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Summary
Periodic square waves were used to generate predictable vergence eye movement responses.
The timing and dynamic characteristics of vergence eye movement responses to predictable and
non-predictable stimuli were compared. Results showed significant changes in timing character-
istics along with a highly characteristic anticipatory movement in the early part of predictable
vergence responses. This phenomenon is similar to that seen in saccadic eye movements and
appears to influence the timing and dynamics of the subsequent vergence response. A model-
based analysis of dynamics showed that the pulse width, pulse gain, and step gain of the motor
command signal did not show major differences between predictable and non-predictable
response. However, other model parameters related to the acceleration of the response showed
a substantial decrease when the movements were predictive. q 2000 The College of Optometrists.
Published by Elsevier Science Ltd. All rights reserved.

Introduction

Prediction is an important strategy used by humans to
improve their performance in reacting to the surrounding
environment. In oculomotor research, the influence of
prediction on saccades and smooth pursuit has been well
studied (Dodgeet al., 1930; Dodge, 1931; Bahill and
McDonald, 1983; Kowler and Steinman, 1979; Kowler,
1989; Barnes and Asselman, 1991; Barneset al., 1995).
Dodge and his colleagues (Dodgeet al., 1930; Dodge,
1931) found that in smooth pursuit, the eyes were able to
predict the future path of a target and track it more accu-
rately. In saccades, it was found that anticipation could
reduce latencies to near zero and initiate movement in
advance of the stimulus (Kowler and Steinman, 1979).
Kowler and colleagues (1979) also described a pre-saccadic
drift in the direction of the expected target step associated
with prediction. Their work provided strong evidence that

“expectations about a target’s future position always act as
powerful inputs to the slow oculomotor (conjunctive)
subsystems” (Kowler and Steinman, 1979).

Rashbass and Westheimer (1961) were the first to demon-
strate prediction in vergence. They found that a vergence
sinusoidal stimulus could be followed with little error and
they postulated a predictive operator in the control system.
However, the response to a step stimulus did not show
prediction in their studies. Later, Krishnanet al. (1973)
found that prediction substantially reduced the latency in
vergence step responses, especially when the stimulus alter-
nated at frequencies lower than 1 Hz. They did extensive
research to investigate the optimal frequency and stimulus
amplitude for prediction in terms of minimizing response
latency. Later Erkelenset al. (1989) showed significantly
reduced, often negative latencies when the target motion
was controlled by the subject.

While the influence of prediction on latency is well
known, no studies have been done on the influence of
prediction on the dynamic details of the transient vergence
response. The goal of this study is to describe quantitatively
the effects of prediction on the dynamics of the vergence
response to regularly repetitive (i.e. ‘predictable’) step
stimuli. Response latency data will also be included to
confirm the presence of prediction.
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Methods

Four subjects, one male and three females, with normal
binocular vision were involved in the experiments. One
subject (JS) knew the goals of the experiment and was a
very experienced subject while the other three subjects
(YC, NG, and LA) were naı¨ve to the goals of the experi-
ment. The stimulus was generated by a pair of oscillo-
scopes (P31 phosphor and a bandwidth of 20 MHz)
arranged as a haploscope to present two symmetrical
vertical lines to the subjects. The stimulus device was
calibrated by two physical targets viewed directly by the
subjects. The movement of the target was controlled by a
PC-type microcomputer. The responses of each eye were
detected by a Skalar infrared eye movement monitor
(Model 6500), which has a reported resolution of
1.5 min of arc, and a bandwidth of 200 Hz, well above
the Nyquist frequency for vergence movements. Repeated
three-point calibration studies have shown the linearity to
be approximately 3% over a range of 258. The horizontal
position data for two eyes were digitized using a 12-bit A/
D converter and stored on disk. Each eye was separately
calibrated using a two-point calibration on every response
trial. The vergence response was taken as the computed
difference between the two eye movements. The velocity
data were calculated using a two-point central difference
algorithm (Bahill et al., 1982) during off-line analysis.
Data analysis was done using theMatlab and Axum
software packages.

