
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002 193

Hardware–Software Partitioning and Pipelined
Scheduling of Transformative Applications

Karam S. Chatha, Member, IEEE,and Ranga Vemuri, Senior Member, IEEE

Abstract—Transformative applications are computation inten-
sive applications characterized by iterative dataflow behavior.
Typical examples are image processing applications like JPEG,
MPEG, etc. The performance of embedded hardware–software
systems that implement transformative applications can be
maximized by obtaining a pipelined design. We present a tool
for hardware–software partitioning and pipelined scheduling of
transformative applications. The tool uses iterative partitioning
and pipelined scheduling to obtain optimal partitions that satisfy
the timing and area constraints. The partitioner uses a branch and
bound approach with a unique objective function that minimizes
the initiation interval of the final design. We present techniques
for generation of good initial solution and search-space limitation
for the branch and bound algorithm. A candidate partition is
evaluated by generating its pipelined schedule. The scheduler uses
a novel retiming heuristic that optimizes the initiation interval,
number of pipeline stages, and memory requirements of the
particular design alternative. We evaluate the performance of the
retiming heuristic by comparing it with an existing technique.
The effectiveness of the entire tool is demonstrated by a case study
of the JPEG image compression algorithm. We also evaluate the
run time and design quality of the tool by experimentation with
synthetic graphs.

Index Terms—Image processing, partitioning, performance
tradeoffs, pipelining, scheduling, system-level design.

I. INTRODUCTION

T RANSFORMATIVE applications are multimedia and
digital signal processing (DSP) applications. Typical

examples are JPEG and MPEG (1 and 2) image com-
pression-decompression algorithms, Viterbi decoding etc.
Embedded system implementations of transformative appli-
cations require them to be cost effective, high performance,
and flexible. As a result most of them are implemented by
heterogeneous architectures that utilize off the shelf software
(SW) processor cores and custom hardware (HW) coproces-
sors. The SW processors reduce the cost of the system and
provide flexibility. The custom HW coprocessors implement
the computation intensive components of the application
and enhance the performance of the system. For example,
Eijndhovenet al. in [1] discuss the Philips TM1000 series
very large instruction word (VLIW) processor core that might

Manuscript received August 15, 1999; revised March 10, 2000. This work
was supported in part by the ARPA RASSP Program and USAF, Wright Lab,
under contracts F33615-93-C-1316 and F33615-97-C-1043.

K. S. Chatha was with the Department of Electrical and Computer Engi-
neering, University of Cincinnati, OH 45221-0030 USA. He is now with the
Department of Computer Science and Engineering, Arizona State University,
Tempe, AZ 85287-5406 USA (email: karam.chatha@asu.edu).

R. Vemuri is with the Department of Electrical and Computer Engineering,
University of Cincinnati, OH 45221-0030 USA (e-mail: ranga.vemuri@uc.edu).

Publisher Item Identifier S 1063-8210(02)00794-1.

Fig. 1. Implementation architecture.

be combined with different on-chip coprocessors to obtain
the desired performance/silicon area ratio. The coprocessors
communicate with each other and the processor core through
an on-chip bus and share access to a single off-chip memory.
Takataet al.in [2] present the D30V/MPEG multimedia pro-
cessor that consists of a processor core and dedicated HW
to perform MPEG-2 video and audio decoding. Ikedaet al.
[3] discuss the SuperEnc MPEG-2 video encoder chip that
consists of a reduced instruction set computing (RISC) pro-
cessor, a single instruction multiple date (SIMD) processor and
dedicated HW. HW–SW codesign transforms an application
specification into communicating HW and SW components
of an embedded system that exhibit the desired behavior and
satisfy the performance constraints. HW–SW codesign consists
of two basic design stages: HW–SW partitioning partitions the
application specification into HW and SW components and
scheduling specifies the execution order of these components.
The authors in [3] also present the pipelined schedule for
MPEG-2 encoding on their architecture. This paper presents
a tool for HW–SW partitioning and pipelined scheduling of
transformative applications.

A. Characteristics of the Application Domain

Transformative applications are dominated by dataflow be-
havior with few control-flow constructs. Further, they can be
easily broken down into distinct tasks at a coarse level of granu-
larity. The task are computation intensive and internally strongly
interconnected with sparse external communication. The pre-
vious observations imply that transformative applications can
be specified by a data dependence based task-graph format. Fi-
nally, these applications are iterative in nature. They execute re-
peatedly over different sets of input data. Hence, they naturally
lend themselves to pipelined implementations. Similar observa-
tions were also made by De Manet al. in [4].

B. Implementation Architecture

We implement the applications as a codesign architecture that
consists of a single SW processor, a HW coprocessor, a shared
memory for HW–SW communication and SW local memory
for SW–SW communication (see Fig. 1). The SW processor is

1063-8210/02$17.00 © 2002 IEEE

194 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

Fig. 2. Sequential versus pipelined design.

a uniprocessing system. The HW coprocessor supports concur-
rent execution of multiple HW tasks. The shared memory and
SW local memory are exclusive read and exclusive write. HW
and SW tasks communicate with each other through the shared
memory.

A SW (HW) task, when it begins execution, first reads
data from the shared memory and then from its local memory
(on-chip registers). After computation, the SW (HW) task first
writes to the SW local memory (on-chip registers) and then to
the shared memory. The SW processor is considered busy from
the start of the read operation of the executing SW task till
the end of the write operation of the same task. A task during
its execution occupies memory required by the data items
belonging to both its read set and write set. The communication
memory required by the codesign implementation is estimated
as the maximum memory occupied during one complete
execution of the task graph. The memory calculation includes
shared memory, SW local memory and on-chip registers of the
HW coprocessor.

The embedded system designer specifies the communication
times per data item for interprocessor (SW–HW) communica-
tion and intraprocessor (SW–SW, HW–HW) communication.
We denote the time to read and write a data item to the shared
memory (SW local memory) as and ,
respectively. Two HW tasks communicate through on-chip reg-
isters and there communication time is included in their task ex-
ecution times. The designer also specifies the communication
area overhead, due to the interface logic required by a
HW task to communicate with the shared memory. Since the
shared memory is exclusive read-exclusive write, the HW tasks
can share the communication resource.

C. Motivating Example

Consider the example in Fig. 2, the task graph is shown on
the left-hand side along with run times of the tasks and data
items transferred across each dependence. There exists an area
constraint on the HW coprocessor such that only two (any two)
tasks can be implemented in HW. The objective is to partition
and schedule the tasks such that throughput is maximized. We
assume that the source and sink nodes write to and read from
the shared memory, respectively. The time required to read or
write one data item from shared memory or SW local memory
is assumed to be 1 ns. As mentioned earlier the communication
memory required by the codesign implementation is estimated
as the maximum memory occupied during one complete execu-
tion of the task graph.

Partitioning for sequential implementation is significantly
different from partitioning for pipelined implementation. When
partitioning for sequential implementation, the objective is
to minimize the time for one complete execution of the task
graph. In the example, tasks B and C have been mapped to the
HW coprocessor. Task A that is assigned to SW initially reads
the input data from the shared memory. On completion, task A
writes its output to shared memory. Tasks B and C then read
their inputs from the shared memory, execute concurrently and
write their outputs back to the shared memory. Finally, task D
reads its data from the shared memory and produces the output
of the task graph. The schedule takes 555 ns for completion.
The communication memory required by the schedule is
estimated to be 40-data items, as shown by the vertical dashed
line. At the time instance indicated by the dashed line, tasks
B and C require memory for their read and write data items,
respectively.

CHATHA AND VEMURI: HW–SW PARTITIONING AND PIPELINED SCHEDULING OF TRANSFORMATIVE APPLICATIONS 195

The pipelined implementation is shown in the lower half of
the figure. A pipelined schedule is characterized by itsinitiation
interval, (), which is the time difference between the start of
two consecutive iterations of the steady state. For example, the
pipelined schedule in Fig. 2 has an ns. Given a parti-
tioned task graph, there exists a theoretical lower bound on the

of its pipelined schedule called theminimum initiation in-
terval().The objective of the HW–SW partitioner is to map
the tasks to HW and SW so that is minimized, subject to
the area constraints.We present a HW–SW partitioner that uses
a branch and bound approach to obtain optimal HW–SW parti-
tions. We discuss techniques for generation of good initial solu-
tion and search-space bounding. As the experimental results will
show later, the initial solution is on an average within 6.3% devi-
ation of the optimal. As a result, we are able to effectively limit
the search space and generate optimal partitions in a shorter pe-
riod of time.

