IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002 193

Hardware—Software Partitioning and Pipelined
Scheduling of Transformative Applications

Karam S. ChathavMlember, IEEEand Ranga VemuriSenior Member, IEEE

Abstract—Transformative applications are computation inten- SW-GW Shared b b
sive applications characterized by iterative dataflow behavior. Communication Sy Dyairabes
Typical examples are image processing applications like JPEG, h ‘TL — ;
MPEG, etc. The performance of embedded hardware—software S'H'Lu:al:r'ﬂ Eun-nr.‘r.'ll | | | Appll:n::nn
systems that implement transformative applications can be | Memory WWLP::“ |m:$‘;:;“r

maximized by obtaining a pipelined design. We present a tool
for hardware—software partitioning and pipelined scheduling of
transformative applications. The tool uses iterative partitioning
and pipelined scheduling to obtain optimal partitions that satisfy
the timing and area constraints. The partitioner uses abranchand phe combined with different on-chip coprocessors to obtain
bound approach with a unique objective function that minimizes . s :
the initiation interval of the final design. We present techniques the deswled performance/smcon area ratio. The coprocessors
for generation of good initial solution and search-space limitation COMmMunicate with each other and the processor core through
for the branch and bound algorithm. A candidate partition is an on-chip bus and share access to a single off-chip memory.
evaluated by generating its pipelined schedule. The scheduler usesTakataet alin [2] present the D30V/MPEG multimedia pro-
number of pipeline stages, and memory requirements of the o\ : .
particular design alternative. We evaluate the performance of the to pgrform MPEG-2 video and audio .deCOdmg' 'ke“’ia?"
retiming heuristic by comparing it with an existing technique. [3] d_'SCUSS the SuperEnc MP.EG'Z video en.coder chip that
The effectiveness of the entire tool is demonstrated by a case studyconsists of a reduced instruction set computing (RISC) pro-
of the JPEG image compression algorithm. We also evaluate the cessor, a single instruction multiple date (SIMD) processor and
run time and design quality of the tool by experimentation with jedicated HW. HW—SW codesign transforms an application
synthetic graphs. _ o specification into communicating HW and SW components
Index Terms—mage processing, partitioning, performance of an embedded system that exhibit the desired behavior and
tradeoffs, pipelining, scheduling, system-level design. satisfy the performance constraints. HW—SW codesign consists
of two basic design stages: HW—-SW partitioning partitions the
|. INTRODUCTION application specification into HW and SW components and
. . . scheduling specifies the execution order of these components.
R.A.NSFQRMATIVE apphcatmns are f"”'t_'meo“a aNBrhe authors in [3] also present the pipelined schedule for
digital signal processing (DSP) applications. Typic

examples are JPEG and MPEG (1 and 2) image c MPEG-2 encoding on their architecture. This paper presents

Og]- -
: : . . ’ tool for HW-SW partitioning and pipelined scheduling of
pression-decompression algorithms, Viterbi decoding e ansformative applifations 9 PIP 9

Embedded system implementations of transformative appli-
cations require them to be cost effective, hl_gh performancg, ~paracteristics of the Application Domain

and flexible. As a result most of them are implemented by i o i

heterogeneous architectures that utilize off the shelf softwarelransformative applications are dominated by dataflow be-
(SW) processor cores and custom hardware (HW) coproc@é—"'or with few control-flow constructs. Further, they can be
sors. The SW processors reduce the cost of the system sagily broken down into distinct tasks at a coarse level of granu-
provide flexibility. The custom HW coprocessors implemer{_?rity- The task are computation intensive and in_terr?ally strongly
the computation intensive components of the appncatidﬂterconnected with sparse external communication. The pre-
and enhance the performance of the system. For examﬁ/lié’us observations imply that transformative applications can
Eijndhovenet al. in [1] discuss the Philips TM1000 serjesbe specified by a data dependence based task-graph format. Fi-

very large instruction word (VLIW) processor core that migh@ally, these app]lcatlons are |tgrat|ve in nature. They execute re-
peatedly over different sets of input data. Hence, they naturally
" ot ved Auqust 15. 1999: revised March 10. 2000. Thi I(End themselves to pipelined implementations. Similar observa-
anuscript receive ugus , , revise arc , . IS WO .

was supported in part by the ARPA RASSP Program and USAF, Wright Laﬁ?ns were also made by De Mantal.in [4].

under contracts F33615-93-C-1316 and F33615-97-C-1043.
K. S. Chatha was with the Department of Electrical and Computer Eng8, |mplementation Architecture

neering, University of Cincinnati, OH 45221-0030 USA. He is now with the) o . .

Department of Computer Science and Engineering, Arizona State University, We implement the applications as a codesign architecture that

Tempe, AZ 85287-5406 USA (email: karam.chatha@asu.edu). consists of a single SW processor, a HW coprocessor, a shared
R. Vemuri is with the Department of Electrical and Computer Engineerin

University of Cincinnati, OH 45221-0030 USA(e-maiI:ranga.vemuri@uc.edu%hemory for HW—SW. communicatign and SW local memorY
Publisher Item Identifier S 1063-8210(02)00794-1. for SW-SW communication (see Fig. 1). The SW processor is

Fig. 1. Implementation architecture.

1063-8210/02$17.00 © 2002 IEEE

194 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

Sequential Implementation
40 da‘ta items

265 : 375 415
10 data .

SW = 225ns

HW = 200ns
10 data, o 10 data
o ~. SW = 200ns
AW - 150ms e W =10008 rared [
= 150ns; / are. i SN
- Qdata ol Memory Rd W}’ Sl
10 data S

SW = 100ns swW
HW = 400ns

HW

10 data

SW
Memory

M

10i 235 258 275! 385 445 545 555

Memory Write Time = 1 ns per vatiable
Memory Read Time = 1 ns per variable

Pipelined Implementation

150 i

------- <10 data

B HW
Stage2

I sharc
. @ Stage 1 Memory

Stage 0 "

AAAAAA o 20 data

HW -
-wom---ox10 data

sw
Memory

:
250 | 350 360

10 20 230
@ Steady State 240 :
70 data items

Fig. 2. Sequential versus pipelined design.

a uniprocessing system. The HW coprocessor supports cond@ir-Motivating Example
rent execution of multiple HW tasks. The shared. memory andconsider the example in Fig. 2, the task graph is shown on
SW local memory are exclusive read and exclusive write. H\q |eft-hand side along with run times of the tasks and data

and SW tasks communicate with each other through the shajthq ansferred across each dependence. There exists an area

memory. constraint on the HW coprocessor such that only two (any two)
A SW (HW) task, when it begins execution, first readsasks can be implemented in HW. The objective is to partition
data from the shared memory and then from its local memoaynd schedule the tasks such that throughput is maximized. We
(on-chip registers). After computation, the SW (HW) task firshissume that the source and sink nodes write to and read from
writes to the SW local memory (on-chip registers) and then the shared memory, respectively. The time required to read or
the shared memory. The SW processor is considered busy framite one data item from shared memory or SW local memory
the start of the read operation of the executing SW task til assumed to be 1 ns. As mentioned earlier the communication
the end of the write operation of the same task. A task durimgemory required by the codesign implementation is estimated
its execution occupies memory required by the data iteras the maximum memory occupied during one complete execu-
belonging to both its read set and write set. The communicatitan of the task graph.
memory required by the codesign implementation is estimatedPartitioning for sequential implementation is significantly
as the maximum memory occupied during one completifferent from partitioning for pipelined implementation. When
execution of the task graph. The memory calculation includeartitioning for sequential implementation, the objective is
shared memory, SW local memory and on-chip registers of ttee minimize the time for one complete execution of the task
HW coprocessor. graph. In the example, tasks B and C have been mapped to the
The embedded system designer specifies the communicatitWv coprocessor. Task A that is assigned to SW initially reads
times per data item for interprocessor (SW—HW) communictie input data from the shared memory. On completion, task A
tion and intraprocessor (SW-SW, HW-HW) communicationvrites its output to shared memory. Tasks B and C then read
We denote the time to read and write a data item to the shathkdir inputs from the shared memory, execute concurrently and
memory (SW local memory) asrd(swrd) andshwr(swwr), write their outputs back to the shared memory. Finally, task D
respectively. Two HW tasks communicate through on-chip regeads its data from the shared memory and produces the output
isters and there communication time is included in their task exf the task graph. The schedule takes 555 ns for completion.
ecution times. The designer also specifies the communicatibhe communication memory required by the schedule is
area overheads...,,, due to the interface logic required by aestimated to be 40-data items, as shown by the vertical dashed
HW task to communicate with the shared memory. Since thine. At the time instance indicated by the dashed line, tasks
shared memory is exclusive read-exclusive write, the HW tasBsand C require memory for their read and write data items,
can share the communication resource. respectively.

CHATHA AND VEMURI: HW-SW PARTITIONING AND PIPELINED SCHEDULING OF TRANSFORMATIVE APPLICATIONS 195

The pipelined implementation is shown in the lower half dbnging toi+ A(v) iteration of the originaD AG is executed. In
the figure. A pipelined schedule is characterized bynitsation the pipelined design shown in Fig. 2, at the zeroth iteration of the
interval, (1), which is the time difference between the start ateady state, instance of task A belonging to the second iteration
two consecutive iterations of the steady state. For example, tifehe original DAG is executed. Hence\(4) = 2. Similarly,
pipelined schedule in Fig. 2 has &h = 360 ns. Given a parti- A(B) = 1, A(C) = 1, and\(D) = 0. The dependence distance
tioned task graph, there exists a theoretical lower bound on #{e) of an edge: = («,v) implies that the data produced by
I1 of its pipelined schedule called tmeinimum initiation in- taskw in thesth iteration of the steady state is consumed by task
terval (M I1).The objective of the HW—SW partitioner is to map in thei + 6(e) iteration of the steady state. For example, in the
the tasks to HW and SW so thit/! is minimized, subject to pipelined design shown in Fig. 2, the data produced by thisk
the area constraintdle present a HW—-SW patrtitioner that usegteration 0 of the steady state is consumed by fask iteration
a branch and bound approach to obtain optimal HW—-SW parti- Hence$(A, B) = 1. Similarly, (A, C) = 1, (B, D) = 1,
tions. We discuss techniques for generation of good initial soland§(C, D) = 1.
tion and search-space bounding. As the experimental results will
show later, the initial solution is on an average within 6.3% devie. Problem Description
ation of the optimal. As a result, we are able to effectively limit

trihoedsgfatrﬂespace and generate optimal partitions in a shorter(%(z;nstraim) on the HW coprocessor and/or time constraint
' %rconstraim) on the execution of the task graph:

