquitous, computing and communication has evolved

into a mature computer science and information

technology field. Mark Weiser, who is widely known

as the original architect of ubiquitous computing,

defines the discipline as the creation of environments

saturated with computing and communication

capability, yet gracefully integrated with human users

[1]. He envisioned an environment in which

computing is put in the background and the users are

unaware of the existence of computers. Today, there

are several major pervasive computing projects at

universities [2, 3, 4, 5, 6, 7, 8, 9] and industries [10, 11,

12, 13]. Interested readers are referred to [7, 14, 15]

and the IEEE Pervasive Computing journal for further

details.

Today, pervasive computing technologies and

the associated software are being developed to

facilitate such applications as telemedicine, education,

space endeavors, marketing, crisis management,

transportation, manufacturing, and military for all the

time and everywhere use. These applications demand

automated, continual, and unobtrusive services and

proactive real-time collaborations among devices,

software agents, and geographically distributed

personnel in dynamic heterogeneous environments. It

is an extremely challenging task to provide scalable,

efficient, and seamless pervasive computing services in

dynamically changing environments [15]. In this paper

we describe middleware services that will facilitate

implementation of pervasive computing applications in

dynamic and complex environments such as those

encountered in telemedicine, space endeavors, or the

military. This includes Quality of Service (QoS) and

Resource Management (RM) middleware services to

guarantee end-to-end soft real-time communication on

heterogeneous intranet and the Internet infrastructures.

We describe scalable, efficient (just-in-time)

techniques for the synergistic integration of

middleware services into pervasive computing

applications. We also propose new performance

metrics and techniques for a benchmark suite to

measure the effectiveness of the proposed middleware

services. Finally, we present the results from our early

proof of concept implementation of the proposed

middleware services.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 1

Through a project
1
, called PICO (Pervasive

Information Community Organization), we are

designing and developing new architectural models for

Internet-based pervasive computing applications [5, 6].

With assistance and consultation of researchers at the

University of Texas Southwestern Medical Center, we

are also developing a PICO test-bed prototype

environment for telemedicine applications. A PICO

application consists of a set of embedded hardware

devices and sensors, called camileuns (context-aware,

mobile, intelligent, learned, ubiquitous nodes), and

their associated software agents, called delegents

(intelligent delegates). Delegents perform goal-

oriented tasks on behalf of their associated camileuns.

For example, a delegent associated with a heart

monitor camileun will continuously analyze, record,

and (when needed) transmit heart health information.

A major contribution of the PICO project is the

introduction of a novel concept, called community

computing, and using it as a framework for

collaboration among delegents. In community

computing, delegents working on behalf of camileuns,

collaborate with each other to carry out application-

specific services. Pervasive computing challenges

being addressed in the PICO project include design and

development of: i) PICO architecture and its building

block elements, ii) computing community operations,

iii) collaboration and/or communication protocols

among delegents and communities, and iv) modeling,

analysis, simulation, and prototyping of the PICO

environment using a telemedicine application.

The PICO project relies on existing and

primitive middleware services to support its

operations. While such an approach is sufficient for

experimentation and for proving the PICO concept, it

is obviously insufficient in meeting real-world

challenges. For example, in future PICO-enabled

(pervasive computing) environments, millions (perhaps

even billions) of hardware sensors/ devices and their

associated software agents need to collaborate

(communicate) with each other, over the Internet or

future networking infrastructures, to provide dynamic

services to millions of users. In such an environment

the QoS requirements of varied pervasive computing

applications (e.g., entertainment vs. emergency

telemedicine) must be met efficiently and seamlessly.

The goal of this paper is to present novel middleware

services that are required to address the challenges

related to adapting to changing situations, meeting
efficiency requirements, and achieving scalability in

large-scale pervasive computing applications. More

specifically, we address QoS and RM services that

address scalability, efficiency, and end-to-end soft

1

Supported in part by NSF Award STI-0129682.

real-time communication on heterogeneous intranet

and the Internet infrastructures. These services are

integrated into the PICO pervasive computing

environment and tested using a telemedicine

application.

2. Middleware in Pervasive Computing

The PICO pervasive computing project is an

ideal framework for studying problems in dynamic

complex environments due to its automated methods

for creation of mission-oriented communities of

collaborative software agents to provide services to

users. At the low, physical layer, PICO camileuns are

deployed to interact with the environment, collect

sensory data, and communicate with other camileuns.

Any physical device that possesses a CPU, memory,

and communication ability can serve as a camileun.