We evaluate a given partition by generating its pipelined
schedule. We obtain pipelined schedules by retiming and sched-
uling. Pipelining leads to an increase in the communication
memory requirements of the design. This increase is due to the
extra memory required by the pipeline buffers that are used to
communicate between tasks belonging to different iterations.
The total memory requirement of the pipelined schedule is 70
variables. The horizontal dashed lines from tasks A, B, and
C indicate the extra memory required by the pipeline buffers.
The objective of the pipelined scheduler is to obtain a schedule
with as close as possible to with least number of
pipeline stages and least increase in memory requirements.In
this paper, we present a novel retiming heuristic that optimizes
the initiation interval, number of pipeline stages, and memory
requirements due to pipeline buffers of a pipelined HW–SW
implementation.

D. Application Specification

The application is described as a directed acyclic data depen-
dence based task graph , where

is the set of tasks, the edge set, represents the data de-
pendence between any two tasks,and are special nodes
called the source node and sink node, respectively. We assume
that the is executed iteratively over different sets of input
data. Associated with each task are four quantities: ,
the execution time of the taskon the general purpose SW pro-
cessor, the execution of the taskin HW, the area oc-
cupied by the task when implemented on the HW coprocessor
and the iteration index of the task. can be obtained by
software profiling. and of a task are obtained by using
a high-level synthesis tool. Each edge has two quantities
associated with it: the number of data items transferred
across a dependence and , the dependence distance. Itera-
tion index and dependence distanceare used to retime the

for pipelined scheduling. The source and sink nodes are
used to model the environment and specify the throughput con-
straint. The throughput constraint is specified as the number of
input data sets consumed per second by the task graph from the
source node.

The iteration index of a task implies that at theth iter-
ation of the steady state of the pipeline, instance of taskbe-

longing to iteration of the original is executed. In
the pipelined design shown in Fig. 2, at the zeroth iteration of the
steady state, instance of task A belonging to the second iteration
of the original is executed. Hence, . Similarly,

, , and . The dependence distance
of an edge implies that the data produced by

task in the th iteration of the steady state is consumed by task
in the iteration of the steady state. For example, in the

pipelined design shown in Fig. 2, the data produced by taskin
iteration 0 of the steady state is consumed by taskin iteration
1. Hence, . Similarly, , ,
and .

E. Problem Description

Given an application specified as a task graph, area constraint
() on the HW coprocessor and/or time constraint
() on the execution of the task graph:

1) partition the task nodes between the HW coprocessor and
SW processor;

2) obtain a pipelined schedule for the task execution and task
communication;

such that:

1) the performance constraints are satisfied;
2) the number of pipeline stages in the implementation are

minimized;
3) the increase in memory due to pipeline buffers is mini-

mized.

Since resource constrained scheduling is a nonpolynomial
(NP) complete problem [5], pipelined scheduling is also NP
complete [6]. Pipelined schedules are obtained by decomposing
the problem into two subproblems: retiming transformation
followed by scheduling. Retiming under resource constraints
has been shown to be NP complete [7].

The paper is organized as follows: In Section II we discuss
previous work, Section III presents the tool, Section IV dis-
cusses the experimental results, Section V discusses the possible
extensions and limitations of our work and finally, Section VI
concludes the paper.

II. PREVIOUS WORK

A. HW–SW Codesign

In recent years, a number of approaches for HW–SW
codesign have been proposed. Most approaches focus on a
particular design stage in the codesign process and can be
differentiated as such. For example, the Ptolemy [8] system
addresses the problem of specification and cosimulation of HW
and SW components. Chinook [9], on the other hand focuses
on interface synthesis during HW–SW cosynthesis. Our work
addresses the problem of automatic HW–SW partitioning and
pipelined scheduling of transformative applications. There-
fore, the related work discussed in the following paragraphs
concentrates on approaches that perform automated HW–SW
partitioning and scheduling.

Guptaet al. in [10] presented a fine grained HW oriented
partitioning algorithm that moved nodes from HW to SW
while the timing constraint was satisfied. In [11], Henkel

196 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

et al. proposed a SW oriented HW–SW partitioner based on
simulated annealing. The partitioner initially mapped all the
components to SW and then moved them from SW to HW
until the performance constraints were satisfied. Kalavade
et al. in [12] discussed a modified list scheduling algorithm
that mapped the tasks to HW and SW. The algorithm used an
adaptive global criticality local phase (GCLP) heuristic that
either minimized the execution time of the design or the area.
Niemannet al. in [13] presented an integer linear program-
ming formulation for HW–SW partitioning. Knudsenet al. in
[14], presented a dynamic programming based approach for
HW–SW partitioning. Eleset al. in [15], proposed HW–SW
partitioning algorithms based on simulated annealing and tabu
search. Our tool differs significantly from these approaches.
All of them used a partitioning strategy and an objective
function to satisfy the performance constraints for a sequential
implementation. As explained earlier (see Fig. 2), partitioning
for sequential implementation is significantly different from
partitioning for pipelined implementation. In contrast, our par-
titioner uses a unique objective function aimed at maximizing
the throughput of the pipelined implementation. Further most
of these approaches [10], [11], [14], and [15] perform HW–SW
partitioning and scheduling in isolation, whereas we adapt an
integrated iterative approach.

The approach proposed by Jinhwanet al. in [16], minimizes
the latency of the HW–SW implementation by increasing
the parallelism through pipelining the inner loops of the
specification. They apply loop pipelining before HW–SW
partitioning. In contrast, the objective of our technique is to
maximize the throughput of the specification. Loop pipelining
before HW–SW partitioning is tedious since the nodes are not
mapped and their delays are unknown. We perform pipelined
scheduling after HW–SW partitioning.

Our methodology and the techniques mentioned in the
previous paragraphs partition the specification on to a fixed
heterogeneous architecture template. Prakashet al. [17],
Daveet al. [18], Dick et al. [19], and Li et al. [20] proposed
approaches for synthesizing a heterogeneous architecture that
satisfies the timing constraints on the specification. Prakashet
al. [17] formulated the problem as a mixed-integer linear-pro-
gramming model and obtained a sequential (nonpipelined)
implementation. Daveet al. [18] used a heuristic based task
clustering, allocation, and scheduling approach for synthesizing
hierarchical heterogeneous architectures. Their technique im-
plements a pipelined design when the period constraint on the
task graph is smaller than the deadline constraint. The designer
specifies the number of pipeline stages and algorithm then
performs clustering on the task graph to obtain the desired
number of stages. In our approach, the designer is required to
specify only throughput and (or) area constraint. Our technique
optimizes the number of pipeline stages and memory required
for pipelining. However, we partition the specification on
to a fixed architecture template. Dicket al. [19] proposed a
genetic algorithm based architecture synthesis approach that
uses a scheduling technique similar to [18]. Liet al. [20] uses a
heuristic based approach for architecture and memory hierarchy
(cache) synthesis. They use a preemptive static scheduling
algorithm that hierarchically allocates and schedules tasks on

Fig. 3. List scheduling versus iterative retiming and scheduling.

multiprocessors and memory transfers on the bus to meet the
real-time constraints. Task preemption is too expensive both
in time and space for many high-volume low-cost embedded
systems [21]. Hence, we use a nonpreemptive static pipelined
scheduling policy.

Bakshi et al. [22] proposed an architecture synthesis ap-
proach for pipelined implementation of HW–SW codesigns.
In their approach, they do not consider the communication
delays. Their pipelined scheduling approach is based on
modulo scheduling that was introduced by Rauet al. [23].
Modulo scheduling involves using a list scheduling algorithm
with a modulo resource reservation table whose height is
equal to pipeline initiation interval. Since the list scheduling
algorithm is a greedy algorithm, modulo scheduling based
techniques cannot explore the task graph to obtain a pipelined
implementation with lower pipelining memory (or buffers).
In the example shown in Fig. 3, the pipelining memory (as
shown by the dotted arrow) is more for the modulo scheduling
approach as opposed to our technique. In contrast to the list
scheduling based approach, our technique can select which
data dependence should contribute to the pipelining memory.
Hence, we are able to optimize pipeline stages and memory
requirement of the design. In contrast to [22], we account for
communication overheads due to actual communication and
shared memory conflicts during scheduling.

B. Retiming Transformation and Pipelined Scheduling

The term “Retiming transformation” was introduced by Leis-
erson and Saxe [24] when they used it to solve the problem of
optimizing the throughput of a synchronous circuit. Leiserson
et al. presented polynomial time techniques for clock–period
minimization and area (register) minimization of a logic circuit.
Since then, retiming transformation has been extensively used
as an optimization technique during logic synthesis [25]–[29].
Shenoyet al. [30] give a good survey of logic circuit retiming
techniques and their application to realistic circuits. Retiming
transformation has also been applied for optimizing the
throughput of DSP circuits specified as dataflow graphs [31],
[32]. Retiming at architectural level [33] has been applied to
reduce the latency of a constraining path in a design.