We evaluate a given partition by generating its pipeline -
schedule. We obtain pipelined schedules by retiming and sched—l) g?/\r/tls;)oncgwses;{)ar?k nodes between the HW coprocessor and

uling. Pipelining leads to an increase in the communication " == i
memory requirements of the design. This increase is due to the?) OPtain apipelined schedule for the task execution and task
extra memory required by the pipeline buffers that are used to communication;
communicate between tasks belonging to different iteratiorf$ich that:

The total memory requirement of the pipelined schedule is 70 1) the performance constraints are satisfied;

variables. The horizontal dashed lines from tasks A, B, and 2) the number of pipeline stages in the implementation are
C indicate the extra memory required by the pipeline buffers. minimized;

The objective of the pipelined scheduler is to obtain a schedule3) the increase in memory due to pipeline buffers is mini-
with IT as close as possible té777 with least number of mized.

pipeline stages and least increase in memory requireménts.Since resource constrained scheduling is a nonpolynomial
this paper, we present a novel retiming heuristic that optimiz@gP) complete problem [5], pipelined scheduling is also NP
the initiation interval, number of pipeline stages, and memogpmplete [6]. Pipelined schedules are obtained by decomposing
requirements due to pipeline buffers of a pipelined HW-S\e problem into two subproblems: retiming transformation

Given an application specified as a task graph, area constraint

implementation. followed by scheduling. Retiming under resource constraints
o o has been shown to be NP complete [7].
D. Application Specification The paper is organized as follows: In Section Il we discuss

The application is described as a directed acyclic data depenevious work, Section Il presents the tool, Section IV dis-
dence based task grapp AG) G = (V, E, So, Si), where cusses the experimental results, Section V discusses the possible
V is the set of tasks, the edge 98t represents the data de-extensions and limitations of our work and finally, Section VI
pendence between any two task®s,and St are special nodes concludes the paper.
called the source node and sink node, respectively. We assume
that theD AG is executed iteratively over different sets of input II. PREVIOUS WORK
data. Associated with each tasle V' are four quantitiesv,,,, .
the execution time of the taskon the general purpose SW proA- HW—-SW Codesign
CessOoryLy, the execution of the taskin HW, v, the areaoc- In recent years, a number of approaches for HW-SW
cupied by the task when implemented on the HW coprocessmdesign have been proposed. Most approaches focus on a
and(v) the iteration index of the task.., can be obtained by particular design stage in the codesign process and can be
software profilingay,,, andv,,., Of a task are obtained by usingdifferentiated as such. For example, the Ptolemy [8] system
a high-level synthesis tool. Each edge E has two quantities addresses the problem of specification and cosimulation of HW
associated with iteg.:, the number of data items transferrecatnd SW components. Chinook [9], on the other hand focuses
across a dependence afi@), the dependence distance. Iteraen interface synthesis during HW-SW cosynthesis. Our work
tion index A and dependence distanéare used to retime the addresses the problem of automatic HW—-SW partitioning and
D AG for pipelined scheduling. The source and sink nodes gugelined scheduling of transformative applications. There-
used to model the environment and specify the throughput cdare, the related work discussed in the following paragraphs
straint. The throughput constraint is specified as the numberaafncentrates on approaches that perform automated HW-SW
input data sets consumed per second by the task graph fromgheitioning and scheduling.
source node. Guptaet al. in [10] presented a fine grained HW oriented

The iteration index of a task(v) implies that at theth iter- partitioning algorithm that moved nodes from HW to SW
ation of the steady state of the pipeline, instance of tabk- while the timing constraint was satisfied. In [11], Henkel

196 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

et al. proposed a SW oriented HW-SW partitioner based o SWo HW o SW
simulated annealing. The partitioner initially mapped all the

components to SW and then moved them from SW to HV 10 data 20 data

until the performance constraints were satisfied. Kalavac List Scheduling Retiming and Scheduling 1, 4 vied arrow

et al. in [12] discussed a modified list scheduling algorithn{ A AlcC | AlA|C | indicates the extra
: h —F memory required

that mapped the tasks to HW and SW. The algorithm used i B_|. B -l B for pipelining.

adaptive global criticality local phase (GCLP) heuristic thapriogue 'Steady State Prologue ! Steady State
either minimized the execution time of the design or the area.
Niemannet al. in [13] presented an integer linear programFrig. 3. List scheduling versus iterative retiming and scheduling.
ming formulation for HW—-SW partitioning. Knudsest al. in
[14], presented a dynamic programming based approach foultiprocessors and memory transfers on the bus to meet the
HW-SW partitioning. Elest al. in [15], proposed HW-SW real-time constraints. Task preemption is too expensive both
partitioning algorithms based on simulated annealing and taioutime and space for many high-volume low-cost embedded
search. Our tool differs significantly from these approachesystems [21]. Hence, we use a nonpreemptive static pipelined
All of them used a patrtitioning strategy and an objectivecheduling policy.
function to satisfy the performance constraints for a sequentiaBakshi et al. [22] proposed an architecture synthesis ap-
implementation. As explained earlier (see Fig. 2), partitioningroach for pipelined implementation of HW—SW codesigns.
for sequential implementation is significantly different fromn their approach, they do not consider the communication
partitioning for pipelined implementation. In contrast, our padelays. Their pipelined scheduling approach is based on
titioner uses a unique objective function aimed at maximizingodulo scheduling that was introduced by Retual. [23].
the throughput of the pipelined implementation. Further moktodulo scheduling involves using a list scheduling algorithm
of these approaches [10], [11], [14], and [15] perform HW-SW/ith a modulo resource reservation table whose height is
partitioning and scheduling in isolation, whereas we adapt agual to pipeline initiation interval. Since the list scheduling
integrated iterative approach. algorithm is a greedy algorithm, modulo scheduling based
The approach proposed by Jinhwelral.in [16], minimizes techniques cannot explore the task graph to obtain a pipelined
the latency of the HW-SW implementation by increasingnplementation with lower pipelining memory (or buffers).
the parallelism through pipelining the inner loops of thé the example shown in Fig. 3, the pipelining memory (as
specification. They apply loop pipelining before HW-SWshown by the dotted arrow) is more for the modulo scheduling
partitioning. In contrast, the objective of our technique is tapproach as opposed to our technique. In contrast to the list
maximize the throughput of the specification. Loop pipeliningcheduling based approach, our technique can select which
before HW—-SW partitioning is tedious since the nodes are rdata dependence should contribute to the pipelining memory.
mapped and their delays are unknown. We perform pipelinétgnce, we are able to optimize pipeline stages and memory
scheduling after HW-SW partitioning. requirement of the design. In contrast to [22], we account for
Our methodology and the techniques mentioned in tl§@mmunication overheads due to actual communication and
previous paragraphs partition the specification on to a fixéared memory conflicts during scheduling.
heterogeneous architecture template. Prakashal. [17], o . o .
Daveet al. [18], Dick et al. [19], and Li et al. [20] proposed B. Retiming Transformation and Pipelined Scheduling
approaches for synthesizing a heterogeneous architecture thathe term “Retiming transformation” was introduced by Leis-
satisfies the timing constraints on the specification. Prakdsherson and Saxe [24] when they used it to solve the problem of
al. [17] formulated the problem as a mixed-integer linear-pr@ptimizing the throughput of a synchronous circuit. Leiserson
gramming model and obtained a sequential (nonpipelineel) al. presented polynomial time techniques for clock—period
implementation. Davest al. [18] used a heuristic based taskminimization and area (register) minimization of a logic circuit.
clustering, allocation, and scheduling approach for synthesizi8gce then, retiming transformation has been extensively used
hierarchical heterogeneous architectures. Their technique ias-an optimization technique during logic synthesis [25]-[29].
plements a pipelined design when the period constraint on tBeenoyet al. [30] give a good survey of logic circuit retiming
task graph is smaller than the deadline constraint. The desigtemrhniques and their application to realistic circuits. Retiming
specifies the number of pipeline stages and algorithm th#ansformation has also been applied for optimizing the
performs clustering on the task graph to obtain the desirttoughput of DSP circuits specified as dataflow graphs [31],
number of stages. In our approach, the designer is required3ad]. Retiming at architectural level [33] has been applied to
specify only throughput and (or) area constraint. Our techniqueduce the latency of a constraining path in a design.
optimizes the number of pipeline stages and memory requiredRetiming transformation applied to combinational circuit
for pipelining. However, we partition the specification orpipelining [24] assumes that there is no resource constraint
to a fixed architecture template. Diak al. [19] proposed a on the combinational (or computation) blocks. Retiming
genetic algorithm based architecture synthesis approach ttnahsformation under resource constraints is NP complete [7].
uses a scheduling technique similar to [18]etal.[20] uses a Hence, we use a heuristic-based retiming-transformation to
heuristic based approach for architecture and memory hierarattain the pipelined schedules. Our problem formulation is
(cache) synthesis. They use a preemptive static schedulgigilar to software pipelining [34] in VLIW compiler literature
algorithm that hierarchically allocates and schedules tasks amd functional pipelining [35] in high-level synthesis literature.