Experimental design

Two different stimulus protocols were used to either
encourage or discourage prediction,Figure 1. In the first
experiment, the stimulus was unpredictable. In this
experiment, each step stimulus was presented for two
seconds. The subjects were told to push a button to
start each trial, but the time between the button press
and the onset of stimulus was randomized to be between
0.5 and 2 s. The amplitude of the stimulus was fixed at
48; however, both convergence and divergence step
stimuli were presented in a randomized sequence. There-
fore, the subject did not know either the direction or the
onset time of the next stimulus. While these techniques
were expected to inhibit prediction, the presence or
absence of prediction was confirmed by evaluation of
response latencies.

In the second experiment, the stimulus was predictable: a
20-s square wave presented at a frequency of 0.5 Hz. Each
of the ten convergence responses in a trial was analyzed
separately. Based on the timing index as described below,
the influence of prediction was always observed after the
first several cycles in each of these trials for all subjects. It
was easy to induce prediction without specific training in all
subjects.

Data analysis

Timing index. Figure 2shows the time course of typical 48
response to: (a) non-predictable; and (b) predictable step
stimuli. The timing index usually used to assess the presence
of prediction is the response latency, defined as the period
between the onset of stimulus and the onset of movement.
However, the onset of the movement can be difficult to
identify precisely, so in this study the time when peak velo-
city occurs, an easily identifiable point in time, was used as
the second timing reference. Hence, the timing index used
here to indicate prediction was the interval between stimu-
lus onset and the time of peak velocity.

Model-based dynamic indices.The main sequence is a
classical tool for the analysis of eye movement dynamics.
With the main sequence, the ratio of peak velocity versus
amplitude is used to estimate dynamics. Larger ratios indi-
cate faster dynamics. However, since the main sequence
ratio is determined only by two points, the maximum ampli-
tude and peak velocity, many details of the response
dynamics may be missed. Previous experiments have
shown that the main sequence is not adequate to demon-
strate the subtle dynamics found in vergence eye move-
ments (Alvarezet al., 1998; Yuanet al., 1999).

The dynamic analysis used here is based on a model of
vergence control processes. During simulations of the
model, it is possible to adjust the model parameters so
that the model output closely matches a particular response.
If the match is fairly accurate, then the model parameters
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Figure 1. Stimuli presented to subjects. (A) In the first experi-
ment, both convergent and divergent 48 stimuli were
presented to subjects in a randomized sequence. In addition,
the time period between button press and onset of stimulus
was randomized to be between 0.5 and 2 s, as represented
by “?”. (B) In the second experiment, a 20-s periodic square
wave at 0.5 Hz was presented to subjects. Prediction was
easy to induce after several cycles.



constitute a concise description of the dynamic response. In
theory, it is only necessary that the model provide a good
representation of the response, but in practice it is also
desirable that the model parameters have some meaningful
relationship to the response dynamics or, alternatively, the
underlying control signals.

The model used here was originally developed to study
the influence of stimulus features on the motor command
signal and to analyze movement-to-movement variability
(Yuan et al., 1999). It is based, at least approximately, on
known features of the vergence control system. Mays and
his colleagues found that the neural activity of convergence
tonic cells was highly correlated with the coding of
vergence position, while the firing rate of burst cells was
closely correlated with the profiles of vergence velocity

(Mays and Porter, 1984; Mayset al., 1986). This indicates
that tonic cells encode position while burst cells encode
velocity. These two signal components motivate the two
signal pathways in our model,Figure 3. The lower pathway,
as shown inFigure 3, represents the tonic cell contribution.
It consists of a step generator which produces a step-like
change in signal level, a nonlinear dynamic element that
limits the maximum velocity of the step change, and a
gain term. The upper pathway represents the burst cell
signal and is similar to the lower pathway except that the
step generator is replaced by a pulse generator and the gain
term is different. Both signals feed a simple second-order
process that represents the dynamics of the oculomotor
neuromusculature. In this model, the rate limiters are
nonlinear elements that shape the rectangular pulse and
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Figure 2. Time course of typical 48 step response to: (A) non-predictable; and (B) predictable stimuli. The solid line
represents experimental data and the dashed line represents model simulations. It can be seen that the simulation
matches experimental data quite well in both cases. A small pre-transient, labeled as “Anticipatory Movement” can
be found in (B) and is typical of predictive movements. (C) Phase-plane plot of a response with prediction. There is
a clear boundary, marked with an “ × ”, between the anticipatory movement and the normal transient movement.