Retiming transformation applied to combinational circuit
pipelining [24] assumes that there is no resource constraint
on the combinational (or computation) blocks. Retiming
transformation under resource constraints is NP complete [7].
Hence, we use a heuristic-based retiming-transformation to
obtain the pipelined schedules. Our problem formulation is
similar to software pipelining [34] in VLIW compiler literature
and functional pipelining [35] in high-level synthesis literature.

CHATHA AND VEMURI: HW–SW PARTITIONING AND PIPELINED SCHEDULING OF TRANSFORMATIVE APPLICATIONS 197

In the following paragraphs, we discuss existing software
and functional pipelining approaches. Although techniques
that belong to these domains may be extended to HW–SW
codesign, there are certain limitations. Our technique optimizes
for system level coarse grained asynchronous pipeline design,
whereas software and functional pipelining techniques con-
centrate on fine grained synchronous pipelined designs. In our
application, domain communication times and shared memory
access conflicts need to be considered. These overheads are
ignored in fine-grained pipelining. HW–SW codesign intro-
duces heterogeneity in terms of processing elements that can
execute either multiple (HW) or single (SW) task. This kind of
heterogeneity is not encountered in either software pipelining
or functional pipelining. To the best of our knowledge, [36]
is the only other technique that optimizes both the initiation
interval and pipeline registers of the final design. DSP codes
like fast Fourier transform (FFT), fifth-order elliptic filter, and
fourth-order lattice filter, etc., are implemented as fine-grained
pipelines, whereas transformative applications that are much
larger are implemented as coarse-grained pipelines. Finally,
fine-grained techniques typically concentrate on optimizing
dependence loops that have interiteration (or loop carried)
dependences. Such dependences are not common in transfor-
mative applications. In Section V we discuss extensions to our
work for handling dependence loops.

Rauet al.[23] proposed the modulo scheduling technique for
VLIW software pipelining. Lamet al. [34] discussed modifica-
tions to modulo scheduling for handling conditional branches
inside the loops. Moonet al. [37] proposed a technique that
repeatedly applied semantic preserving transformations to ob-
tain a pipelined loop. Aikenet al. [38] proposed a technique
for software pipelining based on unrolling and scheduling the
loop. Similar to our technique, Wanget al. [39] and Calland
et al. [40] obtain pipelined software loops by decomposing the
problem into two subproblems. In contrast to our approach,
these techniques do not optimize the additional registers re-
quired for pipelining. To the best of our knowledge, only Govind
et al.[36] have proposed a technique that minimizes the number
of pipeline registers of a software pipeline. They proposed an
integer linear programming (ILP) formulation that is limited by
large solution times.

Parket al. [41] proposed feasible scheduling algorithm for
pipeline datapath synthesis from behavioral specifications sub-
ject to either resource or time constraints. Paulinet al. [42] pro-
posed extensions to their force directed scheduling algorithm for
functional pipelining. Leeet al. [43] proposed modulo sched-
uling heuristics for functional pipelining under timing and re-
source constraints. Cathedral II [44], rotation scheduling [45],
and MARS (I and II) synthesis system [46], and [47] generate
pipelined datapaths for DSP applications. Cathedral II applies
iterative loop folding (similar to retiming) under timing con-
straints. Rotation scheduling utilizes implicit retiming to ob-
tain pipelined schedules under resource constraints. The MARS
(I-II) system accepts time constraints and utilizes heuristics with
enhanced modulo scheduling to optimize the interiteration de-
pendences. Sánchez [48] proposed a decomposition based tech-
nique for functional pipelining that applies the retiming trans-
formation for optimizing the throughput. In contrast to these

approaches, our technique optimizes both the throughput and
memory requirements of the pipelined design under resource
and/or time constraints.

Our graph representation and problem formulation is similar
to the paradigm of synchronous data-flow machines of Leeet al.
[49]. They assume a multiprocessor environment where each
DSP processor can execute a single task at a given-time instance.
Although, there might be heterogeneity in terms of DSP proces-
sors, the processing elements display homogeneity in terms of
task execution. This is not true in our application domain. The
HW coprocessor can execute multiple tasks concurrently. Fur-
ther, the concept of area constraint on the HW coprocessor does
not apply to their problem formulation.

III. HW–SW PARTITIONING AND PIPELINED SCHEDULING

In this section, we present our technique for HW–SW
partitioning and pipelined scheduling of transformative appli-
cations. We give an overview of the technique in Section III-A;
Section III-B discusses the HW–SW partitioner; Section III-C
discusses the pipelined scheduler, and finally, Section III-D
presents our retiming heuristic.

A. Overview

We use iterative HW–SW partitioning and pipelined sched-
uling to obtain a pipelined implementation that satisfies the per-
formance constraints. The objective of the HW–SW partitioner
is to obtain a mapping, such that the of the partitioned task
graph satisfies the time constraint, and the total area of the tasks
mapped to HW satisfies the area constraint. The area of the HW
coprocessor is estimated by adding the areas of all tasks mapped
to HW. Before we present an overview of the tool we explain the
procedure to calculate .

1) Minimum Initiation Interval (): Given a partitioned
task graph, it is possible to establish a lower bound on the ini-
tiation interval of the pipelined design. The initiation interval
() as stated earlier is the time difference between the start
of two successive iterations of the steady state. The theoret-
ical lower bound on the is called the minimum initiation in-
terval (). Since we consider a directed acyclic task graph,
the of the pipelined design is determined by the task ex-
ecution times and the number of resources (HW or SW) in the
implementation architecture.

The execution time for a task in a task graph with all the
tasks mapped to either HW or SW is given by

if SW
if HW

where denotes resource (HW or SW) to which task
has been mapped. and are the task read

and write times, respectively. They are defined as
and ,

where are the read (write) associated with a
data dependence. The read (write) time of task is given by the
sum of the read (write) times of all its predecessor (successor)

198 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

Fig. 4. Pipelined HW–SW implementation.

dependencies. The read and write time of a dependence
is defined as follows:

SW
HW

otherwise,

SW
HW

otherwise.

We assume that the read time and write time of a dependence are
zero when the predecessor and successor tasks have both been
mapped to HW. In this case, the communication is assumed to
take place through on-chip registers of the HW coprocessor and
the associated communication overhead is included in the HW
run times of the tasks.

The SW processor is a uniprocessing system. As a result, the
minimum time required to execute all the tasks mapped to SW
is given by the sum of execution times of SW tasks. This sum
denotes the due to the SW tasks, . The HW copro-
cessor supports concurrent execution of tasks. Hence, the min-
imum time required to execute the HW tasks is given by the
maximum execution time of all tasks mapped to HW. This quan-
tity denotes the due to HW tasks, . The for
the partitioned task graph is then given by maximum of
and , that is .

2) Pipelined HW–SW Implementation:The tool for parti-
tioning and pipelined scheduling of HW–SW systems is shown
in Fig. 4. The partitioner tries to obtain a HW–SW mapping

whose and area are less than the specified constraints.
Although, takes SW resource conflicts into account, it
does not compensate for extra communication delays that might
occur due to shared memory access conflicts. Therefore, it is
necessary to evaluate the performance of the partition by gener-
ating the pipelined schedule.

The tool first tries to find a schedule of the with
as the time constraint. If it is unsuccessful, it selects a

dependence to be retimed. Retiming transformation reduces
the number of dependencies that constrain the scheduler and
results in an equivalent task graph with tasks belonging to
different iterations. The tool then schedules the new task graph
to obtain the steady state of the pipelined implementation. The
inner loop of scheduling and retiming continues till a successful
schedule is obtained or all the dependencies have been retimed.
In the latter case, we increase the initiation intervaland try
scheduling again. We set the increment factor to the maximum
of the following two values: one-time unit or 1% of . We
exit the outer pipelined scheduling loop when thebecomes
greater than the time constraint. The design flow then returns
back to the partitioner to generate a new mapping. The outer
loop of partitioning and pipelined scheduling continues till
a successful schedule is obtained or the partitioner cannot
generate a constraint satisfying mapping.

Let the set denote the set of all pos-
sible mappings of the tasks to HW and SW. For a particular map-
ping , let denote the achieved initiation interval of
the corresponding pipelined schedule and let denote the
total HW area of the mapping. Let and de-
note the time and area constraints specified by the user. We have
the following four cases:

1) Both area and time constraint specified: In this case, the
tool searches for a mapping that satisfies the per-
formance constraints, that is: and

It returns the first solution that
satisfies the constraints.