CHATHA AND VEMURI: HW-SW PARTITIONING AND PIPELINED SCHEDULING OF TRANSFORMATIVE APPLICATIONS 197

In the following paragraphs, we discuss existing softwampproaches, our technique optimizes both the throughput and
and functional pipelining approaches. Although techniquesemory requirements of the pipelined design under resource
that belong to these domains may be extended to HW-SANd/or time constraints.
codesign, there are certain limitations. Our technique optimizesOur graph representation and problem formulation is similar
for system level coarse grained asynchronous pipeline desitgthe paradigm of synchronous data-flow machines ofdted.
whereas software and functional pipelining techniques coj#9]. They assume a multiprocessor environment where each
centrate on fine grained synchronous pipelined designs. In @@P processor can execute a single task at a given-time instance.
application, domain communication times and shared memakithough, there might be heterogeneity in terms of DSP proces-
access conflicts need to be considered. These overheadssars, the processing elements display homogeneity in terms of
ignored in fine-grained pipelining. HW-SW codesign introtask execution. This is not true in our application domain. The
duces heterogeneity in terms of processing elements that ¢ coprocessor can execute multiple tasks concurrently. Fur-
execute either multiple (HW) or single (SW) task. This kind other, the concept of area constraint on the HW coprocessor does
heterogeneity is not encountered in either software pipelinimgt apply to their problem formulation.
or functional pipelining. To the best of our knowledge, [36]
is the only other technique that optimizes both the initiation
interval and pipeline registers of the final design. DSP codes||| HW—_SW PARTITIONING AND PIPELINED SCHEDULING
like fast Fourier transform (FFT), fifth-order elliptic filter, and
fourth-order lattice filter, etc., are implemented as fine-grained In this section, we present our technique for HW-SW
pipelines, whereas transformative applications that are mygértitioning and pipelined scheduling of transformative appli-
larger are implemented as coarse-grained pipelines. Finattgtions. We give an overview of the technique in Section Il1-A;
fine-grained techniques typically concentrate on optimizingection 1lI-B discusses the HW—-SW partitioner; Section IlI-C
dependence loops that have interiteration (or loop carriegdiscusses the pipelined scheduler, and finally, Section III-D
dependences. Such dependences are not common in trangfi@gsents our retiming heuristic.
mative applications. In Section V we discuss extensions to our
work for handling dependence loops. _ . A. Overview

Rauet al.[23] proposed the modulo scheduling technique for
VLIW software pipelining. Larret al.[34] discussed modifica- ~We use iterative HW-SW partitioning and pipelined sched-
tions to modulo scheduling for handling conditional branchéging to obtain a pipelined implementation that satisfies the per-
inside the loops. Mooret al. [37] proposed a technique thatformance constraints. The objective of the HW-SW partitioner
repeatedly applied semantic preserving transformations to dto obtain a mapping, such that thel I of the partitioned task
tain a pipelined loop. Aikert al. [38] proposed a technique graph satisfies the time constraint, and the total area of the tasks
for software pipelining based on unrolling and scheduling tieapped to HW satisfies the area constraint. The area of the HW
loop. Similar to our technique, Wargg al. [39] and Calland coprocessor is estimated by adding the areas of all tasks mapped
et al.[40] obtain pipelined software loops by decomposing tH@ HW. Before we present an overview of the tool we explain the
problem into two subproblems. In contrast to our approachfocedure to calculaté/ /7.
these techniques do not optimize the additional registers rel) Minimum Initiation Interval {4/ 11): Given a partitioned
quired for pipelining. To the best of our knowledge, only Govinégsk graph, it is possible to establish a lower bound on the ini-
et al.[36] have proposed a technique that minimizes the numidétion interval of the pipelined design. The initiation interval
of pipeline registers of a software pipeline. They proposed &h1) as stated earlier is the time difference between the start
integer linear programming (ILP) formulation that is limited byof two successive iterations of the steady state. The theoret-
large solution times. ical lower bound on théI is called the minimum initiation in-

Parket al. [41] proposed feasible scheduling algorithm foterval (M I1). Since we consider a directed acyclic task graph,
pipeline datapath synthesis from behavioral specifications sube A/ 11 of the pipelined design is determined by the task ex-
ject to either resource or time constraints. Pastial.[42] pro- €cution times and the number of resources (HW or SW) in the
posed extensions to their force directed scheduling algorithm feiplementation architecture.
functional pipelining. Leeet al. [43] proposed modulo sched- The execution time for a taskin a task graph with all the
uling heuristics for functional pipelining under timing and retasks mapped to either HW or SW is given by
source constraints. Cathedral 1l [44], rotation scheduling [45],
and MARS (I and Il) synthesis system [46], and [47] generate ~ _ {Urdtime + Vsw + Vrtime, I Vmap = SW
pipelined datapaths for DSP applications. Cathedral Il applies ™ | vrdtime + Vuw + Vwrtime, If Vmap = HW
iterative loop folding (similar to retiming) under timing con-
straints. Rotation scheduling utilizes implicit retiming to obwhere vy, denotes resource (HW or SW) to which task
tain pipelined schedules under resource constraints. The MARShas been mapped;diime and vy,iime are the task read
(I-11) system accepts time constraints and utilizes heuristics wiéind write times, respectively. They are definedvagime =
enhanced modulo scheduling to optimize the interiteration dEv€=(u7,v)€ g Crdtime AN Vyriime = ng(vyw)e £ Cwrtimes
pendences. Sanchez [48] proposed a decomposition based tettere e, gtime(ewrtime) are the read (write) associated with a
nigue for functional pipelining that applies the retiming transddata dependence. The read (write) time of task is given by the
formation for optimizing the throughput. In contrast to theseum of the read (write) times of all its predecessor (successor)

198 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

" Codesign | ~-._, iThroughputand; whoseM I and area are less than the specified constraints.
\Architectrs {DAG) 1Area Constraints C :
;]] Although, M 1T takes SW resource conflicts into account, it

i : does not compensate for extra communication delays that might
+ PARTITIONING AND PIPELINED SCHEDULING ! . ..
| OF HW-SW CODESIGNS. | occur due to shared memory access conflicts. Therefore, it is
' : necessary to evaluate the performance of the partition by gener-
ating the pipelined schedule.
The tool first tries to find a schedule of thBAG with
s MII as the time constraint. If it is unsuccessful, it selects a

dependence to be retimed. Retiming transformation reduces

Set 1 = Mil
hedule DAG
in Il Time

the number of dependencies that constrain the scheduler and
results in an equivalent task graph with tasks belonging to
: different iterations. The tool then schedules the new task graph
ves to obtain the steady state of the pipelined implementation. The

: inner loop of scheduling and retiming continues till a successful
schedule is obtained or all the dependencies have been retimed.
In the latter case, we increase the initiation intetaland try
scheduling again. We set the increment factor to the maximum
of the following two values: one-time unit or 1% af11. We
exit the outer pipelined scheduling loop when thebecomes
greater than the time constraint. The design flow then returns
back to the partitioner to generate a new mapping. The outer
loop of partitioning and pipelined scheduling continues till
a successful schedule is obtained or the partitioner cannot
generate a constraint satisfying mapping.

NO
Select a dependenc:
to Retime

Lo s sic.,.u. D;;}g;;“ﬁ;.;'s.;‘t;‘; e _ Let the s_elS‘ = {s1, 82, 83,..., 5, denote the set of_ all pos-
with given constraints sible mappings of the tasks to HW and SW. For a particular map-
pings; € S, letl(s;) denote the achieved initiation interval of
Fig. 4. Pipelined HW—SW implementation. the corresponding pipelined schedule andiét;) denote the

total HW area of the mapping. Letoustraint aNAdXconstraint d€-
dependencies. The read and write time of a dependerigde the time and area constraints specified by the user. We have
e = (u,v) is defined as follows: the following four cases:

1) Both area and time constraint specifidd this case, the
tool searches for a mapping., that satisfies the per-
formance constraints, that i8{ (ssom) < Teonstraint @nd
(Ssoln) < Qoonstraint- It returns the first solution that

Cdata * SWWE, Umap = Umap = SW satisfies the constraints.
Cwrtime = § 05 Umap = Vmap = HW 2) Only area constraintln this case the tool searches for an
Cdata - Shwr, Otherwise. optimal solution whose steady state executes in minimum
time subject to the area constraint. L&tdenote the set
of mappings whose area is less than the area constraint.

Cdata * SWId, Umap = Vmap = SW
Crdtime = 0, Umap = Vmap = HW
Cdata - shrd, otherwise,

We assume that the read time and write time of a dependence are
zero when the predecessor and successor tasks have both been .)
mapped to HW. In this case, the communication is assumed to Then the tool searches for a mappisg,: € A such that:
. . II(SO,t) < II(&),V& e A.
take place through on-chip registers of the HW coprocessor and3) Onl 1time constraintin this case, the tool searches for a
the associated communication overhead is included in the HW Y o) ' .
run times of the tasks. solution that satisfies the time constraint _but has the least
The SW processor is a uniprocessing system. As a result, the HVIV arezri]. Letér d_enote the S?t of rr?apprl]ngs V\Ilhosé h
minimum time required to execute all the tasks mapped to SW |fs ess t an tl € tlmg constraint. T ﬁnht ? tool searches
is given by the sum of execution times of SW tasks. This sum [oF N optimal mappingsp: € 7' such t ati(sopt) <
denotes théZ 1 due to the SW task$/ IIsyw . The HW copro- a(si),Vsi € T _ _
cessor supports concurrent execution of tasks. Hence, the min-) No area_and time Constralrm_thls case,_the tool searches
imum time required to execute the HW tasks is given by the the .deS|gn space for an optimal solutiaf, € S such
maximum execution time of all tasks mapped to HW. This quan- 1t H(sope) < 1(5i),Ysi € 5.
tity denotes the\/ I'7 due to HW tasksM I Iyw. The M 11 for In the worst case, our approach will exhaustively map the tasks
the partitioned task graph is then given by maximumbflsyw, to HW and SW, and execute with exponential time. Due to a
andM I Iy, thatisMII = max(MIIsw, M1Invy). good initial solution and tight search space bounding, we are
2) Pipelined HW-SW ImplementatiofThe tool for parti- able to obtain optimal partitions for graphs having up to 30
tioning and pipelined scheduling of HW-SW systems is showrodes in a reasonable amount of time (30 mins). Since the ap-
in Fig. 4. The partitioner tries to obtain a HW-SW mappinglication is modeled at a coarse level of granularity, 30 tasks

CHATHA AND VEMURI: HW-SW PARTITIONING AND PIPELINED SCHEDULING OF TRANSFORMATIVE APPLICATIONS 199

are enough to model many applications. We provide a time 0tif,;,,(Smax) iS the minimum (maximum) speed ratio over all
option for large graphs. The tool then returns the best solutitasks.
that it obtains before the time out. As the experimental results b) Area factor of a task:Let A,,,,, denote the summation
will show later, the initial solution is on an average within 6.3%f areas of all the tasks € V. Let Apax(Amin) denote the
deviation from the optimal. This implies that the partitions obmaximum (minimum) area over all tasks. We define Hnea
tained by the time out option will also have good performancatio of a taskw,, as follows:
characteristics.

Uar - {

A —, :
. . . i max 'arcay |f v < A .
In the explanation given above (and in rest of the paper), we Amax —Amin, area = < constramt

assume the optimal solution to be the one with respect to the
partitioner. It is different from the global optimum that is withTh€ arearatio ranges from O to 1. The arearatio of task is closer
respect to both the partitioner and pipelined scheduler. The &0 (1) if its area is nearer tdy,ax(Amin). We use the area ratio
perimental results will show that although we use a heurisfi¢ define thearea factorof a taskv as follows:

scheduler the solution obtained by our tool is on an average
within 4.2% deviation of the global optimum.

3 if Varea -~ Aconstraint-

_ ’ ’
Varea_factor = (Uar X (1 - Aconstraint)) + Aconstraint.

Where
B. HW-SW Partitioner Aconstraint
min <1, 7> .