Therefore, smart dust [16], a UC Berkeley network

sensor platform [17], a PDA, a cell phone, a laptop

computer, and a high-end multiprocessor computer all

may serve as camileuns in a PICO environment.

Camileuns interact using any available networking

infrastructure ranging from ad hoc networks to

Personal Area Networks (PANs) [18] to structured

intranets to the Internet in general. At a higher level in

PICO, there is a software agent, or delegent, associated

with each camileun (or group of camileuns). A

delegent may be created by the programmer, user,

application, or another delegent. Delegents perform

mission-oriented services on behalf of their camileuns.

The delegents for camileuns with limited hardware

resources reside on the network (other camileuns) and

perform their tasks on behalf of their camileuns. PICO

introduces community computing as a framework for

delegents to collaborate with each other and to carry

out application-specific services. We will demonstrate

this concept through an example scenario.

Consider a

heart patient with a

heart monitor and a

cell phone

(camileuns). As

depicted in Figure 1,

each camileun also

has an associated

delegent (represented by the winged icons). If the

patient begins to have a heart attack, this condition is

detected by the heart monitor delegent, which will then

form a community with the cell phone delegent, using

patient’s PAN, as depicted in Figure 2. The goal of this

community is to call for an ambulance. Therfore, the

cell phone delegent, using the cell phone as a data

communication device, requests assistance of an

Figure 1: Heart patient

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 2

ambulance. As shown in Figure 3, even before the

ambulance has arrived, a larger community of

delegents consisting of the heart monitor, cell phone,

and ambulance is formed to provide valuable heart

information to the participating paramedics. The

communication within the ambulance-patient

community (Figure 3) takes place over the Internet

using a mixture of wireless and land-based networks.

In the PICO project we have developed a formal

framework to model and analyze delegents’ behavior

and a rule-based, goal-driven inference engine

methodology to implement the delegents and guide

community formation and dismantling [19]. From this

simple scenario, one can observe that:

• Delegents are always active, performing services on

behalf of users.

• Services provided by the delegents are automatic

and in the background, often without the user’s

knowledge.

• In response to dynamic events, delegents

automatically form communities to perform services

on an as-needed-basis. This provides a great deal of

adaptability to dynamically changing environments.

• The relationship among the delegents, or the

composition of the communities, is not predefined.

Therefore, the delegents heavily rely on middleware
services to carry out their tasks.

Figure 4 depicts the overall PICO

architecture. At the low level, camileuns collect

environmental information and perform user services.

They communicate using a variety of technologies

such as 802.11, bluetooth, cellular, and wired

communication. At the high level, the delegents carry

out monitoring, event detection, and service provision

activities. In response to external events or user’s

needs, the delegents form communities to provide

higher level user services.

The delegents are designed to respond to

unforeseen events and may form (or join) communities

with different delegents, depending on different

situations and environmental conditions. Therefore,

delegents and communities heavily rely on middleware

services, such as service discovery, location awareness,

migration and mobility, transcoding, and

communication, to dynamically identify and

collaborate with other delegents. Additionally, QoS

and RM middleware services are needed to address

challenges arising from scalability (large number of

communicating devices and delegents), efficiency

(better bandwidth utilization), and meeting soft real-

time deadlines (particularly for high priority, time-

sensitive applications such as telemedicine).

3. Background and Challenges

In this paper we focus on issues related to

middleware services for communication in pervasive

computing. Our work on middleware services for

service discovery, location awareness, migration and

mobility, and transcoding will be reported separately.

3.1 QoS and RM middleware services
In this section, QoS and RM middleware

services for bandwidth and end-to-end soft real-time

communication guarantees in pervasive computing will

be discussed. Performance-related middleware services

such as QoS and RM for meeting bandwidth and end-

Figure 2: Heart
patient community.

Figure 3: Ambulance-patient community

PICO Middleware Services

Community

Delegents

Camileuns
Access point/

Gateway Access point/

Gateway

Bluetooth

802.11b

Cellular

…

PICO Middleware ServicesPICO Middleware Services

CommunityCommunity

Delegents Delegents

CamileunsCamileuns
Access point/

Gateway Access point/

Gateway

Access point/

Gateway Access point/

Gateway

Access point/

Gateway Access point/

Gateway

Bluetooth

802.11b

Cellular

…

Bluetooth

802.11b

Cellular

…

Fig. 4 PICO Architecture

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 3

to-end communication delays are critical to pervasive

computing applications. Timely collaboration among

software agents and hardware devices in dynamic

situations is crucial for time-critical applications. For

example, provisioning QoS for on-the-fly video

communication between an ambulance and the hospital

is not possible with the existing best-effort-based

Internet services [20]. Also, architectures proposed for

providing integrated or differentiated services do not

address the QoS aspects required to meet the demands

of time-critical applications [21]. Guaranteeing

sustained QoS in dynamic situations requires accurate

system awareness through monitoring and proactive

QoS and resource management.