2) Only area constraint: In this case the tool searches for an
optimal solution whose steady state executes in minimum
time subject to the area constraint. Letdenote the set
of mappings whose area is less than the area constraint.
Then the tool searches for a mapping, such that:

3) Only time constraint: In this case, the tool searches for a
solution that satisfies the time constraint but has the least
HW area. Let denote the set of mappings whose
is less than the time constraint. Then the tool searches
for an optimal mapping, such that:

4) No area and time constraint: In this case, the tool searches
the design space for an optimal solution such
that:

In the worst case, our approach will exhaustively map the tasks
to HW and SW, and execute with exponential time. Due to a
good initial solution and tight search space bounding, we are
able to obtain optimal partitions for graphs having up to 30
nodes in a reasonable amount of time (30 mins). Since the ap-
plication is modeled at a coarse level of granularity, 30 tasks

CHATHA AND VEMURI: HW–SW PARTITIONING AND PIPELINED SCHEDULING OF TRANSFORMATIVE APPLICATIONS 199

are enough to model many applications. We provide a time out
option for large graphs. The tool then returns the best solution
that it obtains before the time out. As the experimental results
will show later, the initial solution is on an average within 6.3%
deviation from the optimal. This implies that the partitions ob-
tained by the time out option will also have good performance
characteristics.

In the explanation given above (and in rest of the paper), we
assume the optimal solution to be the one with respect to the
partitioner. It is different from the global optimum that is with
respect to both the partitioner and pipelined scheduler. The ex-
perimental results will show that although we use a heuristic
scheduler the solution obtained by our tool is on an average
within 4.2% deviation of the global optimum.

B. HW–SW Partitioner

The codesign partitioner uses a branch and bound approach
with backtracking to explore the design space. The algorithm
traverses a binary search tree that includes the entire design
space. At each level of the search tree, the algorithm selects
an unmapped task and decides the mapping of the task. The
branch and bound approach is characterized by the strategy used
to generate the initial solution, the technique used to select a task
and decide the mapping of the task, and the techniques used to
limit the search space. In this section, we will discuss all these
strategies.

1) Generation of Initial Solution:The HW–SW partitioner
tries to minimize the of the solution subject to the area
constraints. Since is given by the sum of the SW tasks,
it is the dominant quantity in determining the . The of
a partitioned design can be minimized by mapping fewer tasks to
SW. However, this would lead to an increase in the HW area and
perhaps a violation of the area constraint. The partitioner tries
to balance these two conflicting objectives by initially mapping
the tasks to HW and SW such that the sum of the execution times
of tasks mapped to HW and SW is balanced. This ensures that

is not too large and the area of the coprocessor is also
small.

The initial solution maps the tasks based on their individual
characteristics and user specified area constraint. The mapping
of a task is influenced by the following three properties 1) its
run time on the SW processor versus its run time on the HW
coprocessor; 2) its area in the HW coprocessor; and 3) its esti-
mated communication time in SW versus its estimated commu-
nication time in HW. We capture these properties by calculating
the speed up of the task, area factor of the task, suitability of the
task, and communication ratio of the task as explained below.

a) Speed up of a task:We Define thespeed ratioof a task
as follows:

if

if

The speed ratio varies between and . It is greater (smaller)
than zero for a task whose run time on the SW processor is
greater than (less than) its run time on the HW coprocessor. We
scale the speed ratio from 0 to 1 and define thespeed upof a
task as follows: where

is the minimum (maximum) speed ratio over all
tasks.

b) Area factor of a task:Let denote the summation
of areas of all the tasks . Let denote the
maximum (minimum) area over all tasks. We define thearea
ratio of a task as follows:

if
if

The area ratio ranges from 0 to 1. The area ratio of task is closer
to 0 (1) if its area is nearer to . We use the area ratio
to define thearea factorof a task as follows:

Where

The area factor scales the area ratio to range from
to 1. In case of tight area constraint

() the area factor ranges from a small value
to 1. In case of a loose area constraint, ()
the variation in area factor is small. The objective is to be able
to distinguish between tasks in terms of their respective area
depending upon the area constraint. When the area constraint is
very tight, we see a larger difference in area factors of two tasks
as opposed to the case when the area constraint is very loose.

c) Suitability of a task:The suitability of a task to
be assigned to HW is given by the product of its speed up and
area factor, that is . The influ-
ence of the speed up and area factor of the task on its suit-
ability depends on the area constraint. In the case of a tight
area constraint, the suitability of a task is influenced by both
its area factor and speed up. When the area constraint is not
tight, the area factors of the tasks are close to each other. As
a result when we distinguish two tasks based on their suitabili-
ties our decision is influenced more by their individual speed up
values than their area factors. We scale the suitabilities of tasks
from 0 to 1 and define suitability factor of a task as follows:

, where is
the minimum (maximum) suitability over all tasks . We
will use suitability factor as the probability of the task to be as-
signed to HW.

d) Communication ratio of a task:We estimate the ini-
tial communication times of the tasks based on their suitability
factor. The initial read time and write time of a taskwhen it is
mapped to SW is calculated as follows:

and

Since we assume that the communication time when two HW
tasks communicate through the on-chip registers is zero, the ini-

200 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

tial read time and write time when taskis mapped to HW are
given by

and

The communication ratio of a taskis then given by

The communication ratio of a task is greater (less) than one if
the estimated communication time with task in SW is greater
(less) than the estimated communication time with task in HW.

e) Final Suitability of a Task:The suitability of a task as
calculated above does not reflect the communication overheads.
We modify the suitability of the task by multiplying it by the
communication ratio to obtain the final suitability as follows:

f) Initial Solution: After we have obtained the final suit-
ability of each task we sort the tasks in the descending order
of their suitabilities. Then the initial solution of the branch and
bound algorithm is obtained by choosing one task alternatively
from the front and back of the sorted list and mapping them to
HW and SW, respectively. A task near the front (back) of the
sorted list has a higher (lower) suitability and it is bound to HW
(SW). During the generation of the initial solution we try to bal-
ance the following two quantities: , where and

are the running sums of estimated execution times of tasks
bound to HW and SW resources, respectively. We try to bal-
ance to these two quantities subject to the area constraint on the
HW coprocessor. We maintain that gives the running sum
of the areas of the task mapped To HW. We comparewith

to ensure that the area constraint is satisfied. If the
user does not specify an area constraint we assume the value
of to be a very large number. As explained earlier
we try to balance and with an aim to achieve the con-
flicting goals of minimizing and the area associated with
HW tasks.

During the generation of the initial solution when a taskis
mapped to a resource, it is possible that some of the neighboring
tasks of have not yet been mapped. In such a case, we estimate
the read and write times of the task as the minimum value pos-
sible. Consider a dependence where is unmapped
and is the task to be mapped. Then the minimum read time is
given by

SW
HW

The minimum write time is similarly defined. We use minimum
communication times to estimate the execution time of the task.
At a later stage, when the neighboring task has been mapped we
update the communication times to their correct values. These
changes are also reflected in and .

Fig. 5. Algorithm for initial solution.

The algorithm to generate the initial solution is shown in
Fig. 5. The outer “while” loop continues until all the tasks have
been mapped. The two inner “while” loops try to balance
and subject to the area constraint. The array
stores the task to be mapped at levelK and the initial mapping
of a task is stored in array .

2) Selecting a Task and Deciding its Mapping:The search
procedure for the branch and bound algorithm resembles a bi-
nary tree (see Fig. 6). At a level in the search
tree we make a decision about the mapping of a particular task
specified by the array . This array is used during
the entire algorithm to select the task to be mapped. The ini-
tial mapping of the task at the level is given by the array

. During the search process we maintain the vari-
ables and . After we have selected the task from the

array, the mapping of the task is done with an ob-
jective of balancing and .

Sorting the tasks according to their suitabilities and then map-
ping them in the above fashion to generate the solution has two
important effects. First the initial mapping is a fairly good so-
lution and it helps in limiting the search space of the algorithm.
When the branch and bound algorithm begins its search (see
Fig. 6), it first exhaustively maps the tasks that are at the higher
levels of the search tree. In comparison to tasks at lower levels
(tasks t1, t5), the tasks at higher level (task t3) are not inclined
toward either HW or SW implementation. Hence, the second
important effect is that the algorithm tries to obtain a solution
by keeping the mapping of tasks that are strongly inclined to-
ward either HW or SW implementation fixed and changing the
mapping of tasks that are not inclined toward either implementa-

CHATHA AND VEMURI: HW–SW PARTITIONING AND PIPELINED SCHEDULING OF TRANSFORMATIVE APPLICATIONS 201

Fig. 6. Initial solution and search process.

tion. Such a search strategy coupled with a good initial solution
leads to faster execution times of the algorithm.

3) Techniques for Limiting the Search Space:We first ex-
plain the terms that are used in the discussion. At any time
during the search process denotes the best solution found
so far. Initially . At a particular levelK in the search
tree we map the task specified by the array. During
the search process we maintain four variables, ,
and . At a particular levelK in the search tree.

• gives the estimated area of all tasks mapped to HW
from levels 0 to ();

• gives the maximum estimated execution time of all
tasks mapped to HW from levels 0 to ();

• gives the sum of estimated execution times of all tasks
mapped to HW from levels 0 to ();

• gives the sum of estimated execution times of all tasks
mapped to SW from levels 0 to ().