/ —
The codesign partitioner uses a branch and bound approach constramt Asum
with backtracl_qng to explore the des!gn space. The "?‘lgor'thﬁe area factor scales the area ratio to range from
traverses a binary search tree that includes the entire design

i constraint/Asum) 10 1. In case of tight area constraint
space. At each level of the search tree, the algorithm sele onctrmnt < Awuy) the area factor ranges from a small value

an unmapped task and decides the mapping of the task. c% In case of a loose area constraiftftram: ~ Awnm — 8

branch and boupq gpproac;h IS charactelrlzed by the strategy NIy q/ariation in area factor is small. The objective is to be able
to generate the initial solution, the technique used to selectat istinguish between tasks in terms of their respective area

le.mqt ?ﬁc'de thi mappmglg Otfht.he tast!<, and th(a_ll'tzc;hnlquesilutﬁe éBending upon the area constraint. When the area constraint is
Imitthe search space. n this section, we will discuss a eYQ‘/Sry tight, we see a larger difference in area factors of two tasks

strategies. .
. " . - as opposed to the case when the area constraint is very loose.
1) Generation of Initial Solution:The HW-SW patrtitioner c) Suitability of a task: The suitability of a tasks,. to

tries to minimize theM I of the solution subject to the area assigned to HW is given by the product of its speed up and
constraints. Sincé{ I Isyy is given by the sum of the SW tasks,area factor. that IS — o % v The influ-
itis the dominant quantity in determining théZI. TheM IT of ; suit — “speedup ™ Farea_lactor:

ence of the speed up and area factor of the task on its suit-

a partitioned design can be minimized by mapping fewertasksatgé"ty depends on the area constraint. In the case of a tight

SW. However, this would lead to an increase in the HW area a) a constraint, the suitability of a task is influenced by both

perhaps a violation of the area constraint. The partitioner tl’lﬁg area factor and speed up. When the area constraint is not

to balance these two conflicting objectives by initially m_app?ng ht, the area factors of the tasks are close to each other. As
the tasks to HW and SW'such that the sum of the execution t eqPesult when we distinguish two tasks based on their suitabili-

of tasks mapped to HW and SW is balanced. This ensures t gg

é\;[n L aI"SW is not too large and the area of the coprocessor is al\?&lues than their area factors. We scale the suitabilities of tasks

The initial solution maps the tasks based on their indiVidung_O to 1 and define sitability factac; of a task as follows:

.. e . — it — Stmin/St — Stmin), WhereSt,,in (St is
characteristics and user specified area constraint. The mapqv g m|(r11}|srlrl1t1 m (n;g;i{nu;%aixsuitat;illirtl))/ over all t;gl;(se I$X3/Ve

ofa f[ask Is influenced by the followmg.three p_ropertles Di il use suitability factor as the probability of the task to be as-
run time on the SW processor versus its run time on the H gned to HW

coprocessor; 2) its area in the HW coprocessor; and 3) its est d) Communication ratio of a taskWe estimate the ini-

”?ate_d co_mmgmcaﬂon time in SWversus its e_st|mated COMML| communication times of the tasks based on their suitability
nication time in HW. We capture these properties by calculati Sctor. The initial read time and write time of a taskvhen it is
the speed up of the task, area factor of the task, suitability of t eapped to SW is calculated as follows:

task, and communication ratio of the task as explained below.

our decision is influenced more by their individual speed up

a) Speed up of a taskiVe Define thespeed ratiof atask vinii_sw_rdtime = Z Cdata
vy as follows: Ve=(u,v)CE
S . -((1 — ugg) - swrd + ugr - shrd)
- %a if (USW - th) z 0
st ’Us“;;;\"l:'hw’ if (Vaw — Vi) < 0. and
. . . Vinit_SW_wrtime = Cdat
The speed ratio varies between and1. Itis greater (smaller) "~ ¢ 2 ata

)) Ve=(v,w)EFR
than zero for a task whose run time on the SW processor is ()

greater than (less than) its run time on the HW coprocessor. We
scale the speed ratio from 0 to 1 and definedpeed upfa Since we assume that the communication time when two HW
taskv as followS:vspeedup = ¥sr — Smin/Smax — Smin Where tasks communicate through the on-chip registers is zero, the ini-

-((1 — wgr) - SWWr + wgg - shwr).

200 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

tial read time and write time when tasks mapped to HW are Algorithm Initial Solution

given by Input : DAG(V, E)
Output : level[] and binding[] arrays
Vinit_HW _rdtime = } Cdata begin
VE=(u,v)eE YveVv calculate(final_suit(v))
((]_ — Usf) - shrd suit_arrayf] = tasks sorted in descending order of their final_suit.
size = |V|,0hy = 050 =1 = k=0,7 = size — 1
and . ,
while (k < size)
Vinit_bw_wrtime = } Edata while (k < size AND oy S 0w AND
VE=(v,w)EE Qhw + sutt_arraylilarca < dconstraint)
((1 _ st) . shwr) task = suit_arrayfi]
task.selectfk] = task
The communication ratio of a taskis then given by init_mapfk] = hw

update_times(ohy, 05w, task)

k=k+1,i=1+1

Vinit_sw_rdtime T Vinit_sw_wrtime

UCOIHIH _ratio —

Vinit_hw_rdtime T Vinit_bw_wrtime

The communication ratio of a task is greater (less) than one
the estimated communication time with task in SW is great
(less) than the estimated communication time with task in H\
e) Final Suitability of a Task:The suitability of a task as
calculated above does not reflect the communication overhee
We modify the suitability of the task by multiplying it by the
communication ratio to obtain the final suitability as follows

endwhile
while ((k < size AND o4, < Thw) OR
(k < size AND apy +suit_array(ilarea > Qconstraint)
task = suit_arrayfj]
task_select{k] = task
init_maplk] = sw
update_times(ohw, 0sw, task)
k=k-+1,j=35-1

Vfinal_suit = Vsuit X Vcomm_ratio- endwhile

f) Initial Solution: After we have obtained the final suit-
ability of each task we sort the tasks in the descending orc, 4
of their suitabilities. Then the initial solution of the branch and
bound algorithm is obtained by choosing one task alternativetig- 5. Algorithm for initial solution.
from the front and back of the sorted list and mapping them to
HW and SW, respectively. A task near the front (back) of the The algorithm to generate the initial solution is shown in
sorted list has a higher (lower) suitability and it is bound to HWig. 5. The outer “while” loop continues until all the tasks have
(SW). During the generation of the initial solution we try to balbeen mapped. The two inner “while” loops try to balangg
ance the following two quantitie®i,, ~ o, Whereoy,, and andog, subject to the area constraint. The artayk_select[]
0. are the running sums of estimated execution times of taskeres the task to be mapped at leednd the initial mapping
bound to HW and SW resources, respectively. We try to baif a task is stored in arrayit_mapf].
ance to these two quantities subject to the area constraint on thd) Selecting a Task and Deciding its Mappinghe search
HW coprocessor. We maintain,,, that gives the running sum procedure for the branch and bound algorithm resembles a bi-
of the areas of the task mapped To HW. We compagewith nary tree (see Fig. 6). At a leve(0 < k < |V]) in the search
Ceonstraint. 1O €NSUre that the area constraint is satisfied. If tigee we make a decision about the mapping of a particular task
user does not specify an area constraint we assume the vapecified by the arrayask select[k]. This array is used during
of ceonstraint 10 D€ @ very large number. As explained earlighe entire algorithm to select the task to be mapped. The ini-
we try to balancen,,, andos,, with an aim to achieve the con-tial mapping of the task at the levél is given by the array
flicting goals of minimizingA/IT and the area associated withinit_map[£]. During the search process we maintain the vari-
HW tasks. ablesoy,, andoy,,. After we have selected the task from the
During the generation of the initial solution when a tasis task_select[] array, the mapping of the task is done with an ob-
mapped to a resource, it is possible that some of the neighborjégtive of balancingr,,, ando.,, .
tasks ofv have not yet been mapped. In such a case, we estimat&orting the tasks according to their suitabilities and then map-
the read and write times of the task as the minimum value pg#ng them in the above fashion to generate the solution has two
sible. Consider a dependenee= (u,v) wherew is unmapped important effects. First the initial mapping is a fairly good so-
andw is the task to be mapped. Then the minimum read timellgion and it helps in limiting the search space of the algorithm.
given by When the branch and bound algorithm begins its search (see
.)) Fig. 6), it first exhaustively maps the tasks that are at the higher
Crminyugime = {gdata +min(swrd, shrd) Zmal’ i a\o/v levels of the search tree. In comparison to tasks at lower levels
map (tasks t1, t5), the tasks at higher level (task t3) are not inclined
The minimum write time is similarly defined. We use minimurtoward either HW or SW implementation. Hence, the second
communication times to estimate the execution time of the tasiportant effect is that the algorithm tries to obtain a solution
At a later stage, when the neighboring task has been mappedoyeeeping the mapping of tasks that are strongly inclined to-
update the communication times to their correct values. Thasard either HW or SW implementation fixed and changing the
changes are also reflecteddi,, andog,,. mapping of tasks that are not inclined toward either implementa-

endwhile

CHATHA AND VEMURI: HW-SW PARTITIONING AND PIPELINED SCHEDULING OF TRANSFORMATIVE APPLICATIONS 201

- ey
Bimary Search Troe |: i :| [cwel €1
= I }%
Sorted Sultaballty Ligt : 11 > 2 >3 5> #© 215 - 7 -"" p—
Leviel array fuil, 5,02 14,13] [_ 1A ::I i { 5] Level |
Binding armay = | hw, sw, hw, =w, hw] e e
SEafs R i
—_—
F---o= | [nmixl Sohition [K] [b] : Level 2
R d 4 ¥
- o Lkl Salution
Jeeeeene | Search Prooess { ﬂ*fr_i-l;.’w
(o) Level 3
! e
. - - asveh Bhcaa
P e Search Process
E I: t :I "-I[&)] 5, Lavel 4
A i erhwaa

-
-

Lt Selutivn

Fig. 6. Initial solution and search process.

tion. Such a search strategy coupled with a good initial solutieve proceed to the leveK + 1) we check if the following two
leads to faster execution times of the algorithm. conditions are satisfied:

3) Techniques for Limiting the Search Spadafe first ex-
plain the terms that are used in the discussion. At any tlrrllrémx(as“’ + Yexeesws fitow) < LI (Smaim) (1)
during the search process,, denotes the best solution found ~ (Fsw + Vexec_sw < Ominsw) OR (finw < ftmin 1) (2)

so far. Initially syin = Sinic- Ata particular leveK in the segrch Whereve,«. s is the estimated SW execution time of the task. If
tree we map the task specified by thek select[] array. DUring - he two conditions are not satisfied we backtrack and change the

the search process we maintain four variallgs, ymw, ouw previous decision. We can similarly define two more conditions
ando.y. At a particular leveK in the search tree. when the task is mapped to HW

* ay,, Qives the estimated area of all tasks mapped to HWax(max (i1, Vexee_tow)» Tsw) < L (Smin) 3
from levels 0 to K — 1);

* 1w gives the maximum estimated execution time of all .)])
tasks mapped to HW from levels 0 t& (— 1); Wherevexec_hw IS the estimated HW execution time of the task.