Figure 3. (A) Model used to analyze the dynamics of the system. The pulse signal pathway represents the
aggregate activity of burst cells while the step signal pathway represents the aggregate activity of tonic cells
(Mays, 1984; Mays and Porter, 1984; Mays et al., 1986). (B) The sum of the two pathways provides a pulse-step
signal to drive the plant.



step signals by restricting their rate of change, i.e. maximum
velocity, in rising and falling directions. Any signal with a
slope beyond the limits set by the parameters will be
constrained to those limits. The input to this system is the
amplitude of a step stimulus. This input triggers the two
signal generators, which then generate a pulse-step signal.

The two-pathway model has five adjustable parameters:
pulse width (PW), rising slew rate (RSR), falling slew rate
(FSR) for pulse signal, and rising slew rate for step signal
(set equal to RSR in pulse signal pathway). Both pathways
also have specific gain elements, SG for the step signal gain
and pulse gain (PG) for the pulse signal gain. These five
parameters are adjusted so that the model’s simulated
response matches the given experimental response. Two
other parameters adjust the oculomotor time constants, but
are fixed for all responses for any given subject.

The plant represents the mechanics of the ocular muscles
and globe and is a simplified version of the plant model
developed by Robinson (1965). In his work, the average
value of the major time constant was 285 ms; however,
the measured time constant varied between 200 and
400 ms. In the simulations used here, the major time
constant was fixed at 200 ms for subject JS and 400 ms
for the other three subjects. The minor time constant was
fixed at 30 ms for all four subjects. Although some subjec-
tivity was involved in the determination of the time
constants, the values were set empirically for best fit
between simulation and experimental data and are not
very different from Robinson’s results. While plant time
constant can influence dynamic features such as peak
velocity, if the plant time constants are held fixed for each
subject, they exert a consistent influence so that all of the
descriptive power is held in the five adjustable parameters.

The adjustable model parameters provide a concise quan-
titative representation of the transient dynamics and also
have a well-defined relationship to the underlying motor
command signal. In addition, the model parameters also
relate to specific features of the response dynamics. Pulse
gain is strongly related to the value of peak velocity while
pulse width is directly related to the time when peak
velocity is attained. The RSR is primarily influenced by
the up-slope of the velocity curve (i.e. initial acceleration)
while the FSR relates to the falling portion of the velocity
curve, or deceleration, of the response. Step gain determines
the final steady-state position and, hence, will be approxi-
mately the same as the stimulus amplitude. Thus the model
provides a powerful tool for linking extended behaviors
with the internal signal that produce those behaviors.

Simulations were carried out usingMatlab and plotted
usingAxum. Each simulation was done by manually adjust-
ing the parameters of the model until the simulation result
was very close to the given experimental response. To avoid
subjectivity in the parameter adjustment process, an optimi-
zation procedure was applied after preliminary manual
adjustment. The optimization routine, a local minimizer,

was taken from theMatlab software package (FMINS)
and was based on the Simplex search method. This optimi-
zation routine was applied using the initial values obtained
from the manual simulation and reduced the root mean
square (RMS) error between the simulation and experimen-
tal response to less than 3% of the steady-state amplitude.
This error was approximately the same as the measurement
error. Since there was a response delay in the system, a
latency element was added to the model. However, since
the model did not contain a feedback pathway, the latency
served as a time offset and had no other effect on response
dynamics. The simulation was optimized in terms of the five
adjustable parameters and the latency.