Let us assume that we are at levelK, we have mapped the task
at levelK to both HW and SW and we are about to backtrack.
We can then associate two terms and with the
task at levelK defined as follows:

• gives the maximum of the exact HW execution
time of all tasks mapped to HW from levels 0 to ()
in the solution ;

• gives the sum of the exact execution times of the
tasks that have been mapped to SW from levels 0 to ()
in the solution .

The exact execution time of a task, differs from
that we have defined earlier. is found from the

pipelined schedule of and it takes the extra communica-
tion delays due to shared memory access conflicts into account
(). The initial values of and
are infinity.

Consider the case when no constraints have been specified
and we are trying to obtain a solution with minimum. Let us
assume that we are at levelK and map the task to SW. Before

we proceed to the level () we check if the following two
conditions are satisfied:

(1)

OR (2)

where is the estimated SW execution time of the task. If
the two conditions are not satisfied we backtrack and change the
previous decision. We can similarly define two more conditions
when the task is mapped to HW

(3)

OR (4)

where is the estimated HW execution time of the task.
In the presence of an area constraint we use the following con-
dition along with the (1),(2),(3), and (4) to limit the search:

Sum (5)

In the case that only a time constraint is specified we use the
following three conditions to limit the search process:

Sum (6)

(7)

(8)

When both area and time constraints are specified we use con-
ditions 5, 7, and 8 to limit the search process.

4) HW–SW Partitioning Algorithm:The partitioning algo-
rithm is shown in Fig. 7. In the algorithm “” denotes the level
of the binary search tree. “first” is a boolean variable that is
true when we reach a particular level for the first time and false
otherwise. and specify the mapping (HW or SW) of the
task. Initially, all the four parameters in the call are zero. When

is equal to all the tasks are mapped to HW or SW and we
evaluate the candidate partition. When we traverse the graph for
the first time we generate the initial solution according to the

array. Otherwise, we try to balance the two sums,
and . The functionmap()maps a task to HW or SW

and updates , and . The boolean functioncheck()
as the name suggests checks if the conditions are satisfied.

202 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

Fig. 7. Branch and bound based HW–SW partitioner.

g) Time Complexity:Since each task can be mapped to
either HW or SW the time complexity of the partitioner is

.

C. Scheduler for Pipelined HW–SW Implementation

We evaluate the performance of a particular design alternative
by obtaining a pipelined schedule. The pipelined schedule with
an initiation interval is an assignment of start times to tasks,

, such that for all tasks in the graph [48].
For a dependence , the schedule time of and must
honor the data dependence, that is

The pipeline scheduler takes resource conflicts and communi-
cation delays due to SW processor and shared memory into ac-
count. We use a list based schedule [50] and retiming transfor-
mation in an iterative manner to obtain a pipelined schedule. We
calculate the and try scheduling the for . How-
ever, due to schedule constraining dependencies we may not be
able to schedule the in . If we cannot accomplish
this, we retime the and try again. Retiming transforma-
tion reduces the number of schedule constraining dependencies.
We discuss the retiming transformation in the next section.

1) List Based Scheduler:The list based scheduler maintains
a schedule table with four columns for SW local memory, SW
processor, shared memory, and HW coprocessor. It also main-
tains a ready list of tasks that are ready to be scheduled. The
list scheduler selects a task from the ready list based on max-
imum urgency. The urgency of a task is given by

This is a well known heuristic
that has been widely use in literature [35]. The start time of the
selected task on the mapped resource is based on the earliest

time that satisfies the data dependencies (based on the equation
given above) and resource constraints.

a) Time complexity:The list based scheduling algorithm
operates in a loop. In each iteration of the loop, the algorithm
schedules one task. In order to schedule the task, the algorithm
traverses the schedule table in a top down manner. The worst
case complexity of the traversal is . Hence, the time
complexity of the list based scheduler is .

D. RECOD: Retiming Heuristic

We apply retiming transformation when we cannot schedule
the in the given initiation interval, . Retiming transfor-
mation reduces the number of data dependencies that constrain
the scheduler by increasing their dependence distance. How-
ever to produce an equivalent task graph it is also necessary
to increase the iteration indices of the tasks. Two task graphs

and (obtained after
retiming) are equivalent if, , the following
equation holds
The retimed task graph consists of tasks belonging to different
iterations of the original loop. Hence, retiming transformation
results in a pipelined task graph. Our Retiming heuristic is
oriented toward HW–SW CODdesigns, therefore we call it
RECOD. RECOD optimizes the initiation interval, pipeline
buffers, and number of pipeline stages of a pipelined HW–SW
codesign. Before we present our retiming heuristic, we discuss
the factors that influence the performance of the pipelined
design.

1) Schedule Constraining Dependencies:A dependence
with implies that the data produced by

the predecessor task is consumed by the successor task
in the same iteration of the steady state. Hence, a dependence
with constrains the schedule. Such a dependence is
called aintra-loop dependence (ILD). We assume that all the
tasks belonging to one iteration of the steady state complete
their execution before any task belonging to the next iteration
starts its execution. We also assume that the task execution in
HW and on the SW processor is sequential (nonpipelined).
Then a dependence with does not
constrain the pipelined schedule since for all values of
and the data dependence is satisfied. Such a dependence
is called aloop-carried dependence (LCD). LCDs represent
data dependence between tasks belonging to different iterations
of the steady state. The two assumptions stated above ensure
that theLCDs do not constrain the scheduler. Therefore, the
set of schedule constraining dependencies, is given by

.
A path in the is called a con-

straining path, if , . The length of is given
by , where is
the execution time of the tail task of. A critical path CP
in the is a constraining path, such that for any other
constraining path , . The
length of the critical path is called the critical path time,
of the . For a feasible pipelined schedule of the
with initiation interval , . Therefore, retiming
transformation should try to reduce the number of schedule

CHATHA AND VEMURI: HW–SW PARTITIONING AND PIPELINED SCHEDULING OF TRANSFORMATIVE APPLICATIONS 203

constraining dependencies that belong to a longer constraining
path.

2) Communication Memory Estimation:LCDs rep-
resent data dependencies between tasks belonging to
different iterations of the steady state. Hence, before an
iteration of the steady state can begin there is already
some memory occupied by the data that is given by
Mem Mem is the com-
munication memory required by the pipeline buffers. The
communication memory required during one iteration of the
steady state is the maximum amount of memory occupied by
the data items during execution, Mem . This memory is
both due to ILDs and LCDs. The communication memory
requirement of a pipelined design, MemReq is then given by
MemReq Mem Mem As can be seen by the
above discussion Mem is a lower bound on the memory
requirement of a pipelined schedule. During retiming we
convert a schedule constraining dependence (ILD) in to a
leading to an increase in communication memory requirement.
Therefore, during retiming we should try to minimize the
memory required for pipeline buffers.

We can minimize the increase in memory requirements due to
pipelining by using good heuristics to select the dependence to
be retimed. But this is not enough. In order to produce an equiv-
alent other dependencies need to be retimed. The increase
in memory requirement due to these dependencies should also
be minimized. Hence, RECOD does retiming in two steps. In
the first step it heuristically selects a dependence to be retimed.
In a there might exist a number of sets of dependencies
that could be retimed to obtain an equivalent . In step 2
we select the set of dependencies that on retiming result in the
least increase in shared memory requirement.

3) RECOD Step 1: Heuristic to Select a Dependence for Re-
timing Transformation:The priority of a dependence to be re-
timed depends on its following four properties in decreasing
order:

1) Dependence is anILD: The primary objective of RECOD
is to reduce scheduling constraints in the ; and give
the scheduler greater freedom in scheduling tasks on the
resources. Since onlyILDs constrain the scheduler the
dependence to be retimed should be anILD.

2) Dependence whose two tasks are not mapped to SW pro-
cessor: The main objective of the retiming heuristic is
to reduce scheduling constraints in the graph. Increasing
the distance of a dependence between tasks mapped to
the SW resource does not necessarily help the scheduler.
Basically the two SW tasks will be scheduled one after
the other. On the other hand retiming a dependence be-
tween tasks mapped to HW coprocessor definitely gives
more freedom to the scheduler. Similarly, retiming a de-
pendence between tasks mapped to heterogeneous pro-
cessors also gives more freedom to the scheduler.

3) Dependence whose predecessor task belongs to a longer
constraining path: As discussed in the previous section
the constraining paths limit the of a pipeline schedule.
Retiming a dependence whose predecessor task be-
longs to a longer constraining path helps in obtaining a
pipelined schedule with smaller .

4) Dependence representing the least number of data items
transferred: A secondary objective of retiming transfor-
mation is to minimize the increase in pipeline memory
requirement of the . Increasing the distance of a
dependence with more data items definitely results in a
larger increase in memory requirement. Hence, we select
a dependence that represents the transfer fewer data items.