« onw gives the sum of estimated execution times of all taskd the presence of an area constraint we use the following con-
mapped to HW from levels 0 ta{ — 1); dition along with the (1),(2),(3), and (4) to limit the search:

* g4y gives the sum of estimated execution times of all tasks SUN Oy s Varen) < Coonstraint - (5)
mapped to SW from levels O td(— 1).

(Inax(uhwv Uexec_hw) S Hmin _hw) OR(USVV S Tmin _sw) (4)

In the case that only a time constraint is specified we use the
Let us assume that we are at letelwe have mapped the taskfollowing three conditions to limit the search process:
at levelK to both HW and SW and we are about to backtrack.

: . Sum ayy , v < Sm; 6

We can then associate two terpg;, 1w ando i, 1w With the MM Varea) St(Smmin) ®)
task at leveK defined as follows: mMax(Csw + Vexec_sw, Hliw) <Tconstraint (7)
InaX(InaX(//LhW7 Uexec_hw)y O—sw) S’rconstraint - (8)

* umin Lw gives the maximum of the exact HW execution)) -
time of all tasks mapped to HW from levels 0 t& (— 1) When both area and time constraints are specified we use con-

in the solutions i, ditions 5, 7, and 8 to limit the search process.

in the solutions . of the binary search tree.first” is a boolean variable that is

true when we reach a particular level for the first time and false

The exact execution time of a task vexact_exec differs from otherwisebl andb2 specify the mapping (HW or SW) of the
Vexee that we have defined earli@f.,.;_oxcc IS found from the task. Initially, all the four parameters in the call are zero. When
pipelined schedule of,,,;, and it takes the extra communica+ is equal tq V| all the tasks are mapped to HW or SW and we
tion delays due to shared memory access conflicts into accoemaluate the candidate partition. When we traverse the graph for
(Vexact _exec = Vexec)- The initial values ofiin_hw @ndomin s the first time we generate the initial solution according to the
are infinity. init_map|] array. Otherwise, we try to balance the two sums,

Consider the case when no constraints have been specifigd ando,,,. The functionmap() maps a task to HW or SW
and we are trying to obtain a solution with minimumh. Let us and updategy,y, osw, anday,,. The boolean functiosheck()
assume that we are at lew€land map the task to SW. Beforeas the name suggests checks if the conditions are satisfied.

202

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

Algorithm Partition (k,0hw,Csw, Ohw)
begin
if (k = |V|) /* Candidate Partition */
II = pipeline_schedule()

time that satisfies the data dependencies (based on the equation
given above) and resource constraints.

a) Time complexity:The list based scheduling algorithm
operates in a loop. In each iteration of the loop, the algorithm

if (constraint.satisfied(Il, an.)) return(1) schedules one task. In order to schedule the task, the algorithm

traverses the schedule table in a top down manner. The worst
case complexity of the traversaliX|V'|+| E|). Hence, the time
complexity of the list based schedulet®|V|(|V] + |E|).

else return(0) endif
endif
if (init-map[k] = hw OR (NOT(first) AND opy < 0sw))
b1 = hw, b2 = sw /* First map task to HW then SW */
else
b1 = sw, b2 = hw /* First map task to SW then HW */
endif
task = task_select{k]
map(task,b1)
if (check() = TRUE) S = Partition(k+1,0nw,Tsw, Xhw)
if (S = 1) return(1)
map(task,b2)
if (check() = TRUE) S = Partition(k+1,0hw,0sw, Chw)
if (S = 1) return(1)

D. RECOD: Retiming Heuristic

We apply retiming transformation when we cannot schedule
the DAG in the given initiation interval{ I. Retiming transfor-
mation reduces the number of data dependencies that constrain
the scheduler by increasing their dependence distanidew-
ever to produce an equivalent task graph it is also necessary
to increase the iteration indices of the tasks. Two task graphs
DAG = G(V,E) and DDG' = G(V', E’) (obtained after
retiming) are equivalent iffe = (u,v) € E, E’, the following

’Z“‘“‘(o equation holds\(v) — A(u) + 6(¢) = X (v) — X (u) + & (e).
o The retimed task graph consists of tasks belonging to different
Fig. 7. Branch and bound based HW-SW partitioner. iterations of the original loop. Hence, retiming transformation

results in a pipelined task graph. Our Retiming heuristic is
oriented toward HW-SW CODdesigns, therefore we call it
~g) Time Complexity:Since each task can be mapped tRECOD. RECOD optimizes the initiation interval, pipeline
enherf HW or SW the time complexity of the partitioner isyyffers, and number of pipeline stages of a pipelined HW—SW
o). codesign. Before we present our retiming heuristic, we discuss
o) the factors that influence the performance of the pipelined
C. Scheduler for Pipelined HW—-SW Implementation design.
We evaluate the performance of a particular design alternativel) Schedule Constraining Dependencies: dependence
by obtaining a pipelined schedule. The pipelined schedule with= (u,v) with 6(¢) = 0 implies that the data produced by
an initiation intervall I is an assignment of start times to taskghe predecessor task is consumed by the successor task
S(v), such that for all tasks in the graptd < S(v) < I1[48]. in the same iteration of the steady state. Hence, a dependence
For a dependenae= (u, v), the schedule time af andv must with §(e) = 0 constrains the schedule. Such a dependence is
honor the data dependence, that is called aintra-loop dependence (ILD)Ve assume that all the
tasks belonging to one iteration of the steady state complete
their execution before any task belonging to the next iteration
starts its execution. We also assume that the task execution in
HW and on the SW processor is sequential (honpipelined).
The pipeline scheduler takes resource conflicts and commufhen a dependence = (u,v) with §(e¢) > 0 does not
cation delays due to SW processor and shared memory into @anstrain the pipelined schedule since for all valuess @f)
count. We use a list based schedule [50] and retiming transfand S(v) the data dependence is satisfied. Such a dependence
mation in an iterative manner to obtain a pipelined schedule. \ifecalled aloop-carried dependence (LCD).CDs represent
calculate the\/ 11 and try scheduling th® AG for M 11. How- data dependence between tasks belonging to different iterations
ever, due to schedule constraining dependencies we may nobbéhe steady state. The two assumptions stated above ensure
able to schedule th® AG in M1I. If we cannot accomplish that the_.CDs do not constrain the scheduler. Therefore, the
this, we retime theD AG and try again. Retiming transforma-set of schedule constraining dependenciBs, is given by
tion reduces the number of schedule constraining dependence$.= {¢ = (u,v) € E|é(c) = 0}.
We discuss the retiming transformation in the next section. A pathp = {e1,...,e,} in the DAG is called a con-
1) List Based SchedulerThe list based scheduler maintainstraining path, itve € p, ¢ € E®. The length ofp is given
a schedule table with four columns for SW local memory, SWy Length(p) = (Wexec + Z(U,V)EP Uexec)y WHEre wexec is
processor, shared memory, and HW coprocessor. It also mahe execution time of the tail task gf. A critical path CP
tains a ready list of tasks that are ready to be scheduled. Thahe DAG is a constraining patlp, such that for any other
list scheduler selects a task from the ready list based on marnstraining pathy’ C FE, Length(p) > Length(p’). The
imum urgency The urgency of a task is given by..ncy = length of the critical path is called the critical path tind&>1”
Vexeo +maxv(,,,.,w)eE(wurgemy). This is a well known heuristic of the DAG. For a feasible pipelined schedule of theAG
that has been widely use in literature [35]. The start time of thath initiation interval 11, CPT < II. Therefore, retiming
selected task on the mapped resource is based on the earrasisformation should try to reduce the number of schedule

S(w) 4 8(e) x I > S(u) + texec

= S(v) 2 S(u) + texec — 6(e) x II.

CHATHA AND VEMURI: HW-SW PARTITIONING AND PIPELINED SCHEDULING OF TRANSFORMATIVE APPLICATIONS 203

constraining dependencies that belong to a longer constrainingt) Dependence representing the least number of data items
path. transferred A secondary objective of retiming transfor-

2) Communication Memory Estimationi:CDs rep- mation is to minimize the increase in pipeline memory
resent data dependencies between tasks belonging to requirement of theD AG. Increasing the distance of a
different iterations of the steady state. Hence, before an dependence with more data items definitely results in a
iteration of the steady state can begin there is already larger increase in memory requirement. Hence, we select
some memory occupied by theCD data that is given by adependence that represents the transfer fewer data items.

Memrcp = Y .crep 9(€) X cdata- M€Mrcp is the com- We use property 1 to select dependencies to be retimed and
munication memory required by the pipeline buffers. Thgse properties 2, 3, and 4 (in that order) to break ties.
communication memory required during one iteration of the 4) RECOD Step 2: Partitioning to Minimize Increase in
steady state is the maximum amount of memory occupied IMEM,p: In step 2 we select the set of dependencies that
the data items during execution, Mgm.. This memory is give us the least increase in memory required for pipeline
both due to ILDs and LCDs. The communication memoruffers (MEM.p). Given a dependence= (u,v) (selected
requirement of a pipelined design, MemReq is then given y step 1) to be retimed we define the following three sets with
MemReg= max(Mem.cp, Mem.,..). As can be seen by the respect tou:

above discussion Mepa is a lower bound on the memory

requirement of a pipelined schedule. During retiming we P ={w € V|[there is a path fronw to u} U {u}

convert a schedule constraining dependefide)in to aLC D S ={w € V|there is a path from to w}

leading to an increase in communication memory requirement. R=V — {PUS).