Figure 2Ashows typical response by subject JS to non-
predictable 48 convergence step stimulus. The solid line
represents the time course of experimental data and the
dashed line represents model simulation result. As seen in
Figure 2A and B, the experimental data and model simu-
lation fit with each other reasonably well. The RMS error
between experimental and simulation was less than 3% of
the steady-state amplitude.

Based on the work of Kowler and Steinman (1979) on
saccadic prediction, we might expect to find small “antici-
patory drifts” that proceed the initial transient portion of the
response. We quantify such anticipatory movements in
terms of their maximum amplitude as measured from the
phase trajectory. In phase-plane plots, the velocity of the
response (vertical axis) is plotted against position (horizon-
tal axis) producing a graph that emphasizes the transient
dynamics of a response. The phase-plane plot is useful in
separating the anticipatory drift from the high-velocity tran-
sient. The anticipatory movement in the early portion of
vergence response was found to be similar to a noisy
ramp (i.e. constant velocity) response with small amplitude,
Figure 2B. In the phase plot, this small movement appears
as a horizontal line, sometimes with a slight curvature,
Figure 2C. Following this small movement, the larger
trajectory characteristic of a step response is seen,Figure
2C. An anticipatory vergence movement will be quantified
in terms of the amplitude, or change from the baseline posi-
tion, just before the onset of the step transient. For the
response ofFigure 2C, this occurs at the junction of the
low velocity and high velocity trajectories as indicated by
the “×” point in Figure 2C.

Results

Figure 4presents histograms that demonstrate the distri-
bution of the timing index in responses to predictable and
non-predictable stimuli. Comparing the timing index under
the two conditions (Figure 4), we find that in responses
without prediction the reaction time is tightly distributed
with an average value for each of the four subjects at
approximately 240–260 ms. The standard deviation of the
timing index for unpredictable responses is less than
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^30 ms. On the other hand, the timing index for predictable
responses varies considerably. The average value of the
timing index for each of the four subjects was approxi-
mately 90–160 ms. with a standard deviation of approxi-
mately ^100 ms. Since the normal delay between
movement onset and peak velocity is approximately
100 ms, the eyes sometimes began to move before stimulus
onset. This is similar to the findings of Krishnanet al.
(1973). All of our four subjects’ data showed similar differ-
ences in the timing index between predictable and non-
predictable responses,Figure 4.

To investigate the influence of prediction on vergence
dynamic properties, we simulated a large number of the
responses to predictable and non-predictable step stimuli
and determined the model parameters required to fit the
simulation to the response as described above.Figure 5
shows that, for all four subjects, there was no substantial
change in either PW or PG under the two conditions. Step
gain showed a small decrease that can be attributed to the
contribution of the anticipatory movements since any
anticipatory movement will reduce the amount of step
required to attain the final vergence position. However,
the two parameters that represent the response’s accelera-
tion dynamics RSR, and FSR, underwent a substantial
decrease when the stimulus was predictable, particularly

for subjects JS and NG,Figure 5B. The decrease in FSR
was small for subjects YC and LA, perhaps due to the
already low values of this parameter. These unexpected
results indicate that the dynamics of predictive move-
ments were actually slower (i.e. have reduced accelera-
tions and decelerations) than movements made without
prediction.

The drifts that preceded the fast transient response
(labeled “Anticipatory Movement” inFigure 2B) were
much larger, occurred much more frequently, and were
much more consistent in direction in predictable responses
as compared to the non-predictable responses. To quantify
this difference, we measured the amplitude of the pre-tran-
sient movement in responses with and without prediction
using the methodology described previously. As seen in
Figure 6, the amplitude of the pre-transient drift in
responses without prediction had a very narrow distribution
that was centered at 08. Hence, pre-transient drifts for non-
predictable movements were quite small and were as likely
to be in a direction opposite to the step response as in the
same direction. For the response under predictive stimulus
conditions, the drift amplitude had a much broader distribu-
tion centered at 0.3–0.48 and was in the direction of the
stimulus. Occasionally, the drift could be greater than 18
in a 48 step response.
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Figure 4. Timing index (response latency) comparison between responses to non-predictable and predictable
stimuli shown as histograms. For all four subjects, response latency to non-predictable stimuli was distributed over
a very narrow range with an average of approximately 200 ms. The response latency to predictable stimuli has a
much wider distribution and a smaller average value.