We use property 1 to select dependencies to be retimed and
use properties 2 , 3, and 4 (in that order) to break ties.

4) RECOD Step 2: Partitioning to Minimize Increase in
MEM : In step 2 we select the set of dependencies that
give us the least increase in memory required for pipeline
buffers (MEM). Given a dependence (selected
in step 1) to be retimed we define the following three sets with
respect to :

there is a path from to

there is a path from to

Fig. 8 gives an illustration of the three sets. We can retime the
dependence by retiming all dependences belonging
to cutset c1as follows: and

. Another way to retime
dependence to retime the dependencies belonging
to cutset c2as follows: and

However
it is possible that neither cutsetc1 nor c2 result in a minimum
increase in MEM . We could obtain anothercutset c3(see
Fig. 8) by partitioning the set into and , so that the memory
increase is minimized. The cost function being minimized is
defined as follows. For a cut , the cutsize
cost is given by : Cost where is the number
of data items transferred across the dependence. In the cost
function the sum gives us the extra memory required by the
LCDsafter retiming. During partitioning we ensure that if a task

is in partition then all its predecessors (successors) are
also in partition . After partitioning set in to sets and

we do retiming using the following two equations:

5) RECOD: Algorithm: The algorithm to do retiming trans-
formation is shown in Fig. 9. The function
selects a dependence to be retimed (see RECOD step 1). The
functionpartition() as the name suggests partitionsbetween

and (see RECOD step 2). The embeddedfor-loopsapply
the retiming transformation.

a) Time Complexity:The time complexity of the retiming
heuristic is determined by the partitioning algorithm used in
recod step 2. We use a simulated annealing based algorithm
with a start temperature of 100, final temperature of 0.001 and
a decrement factor of 0.9. At a particular temperature the algo-
rithm makes atmost moves. During each move the algorithm
explores the immediate neighbors of the selected task. Hence,
the time complexity of the retiming algorithm is .

204 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

Fig. 8. P , S, andR sets for dependence (u; v).

Fig. 9. RECOD: Algorithm.

IV. RESULTS

In this section we evaluate our approach to designing
pipelined HW-SW systems. We first evaluate the performance
our retiming heuristic by comparing it with another existing
heuristic. We then evaluate the the run time of the algorithm,
quality of the initial solution and quality of the final solution
generated by our design by conducting experiments with
synthetically generated task graph. We finally conduct a case
study of the JPEG image compression algorithm and establish
the effectiveness of our approach with realistic task graphs.

In two of the experimental studies that will be presented in
the following subsections we use synthetically generated task
graphs. We conduct experiments with random task graphs due
to lack of established benchmarks in the codesign area. The task
graphs were generated randomly. They differed in the number

of tasks, depths, number of dependences, number of data items
transferred across each dependence, HW run times, area and SW
run times.

A. RECOD Versus UNRET

We compare the performance of RECOD with UNRET [48].
UNRET retimes the head dependence or tail dependence of a
maximum positive path (MPP). MPP is similar to our critical
pathCP. We conducted the experiment with synthetically gen-
erated task graphs. We randomly mapped the tasks to HW and
SW and compared the pipelined schedules generated by the
two heuristics. The results of the study are shown in Table I.
Columns two and three indicate the number of tasks and the
depth of the task graph. Column four gives the minimum initi-
ation interval of the task graph. Columns five to eight and nine
to twelve indicate the achieved initiation interval, number of
pipeline stages, amount of memory required for and time
required on a SPARC 5 machine by RECOD and UNRET re-
spectively. Columns thirteen to fifteen indicate the percentage
reduction in , pipeline stages, and MEM due to RECOD
in comparison with UNRET. Column 16 gives the percentage
increase in time required for the RECOD solution over UNRET
solution.

A few interesting characteristics of the retiming heuristic can
be observed from the results. The number of pipeline stages
and MEM for a design generated by RECOD are always
less than a design generated byUNRET. In particular for task
graphs with larger depth (rows 6, 8, 10, 12) RECOD gives far
fewer number of pipeline stages then UNRET. Since the task
graphs have a larger depth, RECOD step 2 explores a very lim-
ited portion of the task graph. Hence, the improvement is pre-
dominantly due to RECOD step 1. In step 1, RECOD selects

CHATHA AND VEMURI: HW–SW PARTITIONING AND PIPELINED SCHEDULING OF TRANSFORMATIVE APPLICATIONS 205

TABLE I
COMPARISON OFRECODWITH UNRET

a dependence that on retiming would give maximum freedom
to the scheduler. As a result, we apply retiming transforma-
tion a lesser number of times resulting in fewer-pipeline stages.
Fewer iterations of the retiming transformation also result in
lesser amount of pipeline memory required byLCDs. On the
other hand, for task graphs with smaller depth (rows 5, 7, 9,
11) RECOD gives fewer pipeline memory than UNRET. This is
because the task graphs are very wide and RECOD step 2 can
explore a wide-search space and give designs that require fewer
pipeline buffers. The initiation interval of the designs generated
by RECOD and UNRET are almost similar. Both the heuristics
give designs whose and this is due to communi-
cation conflicts on the shared memory. RECOD gives slightly
better than UNRET because it produces a design with fewer
pipeline stages and hence less concurrency. As a result, there are
fewer conflicts on the shared memory. The drawback of RECOD
is the increased time required (over 44% more) for solution gen-
eration as compared to UNRET. This overhead is essentially due
to RECOD step 2.

B. Evaluation of Overall Approach

In this section, we conduct four experiments aimed at eval-
uating the run time of the tool, establishing the quality of the
initial solution and evaluating the overall approach. Due to a
lack of accepted benchmarks, we conduct the experiment with
synthetically generated task graphs. We generated random task
graphs with eight to thirty nodes in increments of two. At each
node size we generated five task graphs by varying the depth,
connectivity, number of data items, transferred across the de-
pendence and task run times, respectively. We generated a total
of 60 task graphs.

We evaluated the run time of the tool by invoking it for each of
the task graphs and obtaining an optimal solution under no con-
straints (see Fig. 10). In the figure we have plotted the average
execution time for each node size. The maximum-run time of
the tool was 30 min for a graph with 30 nodes. A low run time
was possible because of the good quality of the initial solution
and the search space bounding techniques. In the second study,
we analyzed the quality of the initial partition generated by the
tool. We calculated the percentage deviation in the initiation in-
terval of the initial partition from the final partition for all the

Fig. 10. Execution time of algorithm.

Fig. 11. Percentage deviation of initial solution from final solution.

graphs (see Fig. 11). The weighted average percentage devia-
tion was found to be 6.3%. In the third study we plotted the
number of solutions generated by the partitioner before it found
the final solution (see Fig. 12). The weighted average number of
solutions generated by the partitioner before the final solution
was 10.2. Studies two and three demonstrate the superior quality
of the initial solution. Therefore, for large graphs we can use a
timeout option for the codesign partitioner and still have a high
degree of confidence in the quality of the design.

Finally, in the fourth study we compared the solutions ob-
tained by our tool against the minimum that was obtained
by the partitioner during design space exploration (see Fig. 13).
The minimum is a lower bound on the global-optimum
solution for a particular task graph. The final solution is on an

206 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

Fig. 12. Number of solutions explored before final solution.

Fig. 13. Percentage deviation of final solution from minimumMII .

average within 4.2% of the global optimum. This result vali-
dates our overall approach. We are able to generate high-perfor-
mance designs because of the superior quality of the retiming
heuristics.

C. Case Study: Pipelined Implementation of JPEG Algorithm

We consider the HW–SW codesign of the JPEG image com-
pression algorithm. It is a loop oriented application and there-
fore ideal for pipelined implementation. We specified the al-
gorithm as a with 12 tasks (see Fig. 14): preprocessing,
eight tasks that perform vector-matrix multiplication, zig-zag
encoding, quantization, and a task that performs runlength and
Huffman encoding. The eight tasks of vector-matrix multiplica-
tion together perform the forward discrete cosine transformation
(FDCT). The only difference with the JPEG standard was that
our specification operates on a [44] matrix of pixels instead
of a [8 8] matrix. The FDCT task was split to expose the par-
allelism present in it. The “C” specification of the tasks required
about 1900 lines of code. The SW times were obtained by pro-
filing the task graph on a 100 MHz pentium based PC. The HW
time and area for each task were obtained for an ASIC imple-
mentation by using a high level synthesis tool. The system bus
was assumed to be a PCI bus operating at 33 Mhz with two-cycle
transfer time. We then obtained pipelined codesign implementa-
tions for the algorithm by specifying different constraints on the

and area. The results of the experimentation are in Fig. 15.
The results vary from the fastest implementation (in the top left)
that occupies the maximum area to the slowest all software se-
quential implementation (bottom right). The clock frequency of
the coprocessor was estimated as the reciprocal of the maximum
register to register delay over all tasks mapped to HW. The clock
frequency was determined to be about 20 Mhz for all cases.