3.2 Scalable and efficient techniques
QoS and middleware services for both

Internet applications and large distributed systems have

been extensively investigated by many researchers,

including the authors [20, 21, 22, 23, 24, 25, 26, 27,

28, 29, 30, 31, 32]. However, none of the existing

solutions are designed to address the challenges

encountered in pervasive computing when dealing with

an extremely large number of users/applications or

dynamic, unforeseen situations. In the near future,

many millions of sensors (camileuns) and software

agents (delegents) will be deployed to carry out

pervasive computing services using the networking

infrastructures. These services not only have different

priorities and QoS requirements, but the priorities and

requirements dynamically change depending on the

changes in the environment. For example, consider a

patient under a home care program. A community of

delegents representing the patient, doctor, and nurse

continuously monitors the patient and provides health

services as prescribed by the medical team. Under

normal conditions, the priority for communications

among the delegents of this continuous community

may be high. However, if there is a crisis (such as a

terrorist attack or an earth quake), not only the system

load scales up dramatically, but the priorities

associated to this and many other communities (such as

movie times or webcasts) are lowered. The existing

middleware solutions, whether centralized or

distributed, are not equipped to handle such dynamic

situations. Any solution for QoS and middleware

services for pervasive computing must scale as the

number of users and applications increase or shrink
and must be able to seamlessly adapt to dynamically

changing conditions and priorities.

3.3 Performance metrics:

To evaluate different QoS and RM

middleware services in pervasive computing

applications, there is a need for a set of standard

performance metrics. Obviously, there are several

well-defined, well-understood metrics, such as end-to-

end delays, bandwidth utilization, and efficiency,

which are also applicable to middleware services in

pervasive computing. However, better metrics are

needed not only to measure the overall performance,

but also gauge the complexity and overhead,

robustness (error margins in estimations and

predictions), degree of scalability, quality

(performance vs. resources used), degree of openness

(availability for modification), and degree of testability

of middleware services in different applications.

Additionally, to the best of our knowledge, currently

there is no benchmark (suite), as a measuring stick, to

evaluate and compare different middleware services in

pervasive computing applications.

4. Proposed Solutions

We present three solutions for the above

mentioned challenges. First, we propose efficient

middleware services that are useful in pervasive

computing applications. These services will be

implemented as delegents (software agents) in PICO

environments. Second, we use PICO’s community

computing as a means to dynamically, and on a just-in-

time basis, integrate the middleware delegents with the

application delegents to form middleware

communities. This approach will provide us with the

basis to address scalability, adaptability, and efficiency

in middleware services. Finally, we introduce new

performance metrics and define the framework for a

benchmark suite to evaluate middleware services for

pervasive computing applications.

Building block QoS and RM middleware services for

communication support in pervasive computing:

In the next subsection we will present a novel

scheme for QoS (along the bandwidth and end-to-end

delay dimensions) and resource management in

dynamic, heterogeneous networks, using the

community computing concept. The proposed QoS

management and negotiation method, however, relies

on a set of building block middleware services that are

described in this section. We believe that a successful

QoS and resource manager in a dynamically changing

environment must: i) be aware of the current state of

resources (e.g., network load), ii) know the application

requirements, iii) be able to predict QoS violations, iv)

be able to diagnose the causes of violations, v) succeed

in managing and allocating the resources, and vi) have

the tools to carry out QoS and resource management

decision. This paper focuses on the overall

architecture of the proposed services and their

integration. The working details of our middleware

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 4

services will be available on our web site (PIC) and in

future publications.

 The building block QoS and RM middleware

services used in our scheme include: system monitor,

application profiler, resource manager, and action

delegents.

The monitor delegents continually and

autonomously collect and accumulate network

performance data. K (K≥1) neighboring network

resources (network nodes and links) are monitored by a

dedicated monitor delegent. K is a system specified

parameter and its value depends on the size of the

network, communication latencies, and computational

speed of the network processors.

The application profiler delegents are

designed to profile communication patterns (e.g., type

and priority) and their performance characteristics

(e.g., bandwidth and end-to-end delays) for

applications. The profiled information is later used in

resource management decisions and for prediction of

QoS violations.