Discussion

Examination of the fine details of vergence responses to
predictable stimuli shows that an anticipatory response
generally proceeded the fast transient movement. This

response had an amplitude of up to 18 in a 48 step response.
The anticipatory movements usually started well ahead of
the target movement despite the fact that they would
produce an initial retinal error.

Original expectations regarding the dynamic parameters,
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Figure 5. Comparisons of model parameters in response to non-predictable and predictable stimuli. (A) Pulse
width (PW, in s/100), pulse gain (PG), and step gain (SG). (B) Rising slew rate (RSR, in 8/s) and falling slew rate
(FSR, in 8/s).



RSR and FSR which described the acceleration and
deceleration of the movement, were that these parameters
would increase in responses with prediction. This was based
on the assumption that the system would be able to generate
a faster dynamic response when it knows the future of the
stimulus. However, the model-based dynamics analysis
showed the opposite result: the acceleration and decelera-
tion dynamics decreased in predictive responses in all four
subjects. This result might represent some sort of interactive
influence of the anticipatory movement on the central
control processes that generate the motor command signal.
For example, some neural cells that generate the motor
signal may be recruited in the very early portion of the
vergence response to produce the anticipatory movement.
The use of these neurons to produce an anticipatory move-
ment may reduce the number of neurons available to the
neuronal pool to generate the high-velocity initial compo-
nent control signal. FromFigure 2BandC, a clear boundary
can be observed between the anticipatory movement and the
normal initial transient. However, it is conceivable that the
anticipatory movement continues into the fast transient
movement and interferes with its production. The substan-
tial decrease of RSR and the less consistent decrease in FSR
indicate that this influence is strong during the early portion
of predictive movements, but has less effect during the latter
portion of the response.

The process that gives rise to the anticipatory movement
is unknown. A possible explanation is that this is a low-level
adaptive process where the oculomotor command itself is
modified based on the memory of recent motion. In this
case, adaptive processes would operate at the level of the
brain stem and would not involve higher, cortical functions.
A second possibility is that prediction is a high level
cognitive and/or voluntary process. This latter hypothesis
is supported by new evidence from functional magnetic
resonance imaging (fMRI) studies (Munozet al., 1999).
Munoz et al. (1999) found that areas 8 and 9 of Brodman
in the superior frontal and prefrontal cortex were activated
solely by the effort to predict vergence responses. These
neural centers are close to those that mediate prediction in
saccades. Based on these preliminary findings, we speculate
that the neural centers involved in saccadic and vergence
prediction are cortically-based and are similar. This
suggests that vergence prediction might be a high-level
cognitive process such as found in saccades (Kowler, 1989).

Conclusions

We found substantial changes in the timing index in
vergence responses to predictive step stimuli. As shown
previously, prediction significantly reduced the average
delay time and also made it much more variable. We also
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Figure 6. Histograms of anticipatory movements. For all the subjects, the distribution of the anticipatory movement
to non-predictable stimuli is very narrow and centered at zero. The distribution of the anticipatory movement to
predictable stimuli is centered between 0.3 and 0.48 and has a broader range of values.



found that a predictive stimulus commonly gave rise to large
pre-transient drifts in the same direction as the subsequent
response. These “anticipatory movements” were similar to
those found prior to predictive saccades. Finally, prediction
leads to a decrease in dynamics (i.e. reduced acceleration
and deceleration) of the step response as indicated by a
model-based dynamic analysis. This may be due to neuronal
interactions associated with the anticipatory movement and
those of the high-velocity transient.
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