Therefore, during retiming we should try to minimize the

memory required for pipeline buffers. Fig. 8 gives an illustration of the three sets. We can retime the
We can minimize the increase in memory requirements duedependence = (u,v) by retiming all dependences belonging
pipelining by using good heuristics to select the dependencedutset clas follows:Vu € P, Mu) = Muw) + 1 andv(u,v) €
be retimed. But this is not enough. In order to produce an equig-« € P,v ¢ P, 8(u,v) = 8(u,v) + 1. Another way to retime
alentD AG other dependencies need to be retimed. The increagendence = (u,v) to retime the dependencies belonging
in memory requirement due to these dependencies should alsgutset c2as follows:Vu € {P U R}, AM(u) = A(u) 4 1 and
be minimized. Hence, RECOD does retiming in two steps. Wu,v) € E,u & S,v € S,6(u,v) = 8(u,v) + 1. However
the first step it heuristically selects a dependence to be retimgds possible that neither cutsdtnor c2 result in a minimum
In a DAG there might exist a number of sets of dependencigscrease in MEM.cp. We could obtain anothautset c3(see
that could be retimed to obtain an equivaldnfiGG. In step 2 Fig. 8) by partitioning the se into /> ands, so that the memory
we select the set of dependencies that on retiming result in {Rerease is minimized. The cost function being minimized is
least increase in shared memory requirement. defined as follows. For a cuf = {c', ¢? ,¢"}, the cutsize
3) RECOD Step 1: Heuristic to Select a Dependence for Rgvst is given by : Cost E 1 edata Wheree{lat is the number
timing Transformation: The priority of a dependence to be reof data items transferred across the dependepctn the cost
timed depends on its following four properties in decreasiffinction the sum gives us the extra memory required by the
order: LCDsafter retiming. During partitioning we ensure that if a task
1) Dependence is aifLD: The primary objective of RECOD w is in partition P(.S) then all its predecessors (successors) are
is to reduce scheduling constraints in thel; and give also in partition”(.S). After partitioning setR in to setsP and
the scheduler greater freedom in scheduling tasks on theve do retiming using the following two equations:
resources. Since onliDs constrain the scheduler the

dependence to be retimed should belaD. Vu € P, A(u) =M (u) +1
2) Dependence whose two tasks are not mapped to SW pro- Ve =(u,v) € E,u€ Pv¢g P,6(u,v)
cessor The main objective of the retiming heuristic is =5(u,v) + 1.

to reduce scheduling constraints in the graph. Increasing
the distance of a dependence between tasks mapped t6) RECOD: Algorithm: The algorithm to do retiming trans-
the SW resource does not necessarily help the schedulermation is shown in Fig. 9. The functidmeuristic_select()
Basically the two SW tasks will be scheduled one aftexelects a dependence to be retimed (see RECOD step 1). The
the other. On the other hand retiming a dependence lenctiorpartition() as the name suggests partitioibetween
tween tasks mapped to HW coprocessor definitely givés and .S (see RECOD step 2). The embeddedloopsapply
more freedom to the scheduler. Similarly, retiming a dehe retiming transformation.
pendence between tasks mapped to heterogeneous pro- a) Time Complexity:The time complexity of the retiming
cessors also gives more freedom to the scheduler. heuristic is determined by the partitioning algorithm used in
3) Dependence whose predecessor task belongs to a longsgod step 2. We use a simulated annealing based algorithm
constraining pathAs discussed in the previous sectiowith a start temperature of 100, final temperature of 0.001 and
the constraining paths limit th&/ of a pipeline schedule. a decrement factor of 0.9. At a particular temperature the algo-
Retiming a dependence whose predecessor task h#gm makesatmogl’| moves. During each move the algorithm
longs to a longer constraining path helps in obtaining explores the immediate neighbors of the selected task. Hence,
pipelined schedule with smalléi. the time complexity of the retiming algorithm @(|V'| + | F|).

204 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

Fig. 8. P, .S, andR sets for dependence (v).

Algorithm RECOD(DAG) of tasks, depths, number of dependences, number of data items
begin transferred across each dependence, HW run times, area and SW
edge(y, vy = heuristic_select(DAG) run times.
if (edge(.,,) = 0) then return(failure) endif
S = {v € V|there is a path from u to v} A. RECOD Versus UNRET
P'={v & Vithere is a path from v to u} U {u} We compare the performance of RECOD with UNRET [48].

R=V - {SuP}
partition(R,P,S)
for each u € P
Au) = A(u) + 1 endif
for all (u,w) € E,w ¢ P,§(u, w) = §{u, w) + 1 endfor

UNRET retimes the head dependence or tail dependence of a
maximum positive pathMPP). MPP is similar to our critical
pathCP. We conducted the experiment with synthetically gen-
erated task graphs. We randomly mapped the tasks to HW and
SW and compared the pipelined schedules generated by the

e"tdfm DAG two heuristics. The results of the study are shown in Table I.
dre urn(DAG) Columns two and three indicate the number of tasks and the

depth of the task graph. Column four gives the minimum initi-
Fig. 9. RECOD: Algorithm. ation interval of the task graph. Columns five to eight and nine
to twelve indicate the achieved initiation interval, number of
pipeline stages, amount of memory required£6r¥D and time
IV. RESULTS required on a SPARC 5 machine by RECOD and UNRET re-
In this section we evaluate our approach to designirgpectively. Columns thirteen to fifteen indicate the percentage
pipelined HW-SW systems. We first evaluate the performanceduction inf I, pipeline stages, and MEM:-p due to RECOD
our retiming heuristic by comparing it with another existingn comparison with UNRET. Column 16 gives the percentage
heuristic. We then evaluate the the run time of the algorithrimcrease in time required for the RECOD solution over UNRET
quality of the initial solution and quality of the final solutionsolution.
generated by our design by conducting experiments withA few interesting characteristics of the retiming heuristic can
synthetically generated task graph. We finally conduct a case observed from the results. The number of pipeline stages
study of the JPEG image compression algorithm and establetd MEM,p for a design generated by RECOD are always
the effectiveness of our approach with realistic task graphs. less than a design generated WMRET. In particular for task
In two of the experimental studies that will be presented graphs with larger depth (rows 6, 8, 10, 12) RECOD gives far
the following subsections we use synthetically generated tadgkver number of pipeline stages then UNRET. Since the task
graphs. We conduct experiments with random task graphs dyiraphs have a larger depth, RECOD step 2 explores a very lim-
to lack of established benchmarks in the codesign area. The tdsH#l portion of the task graph. Hence, the improvement is pre-
graphs were generated randomly. They differed in the numhminantly due to RECOD step 1. In step 1, RECOD selects

CHATHA AND VEMURI: HW-SW PARTITIONING AND PIPELINED SCHEDULING OF TRANSFORMATIVE APPLICATIONS 205

TABLE |
CoMPARISON OFRECODwITH UNRET

DAG MII RECOD UNRET % Decr % Incr
VITD | (ms) [T{ms) [S] Mz | T(s) | Wms) | S | My | T(s) | 1I S [Mp T
T |10 [6 [300 315 | 4] 93 0.4 315 5 | 105 | 03 | 0 | 20 [114 25
2 |10 [9 | 310 328 | 5] 99 [03 328 7 104 [03 | 0 | 28 | 48 0
3 | 15 [7 | 770 784 | 5 | 144 I 784 6 | 140 | 08 | 0 | 16.7 | 33 20
4 |15 [12 [860 880 | 6| 94 | 0.8 898 9 [124 [07 | 2 [333242 | 125
5 | 20 | 7 | 870 903 |5 | 261 [1.9 923 6 | 375 | 1.2 | 2 [16.7 | 30.4 | 36.8
6 | 20 | 14 [1010 | 1038 | 6 | 205 | 1.6 | lo4d | 10| 225 | 11 | 1 40 | 838 312
7 |25 |4 {2630 | 2745 | 4| 894 [27 | 2850 | 4 | 2767 | 15 | 28| 0 | 677 | 444
8 | 25 |18 | 2835 | 2940 | 6 | 783 | 2.4 | 30156 |12] 814 | 13 | 24] 50 | 39 45.8
9 |30 |5 [2440 | 2562 | 4 | 74l | 47 | 2634 | 5 | 1732 | 29 | 27 | 20 | 57.2 | 383
10 [730 |20 | 4230 | 4620 | 7 | 633 | 42 | 4765 | 11 | 684 | 2.6 | 3 | 36 | 74 38.1
11 | 50 | 6 | 5630 | 5905 | 5 [1984 | 7.1 | 5945 | 6 | 7094 | 4.2 | 0.6 | 16.7 | 72 40.8
12 | 50 | 24 | 6410 | 6450 | 9 | 542 | 5.9 | 6530 | 15 | 565 | 3.6 | 1.8 | 40 | 4.1 | 38.98
a dependence that on retiming would give maximum freedc 10000 . . . T
to the scheduler. As a result, we apply retiming transform 1000 |

tion a lesser number of times resulting in fewer-pipeline stage
Fewer iterations of the retiming transformation also result | ¢
lesser amount of pipeline memory required IbDs On the
other hand, for task graphs with smaller depth (rows 5, 7,
11) RECOD gives fewer pipeline memory than UNRET. This i
because the task graphs are very wide and RECOD step 2
explore a wide-search space and give designs that require fe 0.01
pipeline buffers. The initiation interval of the designs generate

by RECOD and UNRET are almost similar. Both the heuristic _
give designs whosél > MII and this is due to communi- _
cation conflicts on the shared memory. RECOD gives slightﬁ}g' 10.
better/ I than UNRET because it produces a design with fewer
pipeline stages and hence less concurrency. As a result, there

ime

100 ¢

10

1k

(in seconds)

Execution T

0.1F

10 15 20 25 30
Task Graphs {(in ascending order of no. of nodes)

Execution time of algorithm.

7 T T T T
fewer conflicts on the shared memory. The drawback of RECC s 8l weightog semrage Goviatton T |
is the increased time required (over 44% more) for solution ge £ & sl |
eration as compared to UNRET. This overhead is essentially ¢ % 3 & cal M
to RECOD step 2. §38 AN]

:g:‘q § G‘z »: \/ J

LYy b

B. Evaluation of Overall Approach 8F 58l |
ab

In this section, we conduct four experiments aimed at ev: 28 : . :]

uating the run time of the tool, establishing the quality of th 10 15 20 25 30
initial solution and evaluating the overall approach. Due to Tagk Graphs (in ascending order of mo. of nodes)
lack of accepted benchmarks, we conduct the experiment with
synthetically generated task graphs. We generated random 7
graphs with eight to thirty nodes in increments of two. At each
node size we generated five task graphs by varying the depjbaphs (see Fig. 11). The weighted average percentage devia-
connectivity, number of data items, transferred across the dien was found to be 6.3%. In the third study we plotted the
pendence and task run times, respectively. We generated a tatahber of solutions generated by the partitioner before it found
of 60 task graphs. the final solution (see Fig. 12). The weighted average number of
We evaluated the run time of the tool by invoking it for each adolutions generated by the partitioner before the final solution
the task graphs and obtaining an optimal solution under no cavas 10.2. Studies two and three demonstrate the superior quality
straints (see Fig. 10). In the figure we have plotted the averagjethe initial solution. Therefore, for large graphs we can use a
execution time for each node size. The maximum-run time tifmeout option for the codesign partitioner and still have a high
the tool was 30 min for a graph with 30 nodes. A low run timédegree of confidence in the quality of the design.
was possible because of the good quality of the initial solution Finally, in the fourth study we compared the solutions ob-
and the search space bounding techniques. In the second sttadiyed by our tool against the minimuid [that was obtained
we analyzed the quality of the initial partition generated by tHey the partitioner during design space exploration (see Fig. 13).
tool. We calculated the percentage deviation in the initiation ifhe minimumAZ11 is a lower bound on the global-optimum
terval of the initial partition from the final partition for all the solution for a particular task graph. The final solution is on an

Percentage deviation of initial solution from final solution.