Fig. 14. Task graph for JPEG encoding.

Fig. 15. Design space exploration for the JPEG algorithm.

The tool took less than 2 s to generate a feasible solution for
each of the design constraints. Moreover the pipelined schedules
for all the partitions executed with , that is, all were op-
timal-pipelined schedules. This observation justifies the objec-
tive function of the codesign partitioner. It also indicates that the
pipelined scheduler is able to generate high quality schedules.

V. DISCUSSION

In this section, we briefly discuss extensions to our work, its
limitations, and pipeline hazards.

A. Extensions

We assume that the application specification does not
contain dependence loops. Dependence loops at a coarse level
of granularity typically occur as control loops. For example,
the MPEG-2 encoding algorithm might contain a control loop
to adjust the quantization task to compensate for variable
decoding rate. Dependence loops also limit the attainable

of a task graph. The due to a dependence loop
in a data dependence graph is given by

CHATHA AND VEMURI: HW–SW PARTITIONING AND PIPELINED SCHEDULING OF TRANSFORMATIVE APPLICATIONS 207

[48]. The for the task
graph is given by
where loops . We
can handle such dependence loops by detecting them and
collapsing the loops into single tasks during retiming. This
technique, however, does not optimize the dependence loop by
redistributing the delays.

Our tool considers a single HW design point for every task
with one HW area and HW runtime. In reality, for each HW
task it is possible to generate multiple design points that have
varying area and HW run times. Our tool can be easily modified
to handle multiple HW design points. The modifications to be
made are as follows:

• We modify the suitability calculation (Section III-BI) by
calculating the suitability for each design point of the task.
For a HW task the initial solution algorithm selects the de-
sign point that has the maximum suitability over all design
points of a task.

• During the branch and bound search while mapping a task
to HW we first select the design point with maximum suit-
ability.

The conditions for limiting the search space can be applied
without modifications.

The tool assumes a fixed codesign architecture consisting of a
SW processor and HW coprocessor. Although, this architecture
has been widely used in literature[10]–[16] it is limited by the
number of processors. A multiprocessor architecture with mul-
tiple HW and SW processors would be more versatile. We can
easily extend our tool for an architecture that has multiple HW
coprocessor and single SW processor. This problem is similar
to multiple HW design points problem described above. In this
case we would calculate the suitability of the task for different
design points on each HW coprocessor. The branch and bound
algorithm would then map a HW task to the HW coprocessor
that has the maximum suitability design point. We would like to
stress that both these modifications would result in an exponen-
tial increase in the execution time of the algorithm.

B. Limitations

The tool is limited by its branch and bound-based partitioner.
Although, the tool generates solutions for 30 node tasks in rea-
sonable amount of time, it cannot handle larger task graphs. Any
modification to the algorithm as described above causes an ex-
ponential increase in the execution time of the algorithm. Also,
as mentioned earlier our technique cannot optimize dependence
loops. Future work will involve alleviating these two limitations.

The task graph format assumed by the tool does not sup-
port conditional constructs at top level. An individual task itself
may contain control-flow constructs inside of it. Most transfor-
mative applications can be described in our task graph format
and we can obtain pipelined implementations for them. Since
the task graph format does not support control-flow constructs
the application domain of our tool is limited to transformative
applications.

C. Pipeline Hazards

Pipeline hazards are of three types: read after write, write after
write, and write after read [51]. A pipeline hazard occurs when a
data dependence is violated. The runtimes of the different tasks

may depend on the input-data set. In such a case, if a task fin-
ishes execution in a shorter time it may cause a hazard if it ex-
ecutes its write operation. We avoid pipeline hazards by strictly
enforcing the schedule during cosynthesis. The schedule honors
all data dependencies and establishes an order on task execution
and task communication. During cosynthesis, both of these are
embedded in the final implementation. Hence, even if the exe-
cution time of the task varies it does not cause a pipeline hazard
since the communication schedule is not violated.

VI. CONCLUSION

We presented a tool for HW–SW partitioning and pipelined
scheduling of transformative applications. The HW–SW
partitioner used a branch and bound approach with a unique
objective function that optimized the initiation interval of the
final design. We discussed techniques for generating the initial
solution, selecting a task to be mapped and limiting the search
space of the algorithm. We presented results that established
the quality of the initial solution and effectiveness of the search
space bounding techniques. We then presented a novel retiming
heuristic that optimized the initiation interval, number of
pipeline stages, and pipeline buffers of a pipelined implemen-
tation. We compared the performance of our retiming heuristic
with an existing heuristic. We then discussed a case study
for pipelined HW–SW implementation of the JPEG image
compression algorithm. The results of the study demonstrated
the effectiveness of our approach to a realistic example. We
concluded the paper with a discussion on possible extensions
to our tool, its limitations, and pipeline hazards.

REFERENCES

[1] J. T. J. Van Eijndhoven, F. Sijstermans, K. Vissers, E. Pol, M. Tromp, P.
Struik, R. Bloks, P. V. D. Wolf, A. Pimentel, and H. Vranken, “Trimedia
CPU64 architecture,” inProc. Int. Conf. Computer Design, Oct. 1999,
pp. 586–592.

[2] H. Takata, T. Watanabe, T. Nakajima, T. Takagaki, H. Sato, A. Mohri,
A. Yamada, T. Kanamoto, Y. Matsuda, S. Iwade, and Y. Horiba, “The
D30V/MPEG multimedia processor,” inIEEE Micro. Piscataway, NJ:
IEEE Press, 1999.

[3] M. Ikeda, T. Kondo, K. Nitta, K. Suguri, T. Yoshitome, T. Minami, H.
Iwasaki, K. Ochiai, J. Naganuma, M. Endo, Y. Tashiro, H. Watanabe,
N. Kobayashi, T. Okubo, T. Ogura, and R. Kasai, “SuperEnc: MPEG-2
video encoder chip,” inIEEE Micro. Piscataway, NJ: IEEE Press,
1999.

[4] H. De Man, I. Bolsens, B. Lin, K. V. Rompaey, S. Vercauteren, and D.
Verkest, “Co-design of DSP systems,” inHardware/Software Codesign
(Proc. the NATO Advanced Study Institute on Hardware/Software Code-
sign), G. D. Micheli and M. Sami, Eds. Norwood, MA: Kluwer , 1996.

[5] K. Melhorn, Graph Algorithms and NP-Completeness. New York:
Springer-Verlag, 1977.

[6] C. V. Ramamoorthy and H. F. Li, “Some problems in parallel and
pipeline processing,” inProc. COMPCON, Sept. 1975.

[7] B. Fluiter, E. H. L. Aarts, J. H. M. Korst, W. F. J. Verhaegh, and A. V. D.
Werf, “The complexity of generalized retiming problem,”IEEE Trans.
Computer-Aided Design, vol. 15, pp. 1340–1353, Nov. 1996.

[8] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A frame-
work for simulating and prototyping heterogeneous systems,”Int. J.
Computer Simulation, vol. C-36, no. 1, pp. 24–35, Jan. 1987.

[9] P. Chou, R. B. Ortega, and G. Borriello,The Chinook Hardware/Soft-
ware Co-Synthesis System. Piscataway, NJ: IEEE Press, 1995.

[10] R. K. Gupta and G. D. Micheli, “Hardware–software cosynthesis for
digital systems,”IEEE Design Test Comput., vol. 10, pp. 29–41, 1993.

[11] R. Ernst, J. Henkel, and T. Benner, “Hardware–software cosynthesis for
microcontrollers,”IEEE Design Test Comput., vol. 10, no. 4, pp. 64–75,
1994.

[12] A. Kalavade and E. A. Lee, “The extended partitioning problem: Hard-
ware/software mapping, scheduling and implementation-bin selection,”
J. Design Automat. Embedded Syst., vol. 2, no. 2, pp. 125–163, 1997.

208 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 3, JUNE 2002

[13] R. Niemann and P. Marwedel, “Hardware/software partitioning using in-
teger programming,” inProc. European Design and Test Conf, ED&TC,
1996.

[14] J. Madsen, J. Grode, P. V. Knudsen, M. E. Petersen, and A. Haxthausen,
“LYCOS: The Lyngby Co-Synthesis System,”J. Design Automat. Em-
bedded Syst., vol. 2, no. 2, 1997.

[15] P. Eles, Z. Peng, K. Kuchinski, and A. Doboli, “System level hard-
ware/software partitioning based on simulated annealing and tabu
search,”J. Design Automat. Embedded Syst., vol. 2, pp. 5–32, 1996.

[16] J. Jeon and K. Choi, “Loop pipelining in hardware–software parti-
tioning,” in Proc. ASPDAC, 1998.