Resource manager delegents are used to

allocate communication requests to network resources

in a dynamic and efficient manner. Currently we use

heuristic algorithms to carry out resource management

[28]. However, we are investigating the application of

Game theory to solve this problem. We plan to

formulate resource management operations as a

bidding game among communication delegents that

compete for the limited network bandwidth and

queuing storage. This approach is flexible in adjusting

the trade-off between the quality of solution and the

complexity of the algorithm.

Putting it all together: Once a QoS or resource

management decision is made, it must be enacted by a

QoS action delegent. Scalable, efficient (just-in-time),

synergistic integration of middleware services into

pervasive computing applications is critical to PICO.

As previously discussed, any solution for QoS and

middleware services for pervasive computing must

scale as the number of users fluctuates and must be

able to seamlessly adapt to dynamically changing

environments and priorities. We assume that in the

near future active networks [33, 34, 35] will be

deployed for both intranet networks and the Internet.

In active networks, the network nodes are no longer

simple routers; rather, they have processing (even

multiprocessing) capabilities and are capable of

analyzing and dynamically routing communication

packages. In such an infrastructure, middleware

services can be implemented as delegents that exist on

network nodes, providing QoS services as previously

described. We now propose to use the community

computing principle to form just-in-time middleware

service communities to address pervasive computing

N1 N2

N3

Webcast

User

N1 N2

N3

Webcast

User

Figure 5: User,
webcast application

N1 N2

N3

Webcast

User

N1 N2

N3

Webcast

User

N1 N2

N3

Webcast

User

Figure 6 Middleware
services community

Figure 7 Ambulance, hospital application

N1 N2

N3

N4

Ambulance

Hospital
Webcast

User

N1 N2

N3

N4

Ambulance

Hospital
Webcast

User

Figure 8 A larger middleware
community

N1 N2

N3

N4

Ambulance

Hospital

Webcast

User

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 5

applications’ dynamic needs. The following example

explains our idea.

Consider Figure 5, in which a user would like to hear

the webcast of a game on the Internet, going through

network nodes N1, N2, and N3. As depicted in Figure

6, the delegents of the user, webcast, and middleware

services (running on network nodes, providing QoS

and RM services) will form a community to ensure the

proper bandwidth is allocated to this communication so

the user would receive the requested broadcast quality.

Now assume a high priority, high bandwidth

communication request between an ambulance and

hospital is issued, which utilizes nodes N1 and N2

(Figure 7.) At this point, the middleware delegents

running on the network nodes N1 through N4 form a

larger community (Figure 8) to ensure the requirements

of the ambulance-hospital communication is met while

providing a best-effort communication to the user-

webcast connection. The following points can be

observed from this example:

1. Middleware service communities are formed just-

in-time and only when needed.

2. Middleware services are only limited to the

affected communications, thus limiting overheads and

impact on wider area networks.

Both scalability and adaptability are achieved because

of points 1 and 2.

However, the integration of QoS and RM

services into pervasive computing applications is an

entirely different matter. In this section we describe a

QoS manager that will use the building block

middleware services, such as monitoring, profiling,

resource management, and QoS action, to negotiate

QoS and allocate resources as needed. We solve this

problem by introducing “QoS manager delegents,”

which are dynamically formed as middleware

community managers. The function of the middleware

community manager (QoS manager delegent) is to

optimize the QoS requests within its jurisdiction

(community) using the building block middleware

delegents. This simple and elegant solution allows us

to dynamically form QoS and RM services as they are

required. Additionally, the system is scalable in the

sense that at any given time multiple middleware
communities can locally (within their community)

optimize their QoS requirements. Two questions

remain: how will the QoS manager delegents function?

and how will the QoS manager delegents be

dynamically formed? These questions will be

answered next.

QoS manger functionality:

Figure 9 depicts our general solution approach for the

QoS manager delegent functionality [36, 37]. In step

1, the QoS manager collects monitoring and

application profiling information from the monitor and

profiler delegents in the community. It then uses

communication QoS requirements and the systems

state information to detect QoS violations – we plan to

investigate prediction techniques to predict violations

in near future. Once a violation is detected, the causes

of the violation are diagnosed and possible solutions

are proposed in step 2. We currently use a simple,

rule-based inference method [38] to implement an

efficient diagnosis algorithm. In step 3, different RM

solutions obtained from the resource management

delegents are analyzed to determine the best QoS

action or RM allocation to implement. Our analysis is

based on “robustness” and performance metrics

defined in the next section. Finally, in step 4, the

selected QoS action (message duplication, re-routing,

or re-scheduling) is carried out by the action delegents.