206 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

18 T T T T /P\, Source
No. of Solutions ——+— R

16 Weighted Avg. No. of Solutiong - 1
ae 14 X [4x4]
'38 12 -
sy = /J,\ @ Pre-processing
. E 10 4 each
@8 8 st 1 %\‘
wmo O
4 o ' B ONOR OOl
=z 2L 4 each

0

o . . - - BOMONOMO N
Task Graphs (in ascending order of number of nodes)

4 each
Fig. 12. Number of solutions explored before final soluton. e\ M
Quantization 4_‘ Table !

5 T T T
Percentage deviation —— [4x4]
o ~ 4.8 weighted average deviation -—-—--- -
&
D gz 1.6k _J Zig-Zag
yy !
388 4. [4x4]
— N
8§38 AN
Aa 4.2 g <
T = RLE and Huffman Fable |
; (Eu (E) 4k B encoding - el
oA
BHd 3.8t - [4x4]
af
3.6
* : : * : Sink /%
10 15 20 25 30 A

Task Graphs (in ascending order of no. of nodes)

Fig. 14. Task graph for JPEG encoding.
Fig. 13. Percentage deviation of final solution from minimiy 1.

L .)) 160 TCorxstrlaint:s ;.’or JPEG Algolrithm —
average within 4.2% of the global optimum. This result vali X , Results for JPEG Algorithm - 7

dates our overall approach. We are able to generate high-per
mance designs because of the superior quality of the retimi
heuristics.

Area

C. Case Study: Pipelined Implementation of JPEG Algorithn g0t

We consider the HW—SW codesign of the JPEG image col 201
pression algorithm. It is a loop oriented application and ther 0 20 100 150 200 aea 300 350 200
fore ideal for pipelined implementation. We specified the a Initiation Interval (ms)
gorithm as aD AG with 12 tasks (see Fig. 14): preprocessing,
eight tasks that perform vector-matrix multiplication, zig-zagig- 15. Design space exploration for the JPEG algorithm.
encoding, quantization, and a task that performs runlength and
Huffman encoding. The eight tasks of vector-matrix multiplical he tool took less than 2 s to generate a feasible solution for
tion together perform the forward discrete cosine transformatiéach of the design constraints. Moreover the pipelined schedules
(FDCT). The only difference with the JPEG standard was thigr all the partitions executed with/ 17, that is, all were op-
our specification operates on aj44] matrix of pixels instead timal-pipelined schedules. This observation justifies the objec-
of a [8 x 8] matrix. The FDCT task was split to expose the pative function of the codesign partitioner. It also indicates that the
allelism present in it. The “C” specification of the tasks requiregipelined scheduler is able to generate high quality schedules.
about 1900 lines of code. The SW times were obtained by pro-
filing the task graph on a 100 MHz pentium based PC. The HW V. DiscussIoN
time and area for each task were obtained for an ASIC imple-|n, this section, we briefly discuss extensions to our work, its
mentation by using a high level synthesis tool. The system bitations, and pipeline hazards.
was assumed to be a PCl bus operating at 33 Mhz with two-cycle
transfer time. We then obtained pipelined codesign implemen#s- Extensions

tions for the algorithm by specifying different constraints on the \we assume that the application specification does not
II and area. The results of the experimentation are in Fig. Mpntain dependence loops. Dependence loops at a coarse level
The results vary from the fastestimplementation (in the top leff granularity typically occur as control loops. For example,
that occupies the maximum area to the slowest all software sige MPEG-2 encoding algorithm might contain a control loop
guential implementation (bottom right). The clock frequency ab adjust the quantization task to compensate for variable
the coprocessor was estimated as the reciprocal of the maximggeoding rate. Dependence loops also limit the attainable
register to register delay over all tasks mapped to HW. The clogki! of a task graph. Thé/II due to a dependence lodp
frequency was determined to be about 20 Mhz for all casés.a data dependence graghDG is given byMIIfOOP =

CHATHA AND VEMURI: HW-SW PARTITIONING AND PIPELINED SCHEDULING OF TRANSFORMATIVE APPLICATIONS 207

(X uct Uexee/ 2o e O(u,v)) [48]. The MII for the task may depend on the input-data set. In such a case, if a task fin-
graph is given byMII = max(MIlep, M1, MII,,,) ishes execution in a shorter time it may cause a hazard if it ex-
where M1liop = max(MIIfOOP),\%Ioopsl € DDG. We ecutes its write operation. We avoid pipeline hazards by strictly
can handle such dependence loops by detecting them &ndorcing the schedule during cosynthesis. The schedule honors
collapsing the loops into single tasks during retiming. Thiall data dependencies and establishes an order on task execution
technique, however, does not optimize the dependence loopang task communication. During cosynthesis, both of these are
redistributing the delays. embedded in the final implementation. Hence, even if the exe-
Our tool considers a single HW design point for every tagiution time of the task varies it does not cause a pipeline hazard
with one HW area and HW runtime. In reality, for each HWsince the communication schedule is not violated.
task it is possible to generate multiple design points that have
varying area and HW run times. Our tool can be easily modified VI. CONCLUSION

to handle multiple HW design points. The modifications to be We presented a tool for HW—SW partitioning and pipelined
made are as TO”OWS' o)) scheduling of transformative applications. The HW-SW
* We modify the suitability calculation (Section 11I-BI) by paritioner used a branch and bound approach with a unique
calculating the suitability for each design point of the taskypiactive function that optimized the initiation interval of the
Fora HW task the initial solution algorithm selects the d&in | design. We discussed techniques for generating the initial
sign point that has the maximum suitability over all desiggg|ytion, selecting a task to be mapped and limiting the search
points of a task. _ i space of the algorithm. We presented results that established
* During the branch and bound search while mapping a tagle quality of the initial solution and effectiveness of the search
to HW we first select the design point with maximum suitgy4ce hounding techniques. We then presented a novel retiming

ability.. o _heuristic that optimized the initiation interval, number of
The conditions for limiting the search space can be appliggheline stages, and pipeline buffers of a pipelined implemen-
without modifications. tation. We compared the performance of our retiming heuristic

The tool assumes a fixed codesign architecture consisting figh an existing heuristic. We then discussed a case study
SW processor and HW'co_processor. Although, this.architectu@a pipelined HW-SW implementation of the JPEG image
has been widely used in literature[10]-{16] it is limited by theompression algorithm. The results of the study demonstrated
number of processors. A multiprocessor architecture with myhe effectiveness of our approach to a realistic example. We
tiple HW and SW processors would be more versatile. We cgncluded the paper with a discussion on possible extensions
easily extend our tool for an architecture that has multiple H our tool, its limitations, and pipeline hazards.
coprocessor and single SW processor. This problem is similar
to multiple HW design points problem described above. In this REFERENCES
case we WOU|d calculate the suitability of the task for different H] 3.7 3. Van Eijndhoven, F. Siistermans, K. Vissers, E. Pol, M. Tromp, P.
design points on each HW coprocessor. The branch and bound” sy, R. Bloks, P. V. D. Wolf, A. Pimentel, and H. Vranken, “Trimedia
algorithm would then map a HW task to the HW coprocessor ~ CPU64 architecture,” ifProc. Int. Conf. Computer Desig©ct. 1999,

i itabili i i i pp. 586-592.
that has the maximum SUItQ.l-)Illt)./ design point. We would like to [2] H. Takata, T. Watanabe, T. Nakajima, T. Takagaki, H. Sato, A. Mohri,
stress that both these modifications would result in an exponen="' A" yamada, T. Kanamoto, Y. Matsuda, S. Iwade, and Y. Horiba, “The

tial increase in the execution time of the algorithm. D30V/MPEG multimedia processor,” IEEE Micro. Piscataway, NJ:
IEEE Press, 1999.
T [3] M. Ikeda, T. Kondo, K. Nitta, K. Suguri, T. Yoshitome, T. Minami, H.
B. Limitations Iwasaki, K. Ochiai, J. Naganuma, M. Endo, Y. Tashiro, H. Watanabe,

i limi ; _ it N. Kobayashi, T. Okubo, T. Ogura, and R. Kasai, “SuperEnc: MPEG-2
The tool is limited by its branch and bound-based patrtitioner. video encoder chip.” INEEE Micro. Piscataway, NJ IEEE Press,

Although, the tool generates solutions for 30 node tasks in rea- 1999
sonable amount of time, it cannot handle larger task graphs. Any4] H. De Man, I. Bolsens, B. Lin, K. V. Rompaey, S. Vercauteren, and D.

At ; ; _Verkest, “Co-design of DSP systems,”tardware/Software Codesign
modification to the algorlthm as described above causes an ex (Proc. the NATO Advanced Study Institute on Hardware/Software Code-

ponential increase in the execution time of the algorithm. Also, sign) G. D. Micheli and M. Sami, Eds. Norwood, MA: Kluwer , 1996.
as mentioned earlier our technique cannot optimize dependencig] K. Melhorn, Graph Algorithms and NP-CompletenessNew York:

I . Future work will involve alleviating th limitations. Springer-Verlag, 1977.
OOphS utl:(e 0 h f olvealle gtb gthese t\ll\/?j tations [6] C. V. Ramamoorthy and H. F. Li, “Some problems in parallel and
The task graph format assumed by the tool does not sup=" piseline processing,” iProc. COMPCON Sept. 1975.

port conditional constructs at top level. An individual task itself [7] B. Fluiter, E. H. L. Aarts, J. H. M. Korst, W. F. J. Verhaegh, and A. V. D.

may contain control-flow constructs inside of it. Most transfor- ~ Werf, “The complexity of generalized retiming problentZEE Trans.
. licati be d ibed i task hf Computer-Aided Desigvol. 15, pp. 1340-1353, Nov. 1996.
mative applications can be described in our task grap OrmaES] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A frame-

and we can obtain pipelined implementations for them. Since = work for simulating and prototyping heterogeneous systerim,”J.
the task graph format does not support control-flow constructs Computer Simulatiorvol. C-36, no. 1, pp. 24-35, Jan. 1987.