[17] S. Prakash and A. C. Parker, “SOS: Synthesis of application-specific het-
erogeneous multiprocessor systems,”J. Parallel Distributed Computing,
vol. 16, pp. 338–351, 1992.

[18] B. P. Dave and N. K. Jha, “COHRA: Hardware–software co-synthesis of
hierarchical heterogenous distributed embedded systems,”IEEE Trans.
Computer-Aided Design, vol. 17, Oct. 1998.

[19] R. P. Dick and N. K. Jha, “MOGAC: A multiobjective genetic algorithm
for hardware–software cosynthesis of distributed embedded systems,”
IEEE Trans. Computer-Aided Design, vol. 17, Oct. 1998.

[20] Y. Li and W. H. Wolf, “Hardware/software co-synthesis with memory
hierarchies,”IEEE Trans. Computer-Aided Design, vol. 18, Oct. 1999.

[21] F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-Vincentelli,
“Scheduling for embedded real-time systems,”IEEE Design Test
Comput., Jan.–Mar. 1998.

[22] S. Bakshi and D. D. Gajski, “Partitioning and pipelining for perfor-
mance-constrained hardware/software systems,”IEEE Trans. VLSI
Syst., vol. 7, Dec. 1999.

[23] B. R. Rau and C. D. Glaeser, “Some scheduling techniques and an easily
schedulable horizontal architecture for high performance scientific com-
puting,” in Proc. 14th Annu. Workshop Microprogramming, Oct. 1981,
pp. 183–198.

[24] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”Algo-
rithmica, vol. 6, no. 1, pp. 5–35, 1991.

[25] S. Malik, K. J. Singh, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Performance optimization of pipelined logic circuits using peripheral
retiming and resynthesis,”IEEE Trans. Computer-Aided Design, vol.
12, May 1993.

[26] N. Shenoy and R. Rudell, “Efficient implementation of retiming,” inInt.
Conf. Computer-Aided Design, 1994.

[27] S. T. Chakradhar, S. Dey, M. Potkonjak, and S. G. Rothweiler, “Sequen-
tial circuit delay optimization using global path delays,” inDesign Au-
tomation Conf., DAC, 1993.

[28] N. Maheshwari and S. Sapatnekar, “An improved algorithm for min-
imum-area retiming,” inDesign Automation Conf., DAC, 1997.

[29] V. Sundararajan, S. Sapatnehar, and K. K. Parhi, “MARSH: Min-area
retiming with setup and hold constraints,” inProc. Int. Conf. Computer-
Aided Design, 1999.

[30] N. Shenoy, “Retiming: Theory and practice,”Integration, VLSI J., vol.
22, pp. 1–21, 1997.

[31] S. Huang and J. Rabaey, “Maximizing the throughput of high perfor-
mance DSP applications using behavioral transformations,” inProc. Eu-
ropean Design Automation Conf., EuroDAC, Mar. 1994, pp. 25–40.

[32] L.-F. Chao and E. H.-M. Sha, “Scheduling data-flow graphs via retiming
and unfolding,”IEEE Trans. Parallel Distrib. Syst., vol. 18, Dec. 1997.

[33] S. Hassoun and C. Ebeling, “Architectural retiming: Pipelining latency-
constrained circuit,” inProc. Design Automation Conf., DAC, 1996.

[34] M. Lam, “Software Pipelining: An Effective Scheduling Technique for
VLIW Machines,” in Proc. SIGPLAN Conf. Programming Language
Design Implementation, Atlanta, GA, June 1988, pp. 318–328.

[35] G. De Micheli,Synthesis and Optimization of Digital Circuits. New
York: McGraw-Hill, 1994.

[36] R. Govindrajan, E. R. Altman, and G. R. Gao, “A framework for re-
source-constrained rate-optimal software pipelining,”IEEE Trans. Par-
allel Distrib. Syst., vol. 7, Nov. 1996.

[37] S.-M. Moon and K. Ebcioglu, “An efficient resource-constrained global
scheduling technique for superscalar and VLIW processors,” inProc.
Int. Symp. Workshop Microarchitecture, Dec. 1992.

[38] A. Aiken and A. Nicolau,Perfect Pipelining: A New Loop Paralleliza-
tion Technique, Tech. Rep., Department of Computer Science. Ithaca,
NY: Cornell Univ. Press, 1987.

[39] J. Wang, C. Eisenbeis, M. Jourdan, and B. Su, “Decomposed software
pipelining: A new perspective and a new approach,”Int. J. Parallel Pro-
gramming, vol. 22, no. 3, 1994.

[40] P.-Y. Calland, A. Darte, and Y. Robert, “Circuit retiming applied to de-
composed software pipelining,”IEEE Trans. Parallel Distrib. Syst., vol.
9, Jan. 1998.

[41] N. Park and A. C. Parker, “Sehwa: A software package for synthesis of
pipelines from behavioral specifications,”IEEE Trans. Computer-Aided
Design, vol. 7, Mar. 1998.

[42] P. G. Paulin and J. P. Knight, “Force-directed scheduling for behavioral
synthesis of ASIC’s,”IEEE Trans. Computer-Aided Design, vol. 8, June
1989.

[43] T.-F. Lee, A. C.-H. Wu, D. D. Gajski, and Y.-L. Lin, “An effective
methodology for functional pipelining,” inInt. Conf. Computer-Aided
Design, 1992.

[44] G. Goossens, J. Vandewalle, and H. D. Man, “Loop optimization in reg-
ister-transfer scheduling of DSP-systems,” inProc. Design Automation
Conf., DAC, 1989.

[45] L.-F. Chao, A. S. LaPaugh, and E. H.-M. Sha, “Rotation scheduling: A
loop pipelining algorithm,”IEEE Trans. Computer-Aided Design, vol.
16, Mar. 1997.

[46] C.-Y. Wang and K. K. Parhi, “High-level DSP synthesis using con-
current transformations, scheduling and allocation,”IEEE Trans.
Computer-Aided Design, vol. 14, Mar. 1995.

[47] C.-Y. Wang, Y.-N. Chang, and K. K. Parhi, “Heuristic loop-based sched-
uling and allocation for DSP synthesis with heterogeneous functional
units,” J. VLSI Signal Processing, vol. 19, pp. 243–256, 1998.

[48] F. Sánchez, “Loop Pipelining With Resource And Timing Constraints ,”
Ph.D., UPC Universitat Politèchnica de Catalunya, 1995.

[49] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,”IEEE Trans. Comput.,
vol. C-36, Jan. 1987.

[50] T. C. Hu, “Parallel sequencing and assembly line problems,”Operations
Res., vol. 9, pp. 841–848, 1961.

[51] K. Hwang,Advanced Computer Architecture: Parallelism, Scalability,
Programmability. New York: McGraw-Hill, 1993.

Karam S. Chatha (M’01) received the B.E. (Hons.) degree in computer tech-
nology from Bombay University, India, and the M.S. and Ph.D. degrees in com-
puter science and engineering from the University of Cincinnati, OH, in 1993,
1997, and 2001, respectively.

He is currently an Assistant Professor in the Department of Computer Science
and Engineering at the Arizona State University, Tempe. His research interests
include computer-aided design of VLSI systems, HW–SW codesign, system-
level design embedded systems and reconfigurable computers.

Dr. Chatha received the Best Paper Award at the Field Programmable Logic
and Applications Workshop (FPL), in 1999.

Ranga Vemuri (S’87–M’88–SM’00) received
the M.Tech. degree from the Indian Institute of
Technology, Kharagpur, and the Ph.D. degree from
Case Western Reserve University, Cleveland, OH, in
1985 and 1988, respectively.

He is currently a Professor of the Department of
Electrical and Computer Engineering and Directs the
Laboratory for Digital Design Environments with
the University of Cincinnati, OH. He is coauthor
of about 130 research publications. His research
interests include computer-aided design of VLSI
systems, reconfigurable computers, mixed signal
design automation, formal verification, high-level

synthesis, and hardware description languages.
Dr. Vemuri is the recipient of the University of Cincinnati Faculty Achieve-

ment Award, the Sigma Xi Outstanding Young Researcher Award, the William
Middendorf Distinguished Research Award, the William Restemeyer Distin-
guished Teaching Award, the Engineering Tribunal Award for Outstanding
Teaching, and several best paper awards at various international conferences,
including VLSI Design 2000, FPL 1999, and ICCD 1998. He currently serves
as an Associate Editor of IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION(VLSI) SYSTEMS. He was a Guest Editor of the IEEE Computers
Special Issue on Reconfigurable Computers: Technology and Applications,
and of the IEEE TRANSACTIONS ONVERY LARGE SCALE INTEGRATION(VLSI)
SYSTEMSSpecial Issue on Adaptive and Reconfigurable VLSI Systems.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