Dynamic formation of QoS manger delegents:

Middleware communities are formed

whenever there is a significant change in the state of

the system, requiring QoS management services (e.g.,

Figures 5-8). Therefore, a dedicated QoS manager

delegent needs to be dynamically created whenever a

middleware community is formed. Initially we

distribute m dormant QoS manager delegents among n
network nodes (one per network domain). If a

community is contained in a network domain, then the

QoS manager for that domain will serve as the QoS

manager for the community. Whenever a middleware

community crosses more than one domain, then the

nearest, least loaded QoS manager delegent is selected

to join the community and serve as its QoS manager.

In the future we plan to investigate a more dynamic

approach in which we can: i) embed the QoS manager

functionality in every QoS delegent described and ii)

whenever the community is formed, we can deploy a
voting/polling algorithm to determine which QoS

delegent in the community will also serve as the QoS

manager delegent. Naturally, whenever a middleware

community is dismantled, its QoS manager delegent is

released (returned to dormant state).

Performance metrics:

QoS Violations

(prediction)Monitor,

Profile,

DetectApplications

&

Resources

Diagnose

Causes

&

Possible Actions

QoS

Actions
Analyze

Different

Solutions

Best QoS Action

1 2

3
4

QoS Violations

(prediction)Monitor,

Profile,

DetectApplications

&

Resources

QoS Violations

(prediction)Monitor,

Profile,

DetectApplications

&

Resources

Diagnose

Causes

&

Possible Actions

Diagnose

Causes

&

Possible Actions

QoS

Actions
Analyze

Different

Solutions

Best QoS Action

QoS

Actions
Analyze

Different

Solutions

Best QoS Action

1 2

3
4

Figure 9: QoS manager

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 6

As previously discussed, there is a need for a

set of comprehensive and standard performance

metrics to evaluate different QoS and RM middleware

services in pervasive computing applications. Of

course well-defined, well-understood metrics, such as

end-to-end delays, bandwidth utilization, and

efficiency are useful. Additionally, we propose several

other performance metrics that are useful in the context

of middleware services for pervasive computing

applications, including:

Performance: metrics for QoS/RM middleware

services that include: latencies of different

components, such as resource allocation routines,

whether or not the latencies of QoS/RM delegents are

deterministic, and complexity/overhead of the

QoS/RM delegents.

Robustness: Decisions about how to allocate resources

are often based on estimated or predicted values of

communication delays and system parameters.

However, the actual QoS that is delivered may be less

than predicted due to changes in circumstances such as

sudden link/router failures, higher than expected

system workloads, or inaccuracies in the estimation of

communication delays and system parameters. An

important question then arises: given a system design,

what extent of departure from the assumed or predicted

circumstances will cause the QoS to be unacceptably

degraded? That is, how robust is the system? A useful

robustness metric defined in [39, 40]can be easily

adopted in pervasive computing.

Quality: This is probably one of the most important, as

well as one of the most difficult to measure,

assessment metrics for evaluation of QoS/RM

middleware services. A quality metric may include:

QoS violation rate: This metric can be computed post-

mortem with the notion that a better quality QoS/RM

middleware service manages the resources during the

execution such that there are fewer QoS violations.

Ratio of QoS to resources consumed: If the degree of

QoS provided by QoS/RM services can be measured as

a function of QoS parameters (meeting end-to-end

deadlines or bandwidth requirement), then this ratio

will give a higher mark to a QoS/RM service that

achieves a higher degree of QoS with fewer resources.

Sensitivity: Sensitivity of a QoS/RM action to changes

in number of users (scalability) and environmental

conditions (adaptability).

Openness: Does the QoS/RM middleware services

have an open architecture, allowing different/new

components/delegents to be introduced into the

systems?

Testability/Verifiability: Are the QoS/RM middleware

services easily testable and verifiable?

System prototyping and benchmark suite for

validation and evaluation:

We are in the process of designing and

developing a middleware benchmark suite to evaluate

and compare different middleware services in

pervasive computing applications. The high level

application will be the emulated prototype

telemedicine application being developed under the

PICO project. We are well aware of the ethical,

privacy, and social issues we would encounter if

telemedicine pervasive computing applications were to

be deployed in the real-world today. Nevertheless, we

choose to proceed with telemedicine as our target

prototype application because: i) we, including many

doctors we have consulted at the UT Southwestern

Medical Center, believe it to be the “killer application”

for pervasive computing, ii) it best represents the

dynamic characteristics found in pervasive

applications, and iii) we believe that as pervasive

computing becomes more prevalent in society,

pervasive medical applications will become more

common, at least on a voluntary basis.