S . ST .] P. Chou, R. B. Ortega, and G. Borrielldhe Chinook Hardware/Soft-
the application domain of our tool is limited to transformative ™ | . c0 s/ ihesis SystemPiscataway, NJ: IEEE Press, 1995.

applications. [10] R. K. Gupta and G. D. Micheli, “Hardware—software cosynthesis for
digital systems,'IEEE Design Test Computol. 10, pp. 29—-41, 1993.
AT [11] R.Ernst, J. Henkel, and T. Benner, “Hardware—software cosynthesis for
C. P|peI|ne Hazards microcontrollers,"EEE Design Test Computol. 10, no. 4, pp. 64-75,
Pipeline hazards are of three types: read after write, write after _ 1994. -
. P dwri f d yp. line h d h 212] A. Kalavade and E. A. Lee, “The extended partitioning problem: Hard-
write, and write & t(?r rea [51]. A pipe Ine hazard occurs when ware/software mapping, scheduling and implementation-bin selection,”
data dependence is violated. The runtimes of the different tasks J. Design Automat. Embedded Sysbl. 2, no. 2, pp. 125-163, 1997.

208

(13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]
[21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]
[31]

(32]
(33]

(34]

(35]

(36]

[37]

(38]

[39]

[40]

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

R. Niemann and P. Marwedel, “Hardware/software partitioning using in-[41] N. Park and A. C. Parker, “Sehwa: A software package for synthesis of

teger programming,” ifProc. European Design and Test Conf, ED&TC pipelines from behavioral specification$ZEE Trans. Computer-Aided
1996. Design vol. 7, Mar. 1998.

J. Madsen, J. Grode, P. V. Knudsen, M. E. Petersen, and A. Haxthausef2] P. G. Paulin and J. P. Knight, “Force-directed scheduling for behavioral
“LYCOS: The Lyngby Co-Synthesis Systend.”Design Automat. Em- synthesis of ASIC’s,TEEE Trans. Computer-Aided Desigwol. 8, June
bedded Systvol. 2, no. 2, 1997. 1989.

P. Eles, Z. Peng, K. Kuchinski, and A. Doboli, “System level hard- [43] T.-F. Lee, A. C.-H. Wu, D. D. Gajski, and Y.-L. Lin, “An effective
ware/software partitioning based on simulated annealing and tabu methodology for functional pipelining,” itnt. Conf. Computer-Aided

search,”J. Design Automat. Embedded Systl. 2, pp. 5-32, 1996. Design 1992.
J. Jeon and K. Choi, “Loop pipelining in hardware—software parti- [44] G. Goossens, J. Vandewalle, and H. D. Man, “Loop optimization in reg-
tioning,” in Proc. ASPDAC1998. ister-transfer scheduling of DSP-systems,Piroc. Design Automation

S. Prakash and A. C. Parker, “SOS: Synthesis of application-specific het- Conf., DAG 1989.

erogeneous multiprocessor systendsParallel Distributed Computing ~ [45] L.-F. Chao, A. S. LaPaugh, and E. H.-M. Sha, “Rotation scheduling: A
vol. 16, pp. 338-351, 1992. loop pipelining algorithm,"lEEE Trans. Computer-Aided Desigvol.

B. P. Dave and N. K. Jha, “COHRA: Hardware—software co-synthesis of 16, Mar. 1997.

hierarchical heterogenous distributed embedded systéBEE Trans. [46] C.-Y. Wang and K. K. Parhi, “High-level DSP synthesis using con-

Computer-Aided Desigrvol. 17, Oct. 1998. current transformations, scheduling and allocatiofFEE Trans.

R. P. Dick and N. K. Jha, “MOGAC: A multiobjective genetic algorithm Computer-Aided Desigivol. 14, Mar. 1995.

for hardware—software cosynthesis of distributed embedded systems[47] C.-Y. Wang, Y.-N. Chang, and K. K. Parhi, “Heuristic loop-based sched-
IEEE Trans. Computer-Aided Desigrol. 17, Oct. 1998. uling and allocation for DSP synthesis with heterogeneous functional
Y. Li and W. H. Wolf, “Hardware/software co-synthesis with memory units,” J. VLSI Signal Processingol. 19, pp. 243-256, 1998.
hierarchies,1EEE Trans. Computer-Aided Desigrol. 18, Oct. 1999. [48] F. Sanchez, “Loop Pipelining With Resource And Timing Constraints ,”
F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-Vincentelli, Ph.D., UPC Universitat Politéchnica de Catalunya, 1995.

“Scheduling for embedded real-time system$ZEE Design Test [49] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
Comput, Jan.—Mar. 1998. data flow programs for digital signal processintgEEE Trans. Comput.

S. Bakshi and D. D. Gajski, “Partitioning and pipelining for perfor- vol. C-36, Jan. 1987.

mance-constrained hardware/software systenlSEE Trans. VLS| [50] T.C. Hu, “Parallel sequencing and assembly line proble@pgrations
Syst, vol. 7, Dec. 1999. Res, vol. 9, pp. 841-848, 1961.

B. R. Rauand C. D. Glaeser, “Some scheduling techniques and an easi[§1] K. Hwang,Advanced Computer Architecture: Parallelism, Scalability,
schedulable horizontal architecture for high performance scientific com- Programmability New York: McGraw-Hill, 1993.

puting,” in Proc. 14th Annu. Workshop Microprogrammjr@ct. 1981,

pp. 183-198.

C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitdgt-
rithmica, vol. 6, no. 1, pp. 5-35, 1991.
S. Malik, K. J. Singh, R. K. Brayton, and A. Sangiovanni-Vincentelli,

“Performance optimization of pipelined logic circuits using periphera| , . .
retiming and resynthesisJEEE Trans. Computer-Aided Desigwol. aKaram S. Chatha (M'01) received the B.E. (Hons.) degree in computer tech-

12, May 1993. nology from Bombay University, India, and the M.S. and Ph.D. degrees in com-
N. ’Shenoy and R. Rudell, “Efficient implementation of retiming, Trit. puter science and engineering from the University of Cincinnati, OH, in 1993,
Conf. Computer-Aided Desigh994. 1997, and 2001, respectively.))

S.T. Chakradhar, S. Dey, M. Potkonjak, and S. G. Rothweiler, “Sequen-He is currently an Assistant Professor in the Department of Computer Science
tial circuit delay optimization using global path delays, Design Au- and Engineering at the Arizona State University, Tempe. His research interests

tomation Conf., DAC1993. include computer-aided design of VLSI systems, HW-SW codesign, system-
N. Maheshwari and S. Sapatnekar, “An improved algorithm for mirlevel design embedded systems and reconfigurable computers. _
imum-area retiming,” irDesign Automation Conf., DAQ997. Dr. Chatha received the Best Paper Award at the Field Programmable Logic

V. Sundararajan, S. Sapatnehar, and K. K. Parhi, “MARSH: Min-aregnd Applications Workshop (FPL), in 1999.

retiming with setup and hold constraints,”fmoc. Int. Conf. Computer-

Aided Design1999.

N. Shenoy, “Retiming: Theory and practicéritegration, VLSI J.vol.

22, pp. 1-21, 1997.

S. Huang and J. Rabaey, “Maximizing the throughput of high perfor-

mance DSP applications using behavioral transformation&fan. Eu- . ,) , .
ropean Design Automation Conf., EuroDAar. 1994, pp. 25-40. Ranga Vemuri (S'87-M'88-SM'00) = received
L.-F. Chao and E. H.-M. Sha, “Scheduling data-flow graphs via retimin
and unfolding,”|EEE Trans. Parallel Distrib. Systvol. 18, Dec. 1997.
S. Hassoun and C. Ebeling, “Architectural retiming: Pipelining latency
constrained circuit,” irProc. Design Automation Conf., DAC996.

M. Lam, “Software Pipelining: An Effective Scheduling Technique for
VLIW Machines,” in Proc. SIGPLAN Conf. Programming Language
Design ImplementatigrAtianta, GA, June 1988, pp. 318-328.

G. De Micheli, Synthesis and Optimization of Digital CircuitsNew
York: McGraw-Hill, 1994.

R. Govindrajan, E. R. Altman, and G. R. Gao, “A framework for re-

the M.Tech. degree from the Indian Institute of
Technology, Kharagpur, and the Ph.D. degree from
Case Western Reserve University, Cleveland, OH, in
1985 and 1988, respectively.

He is currently a Professor of the Department of
Electrical and Computer Engineering and Directs the
Laboratory for Digital Design Environments with
the University of Cincinnati, OH. He is coauthor
of about 130 research publications. His research
interests include computer-aided design of VLSI

source-constrained rate-optimal software pipelinit§EE Trans. Par- : systems, reconfigurable computers, mixed signal
allel Distrib. Syst, vol. 7, Nov. 1996. _ deS|gn_ al_Jtomatlon, formal verification, high-level
S.-M. Moon and K. Ebcioglu, “An efficient resource-constrained globa$ynthesis, and hardware description languages.)
scheduling technique for superscalar and VLIW processorsPrar. Dr. Vemuri is the recipient of the University of Cincinnati Faculty Achieve-
Int. Symp. Workshop Microarchitectyiec. 1992. ment Award, the Sigma Xi Outstanding Young Researcher Award, the William

A. Aiken and A. NicolauPerfect Pipelining: A New Loop Paralleliza- Middendorf Distinguished Research Award, the William Restemeyer Distin-
tion Technique, Tech. Rep., Department of Computer Scieriteaca, guished Teaching Award, the Engineering Tribunal Award for Outstanding
NY: Cornell Univ. Press, 1987. Teaching, and several best paper awards at various international conferences,
J. Wang, C. Eisenbeis, M. Jourdan, and B. Su, “Decomposed softwéeluding VLS| Design 2000, FPL 1999, and ICCD 1998. He currently serves
pipelining: A new perspective and a new approacit.’J. Parallel Pro- as an Associate Editor of IEEERRNSACTIONS ON VERY LARGE SCALE
gramming vol. 22, no. 3, 1994. INTEGRATION (VLSI) SYSTEMS. He was a Guest Editor of the IEEE Computers
P.-Y. Calland, A. Darte, and Y. Robert, “Circuit retiming applied to deSpecial Issue on Reconfigurable Computers: Technology and Applications,
composed software pipeliningEEE Trans. Parallel Distrib. Systvol. and of the IEEE RANSACTIONS ONVERY LARGE SCALE INTEGRATION (VLSI)

9, Jan. 1998. SysTEMS Special Issue on Adaptive and Reconfigurable VLSI Systems.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