The PICO emulated prototype is designed to

behave like a typical dynamic telemedicine application

described in Section 3. Laptops and PDAs are used to

emulate patients, heart-monitors, cell phones,

ambulances, hospitals, etc. These emulated entities are

monitored and controlled by their associated delegents

and actually communicate over a real heterogeneous

network (wired, wireless, intranet, and Internet). We

are also developing a methodology to inject dynamic

changes in the system behavior on a deterministic and

replicable manner. To be able to evaluate the

middleware delegents suite fairly and validly, we must

be able to exactly repeat the same dynamic

environment and conditions from one experiment to

another. For example, if the communication load is

increased at a given time during an experimental run,

then exactly the same communication load must be

increased at the exact same time during the next run of

the experiment. To achieve deterministic and

replicable experiments under dynamically changing

conditions, we are developing “scenario files” and

“experiment generators.”

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 7

A scenario file is used to define the dynamic

events that may take place during an experimental run

of the benchmark suite (telemedicine application plus

the middleware services). Thus, a scenario file will

specify a sequence of events to take place at given

relative time units, starting with time 0. For example,

we may specify that at time 0 the communication load

is 0 and no application is executing. At time 5, a user

on camileun x requests to watch a webcast on camileun

y. At time 10, camileun z detects a heart attack, and so

on.

An experiment generator is a meta level

application that reads the scenario file and activates the

specified events at the given times in the test-bed

prototype environment. In other words, an experiment

generator is the event driver in our event-driven

simulation test-bed.

5. Performance Evaluation

In this section we present some early results

from our implementation of a small, proof of concept

system for PICO and the proposed QoS middleware.

The system set up is based on the prototype

environment explained in the previous subsection,

using the webcast – ambulance scenario described in

Section 5 (Figures 5 – 8). Four Pentium-based

computers, running Linux, are used to represent the

user, webcast, ambulance, and hospital camileuns. The

interconnection among the camileuns is emulated using

12 Linux-based PCs, emulating network switches and

routers.

Figure 10 depicts the results of our first

experiment. The X axis shows the experiment duration

in seconds, starting from time zero. The Y axis shows

the webcast communication latency (in seconds)

between the webcast site and the user. The desired

latency (or soft deadline) for this communication is

0.002 sec. The inter-arrival rate for this continuous

transmission is exponential with a mean of 0.01 sec

and the traffic size is 1K bytes per frame. As shown in

Figure 10, the webcast latency is below the deadline up

to around 100 seconds into the experiment. At this

point additional traffic is injected into the network,

causing the latency to surpass the deadline around time

112 seconds. This violation is then detected by the

QoS monitor, causing activation of the QoS manager.

The QoS manager re-routes the traffic through other

nodes with more bandwidth availability, causing the

latency to drop below the deadline around 125 seconds

into the experimentation.

Figure 11 depicts the results of a similar

experiment involving two communications. The graph

denoted by diamond-shaped data points shows the

behavior of the webcast communication with the same

traffic characteristics as before. The graph denoted by

the triangle-shaped data points shows the

communication behavior for the ambulance – hospital

transmission. The desired latency for this

communication is 0.2 sec. The inter-arrival rate is

exponential with a mean of 0.01 sec and the traffic size

is 8K bytes per frame. Unlike the continuous webcast

traffic, the ambulance – hospital transmission is

sporadic with an exponential duration with a mean of

600 seconds. As depicted in Figure 11, up to around

time 70, everything is fine. At this time, the

ambulance – hospital transmission begins, sharing two

network nodes with the webcast communication. As

more and more network bandwidth is allocated to the

ambulance communication, the latency of the webcast

increases and eventually exceeds its deadline around

time 95. Also, the ambulance-hospital communication

latency eventually exceeds its deadline because

Figure 10 Experiment 1: Webcast
communication behavior in PICO.

0.000

0.001

0.002

0.003

0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0

time (sec)

W
e
b

c
a

s
t

L
a

te
n

c
y
 (

s
e

c
)

webcast

0.000

0.001

0.002

0.003

0.004

0.005

0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0

time (sec)

W
e
b

c
a

s
t

L
a
te

n
c
y

 (
s

e
c

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
m

b
u

la
n

c
e
 L

a
te

n
c

y
 (s

e
c

)

webcast

ambulance

Figure 11 Experiment 2: Webcast and
ambulance-hospital communication
behavior in PICO.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 8

sufficient bandwidth cannot be allocated to its

transmission. At this point, the QoS manager re-

allocates the webcast transmission to other network

nodes, allowing the two communications to proceed

while meeting their QoS requirements.

6. Conclusions

In this paper we introduced middleware

services that are required to address the challenges

related to adapting to dynamically changing situations

in pervasive computing applications. In particular,

these services are designed to meet communication

QoS requirements and achieve scalability in large-scale

pervasive computing applications over heterogeneous

network infrastructures. The community computing is

used as a unifying method to dynamically integrate the

middleware services with each other and with high

level applications on a just-in-time basis. In addition,

we proposed new performance metrics and a

benchmark suite approach to evaluate middleware

services in pervasive computing. Early performance

evaluation results from a proof of concept

implementation validate the proposed approach.

Acknowledgement: The material presented in this

paper is based on work supported by the National

Science Foundation under Grant No. 0129682.

7. References

[1] M. Weiser, “The computer for the 21st Century,” Sci.

American, Sept.1991.

[2] Ambient Computing:

http://www.ambientcomputing.com/company.html.

[3] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste,

Project Aura: Towards Distraction-Free Pervasive

Computing”, IEEE Pervasive Computing, special issue on

"Integrated Pervasive Computing Environments", Volume 1,

Number 2, April-June 2002, pages 22-31.

[4] M.L. Dertouzos, “The Future of Computing,” Scientific

American, pp.52-55, 1999.

[5] M Kumar, S K Das, B Shirazi, D Levine, J Marquis, and

L Welch , Pervasive Information Community Organization

(PICO) of Camileuns and Delegents for Future Global

Networking LSN Workshop, Vienna, USA, March 12-14,

2001, http://www.ana.lcs.mit.edu/~sollins/LSN-

Workshop/papers/.

[6] B. Sung, B. Shirazi, M Kumar, “Pervasive Community

Organization,” Eurasia 2002, Tehran, November 2002.

[7] M. Esler, “Next century challenges: data-centric

networking for invisible computing,” The Portolano Project

at the University of Washington, Proceedings of Fifth Annual

ACM/IEEE MOBICOM 97, p. 256-62, Seattle WA, USA,

September 1997.

[8] Endeavour project: http://endeavour.cs.berkeley.edu/.

[9] Equator project:

http://www.iam.ecs.soton.ac.uk/projects/equator/.

[10] G. Banavar, J. Beck and E. Gluzberg, “Challenges: An

application model for pervasive computing,” in Proceedings

of 6th MOBICOM 2000, pp.266-274, 2000, Boston MA,

USA.

[11] Hopper, A., The Royal Society Clifford Paterson

Lecture, 1999, Sentient Computing. AT&T Lab Cambridge

Technical Report 1999.12, 1999: p. 1-10.

[12] PIMA project: http://www.research.ibm.com/PIMA/.

[13] Proactive computing:

http://www.intel.com/research/proactivepdf.pdf/.

[14] Bill Schilit, “Mega-Utilities Drive Invisible

Technologies,” IEEE Computer, Feb. 2003, pp. 97-99.

[15] M. Satyanarayanan, “Pervasive Computing: Vision and

Challenges,” IEEE Personal Computing, August 2001, pp.

10-17.

[16] SMART DUST, Autonomous sensing and

communication in a cubic millimeter,

http://robotics.eecs.berkeley.edu/~pister/SmartDust/.

 [17] Berkeley Sensor and Actuator Center, http://www-

bsac.eecs.berkeley.edu/.

 [18] Personal Area Networks:

http://grouper.ieee.org/groups/802/15/.

[19] PICO tech report and website:

http://www.cse.uta.edu/pico@cse/.

[20] R.H. Katz, “The Endeavour Expedition: Chating the

Fluid Information Utility,” Web/Internet Site:

http://endeavour.cs.berkeley.edu/proposal/.

[21] The Internet’s Coming of Age, National Academy Press,

Computer Science and Telecommunication Board, NRC,

ISBN: 0-309-06992-0.

[22] Seoung-Bum Lee and Andrew T. Campbell

"INSIGNIA: In-bandsignaling support for QOS in mobile ad

hoc networks", Proc of 5thInternational Workshop on Mobile

Multimedia Communications (MoMuC,98) ,

Berlin,Germany, October 1998.

[23] Globus project: http://www.globus.org/.

[24] Grid computing: http://www.gridcomputing.com/.

[25] C.D. Cavanaugh, L.R. Welch and B.A. Shirazi, E-N

Huh and S. Anwar, “Quality of Service Negotiation for

Distributed Dynamic Real-time Systems,” Lecture Notes in

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 9

Computer Science, #1800, Springer Verlag, pp.757-765,

April 2000.

[26] E.H. Huh, Lonnie R. Welch, Behrooz A. Shirazi,

Charles Cavanaugh, Shafqat Anwar, "Heterogeneous

Resource Management for Distributed Real-time Systems,"

Heterogeneous Computing Workshop (HCW'00), April 2000.

[27] L.R. Welch, B. Ravindran, B.A. Shirazi, C. Bruggeman,

“Specification and Analysis of Dynamic, Distributed Real-

time Systems,” Proceedings of the 19th IEEE Real-Time

Systems Symposium (RTSS’98), pp. 72-81,1998.

[28] L.R. Welch, P.V. Werme, L.A. Fontenot, M.W. Masters,

B.A. Shirazi, B. Ravindran, and D.W. Mills, “Adaptive QoS

and Resource Management Using A Posteriori Workload

Characterizations,” Fifth IEEE Real-Time Technology and

Applications Symposium (RTAS'99), May 1999.

[29] W. Lau, M. Kumar. And S. Venkatesh, A cache-based

mobility-aware scheme for real-time continuous media

delivery in wireless networks, International conference on

Multimedia and Expo, Tokyo, August 2001.

[30] W. Lau, M Kumar, and S. Venkatesh, A Cooperative

Cache Architecture in Support of Caching Multimedia

Objects in MANETs, 5th ACM/IEEE International

Conference on Wireless and Mobile Multimedia

(WoWMoM'00), Atlanta, September 2002.

[31] S. Ali, J-K. Kim, H. J. Siegel, A. A. Maciejewski, Y.

Yu, S. B. Gundala, S. Gertphol and V. Prasanna, “Greedy

Heuristics for Resource Allocation in Dynamic Distributed

Real-Time Heterogeneous Computing Systems,” 2002

International Conference on Parallel and Distributed

Processing Technologies and Applications (PDPTA 2002),

cosponsors: CSREA et al., Vol. II, pp. 519-530, Las Vegas,

NV, June 2002.

[32] T. D. Braun, H. J. Siegel, and A.A. Maciejewski, “Static

Mapping Heuristics for Tasks with Dependencies, Priorities,

Deadlines, and Multiple Versions in Heterogeneous

Environments,” 16th International Parallel and Distributed

Processing Symposium (IPDPS 2002), sponsor: IEEE

Computer Society, in the CD-ROM proceedings, Fort

Lauderdale, FL, Apr. 2002.

[33] D. L. Tenenhouse and D. J. Wetherall. Towards an

active network architecture. Computer Communication

Review, 26(2), 1996.

[34] K. W. Chin, M. Kumar, AMTree : An Active Approach

to Multicasting in Mobile Networks, ACM/Baltzer, Mobile

Networks and Applications, Vol. 6, No. 4. 2001, pp.361-376.

[35] K.W. Chin, M. Kumar, and C. Farrell, A Model for

Enhancing Connection Rerouting in Mobile Networks,

ACM/Baltzer Wireless Networks, Vol. 7, No. 3, 2001, pp.

249-267.

[36] B.A. Shirazi, L.R. Welch, B. Ravindran, C. Cavanaugh,

and E. Huh, “DynBench: A Benchmark Suite for Dynamic

Real-Time Systems,” Journal of Parallel and Distributed

Computing Practices, pp. 89-108, March 2000.

[37] L.R. Welch and B.A. Shirazi, “A Dynamic Real-time

Benchmark for Assessment of QoS and Resource

Management Technology,” Fifth IEEE Real-Time

Technology and Applications Symposium (RTAS'99), May

1999.

[38] B. Li , K. Nahrstedt, QualProbes: middleware QoS

profiling services for configuring adaptive applications,

IFIP/ACM Intl./ Conference on Distributed systems

platforms, New York, pp. 256-272, April 2000.

[39] S. Ali, A. A. Maciejewski, H. J. Siegel, and J-K. Kim,

“Definition of a Robustness Metric for Resource Allocation,”

17th IEEE International Parallel and Distributed Processing

Symposium (IPDPS 2003), to appear, Apr. 2003.

[40] S. Ali, A. A. Maciejewski, H. J> Siegel, and J.-K. Kim,

“On the Robusteness of Resource Allocation for Parallel and

Distributed Computing and Communications,” The 2003

International Multiconference in Computer Science and

Computer Engineering, June 2003. Invited Speech by H .J.

Siegel.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 10

