Performance Evaluation Tool for Rapid Prototyping of
Hardware-Software Codesigns *

Karam S. Chatha and Ranga Vemuri,
Department of ECECS, University of Cincinnati, Cincinnati, Ohio 45221-0030.
Email:{kchatha,ranga}@ececs.uc.edu

Abstract

Performance evaluation is essential for tradeoff anal-
ysts during rapid prototyping. Fristing performance
evaluation strategies based on co-simulation and static
analysis are either too slow or error prone. We there-
fore present an intermediate approach based on profil-
g and scheduling for rapid prototyping of hardware-
software codesigns. Qur performance evaluation tool
obtains representative task temings by profiling which s
done simultaneously with system specification. During
destgn space exploration the tool obtains performance
estimates by using well known scheduling and novel re-
timing heuristics. It is capable of obtaining both non-
pipelined and pipelined schedules. The tool includes an
area estimator which calculates the amount of hardware
area required by the design by taking resource sharing
between different hardware tasks in to account. The
tool also allows the user to evaluate the performance
of a particular schedule with different task timings. In
contrast to co-simulation and static analysis, the tool is
able to provide fast and accurate performance estimates.
The effectiveness of the tool in a rapid-prototyping en-
vironment is demonstrated by a case study.

1. Introduction

Performance evaluation is the corner stone for effec-
tive design space exploration. The performance evalua-
tion tool should satisfy two important requirements. It
should be fast so that the design cycle time is short; and
it should give fairly accurate estimates to be a useful
tool. In this paper we discuss a performance evaluation
tool which satisfies these two important requirements.

The hardware-software codesign flow for rapid proto-
typing is shown in Figure 1. The inputs are denoted in
dashed boxes and the design steps are enclosed in solid
boxes. The codesign architecture contains a single gen-
eral purpose microprocessor, a single hardware (HW)
processor and a block of shared memory. The shared

*This work was partially supported by the ARPA RASSP pro-
gram and monitored by the Wright Lab, US-AF under contract
number F33615-93-C-1316.

9

o Profile on Target SW o
processor
Select tasks for possible
HW implementation

Obtain behavioral VHDL
equivalent of the tasks

Use a HLS tool to obtain
| HW runtime and resources g
Extract DDG [
7777777777 representation
| Codesign |
| Architecture |
| Design space exploration Performance
| (HW-SW partition) Evaluation

Rapid Prototyping
Figure 1. Rapid Prototyping Design Flow

memory is exclusive read and exclusive write. It 1s used
for communication between tasks mapped to the soft-
ware (SW) processor and the HW processor and also
between two tasks mapped to the HW processor. We
assume that no two HW tasks can execute in parallel
on the HW processor. The advantage is that such an
implementation strategy allows us to bind more tasks
to HW. The trade-off is that we reduce the amount of
concurrency that can be implemented in HW.

The input specification is profiled by executing it with
typical input stimuli and the runtimes of the various
tasks is obtained on the target SW processor. Run-
times of certain tasks might constitute a large percent-
age of the overall runtime of the design. Such tasks
might be suitable for HW implementation. The behav-
ioral VHDL equivalent of these tasks is passed through
a high level synthesis (HLS) system. The HLS sys-
tem helps in obtaining an estimate about the runtime
of the tasks in HW and the amount resources required
by the tasks in HW. The specification is then captured
in a data dependency graph (DDGQ) representation and
the nodes of the graph are partitioned to either SW or
HW. After a partition is obtained it is essential to eval-
uate its performance. This task is done by the perfor-
mance evaluation tool. The tool gives the partitioner
feedback in terms of the runtime, shared memory re-

quirements and amount of HW resources required by
the design. Once a constraint satisfying design is ob-
tained by the partitioner the design is implemented by
rapid-prototyping.

In the design flow mentioned above performance eval-
uation is done as a two step process. In the first step,
the runtimes of the tasks in SW and HW are obtained.
After the input specification is written, the designer
verifies its functionality by running it on test stimuli.
The SW runtimes of the tasks can be obtained at this
stage itself, thereby saving design time. The runtimes
and the resources required by the tasks in HW are ob-
tained by using a HLS tool and this does not take a long
time. During the second step of performance evaluation
the performance estimates are obtained by scheduling
the tasks on the codesign architecture. Scheduling also
does not take much time and hence our performance
evaluation strategy gives shorter design cycle time as
compared to co-simulation [2][11][14][16] or prototyp-
ing. Performance evaluation techniques based on static
analysis [6] of the code are faster but they have high er-
ror margins (over 30%) [8]. This is because static analy-
sis techniques do not fully capture the memory caching
and pipelining effects of the SW processor. Since we ob-
tain SW runtime estimates by actual execution of the
code our strategy has lower error margins.

The tool uses a profiling and scheduling to obtain run-
time and shared memory estimates of the design al-
ternatives. Other researchers consider scheduling in-
tegrated with HW-SW partitioning [3][4]. Profiling
has been used as an aid in design space exploration
in [7]. We obtain pipelined designs by iterative retim-
ing transformation [5] and scheduling. Our retiming
heuristic RECOD [5] differs from other existing tech-
niques [9][13][17] since it does retiming in two steps:
in the first step it tries it tries to minimize the run-
time of the pipelined design and in the second step it
tries to minimize the shared memory requirement of
the HW-SW codesign. Pipelined scheduling techniques
based on loop unfolding [12] have the disadvantage of
large memory requirements proportional to the unfold-
ing factor of the loop. List scheduling based techniques
[1] do scheduling and assigning tasks to different pipe
stages at the same time. This results in limited design
space exploration.

The paper is organized as follows: in Section 2 we
discuss our graph representation, Section 3 presents the
performance evaluation tool, the case study is in Section
4 and finally Section 5 concludes the paper.

2. Graph Representation

The internal graph representation used by our system
is a data dependency graph (DDG) format. The graph

Memory read time = 1 ns
Memory write time = 1 ns

100| |110 360
A C A Cc

sw Iter: D} Iter: 0 } Iter: 1 Iter: 1 370
Shared [w {W R w [w wl | R w
Memory

B 220 B
Hw Iter: 0 Iter: n+1
110 210 240 1390
Prologue Steady State : : Epilogue

Figure 2. DDG and Pipelined Schedule

is specified by a four tuple G(V, E, A, 8) [13] where V
is the set of tasks, F is the set of directed edges rep-
resenting the data dependencies between tasks ; A is a
mapping A : V — IN which denotes the teration in-
dex of a task and é is a mapping 6 : E — IN which
denotes the dependence distance of a data dependency
(IN is the set of integers). FEach vertex contains in-
formation about binding of the task (to HW or SW),
the task’s runtime on the SW processor, its runtime on
the HW processor and a list of the number and type of
HW resources required by the task. Each edge contains
information about the number of variables transfered
across the corresponding data dependence. Iteration
index (A) and dependence distance (8) are required to
implement a pipelined schedule of the graph. In order
to explain these terms we consider the DDG shown on
the left hand side in Figure 2. We assume that the
DDG is executed a number of times inside a loop. The
pipelined schedule of the design is shown below the
DDG. The big rectangles correspond to the various
tasks and the small rectangles indicate shared memory
read and write. The pipelined schedule consists of the
prologue, steady state and epilogue. In any iteration ¢
of the steady state instance of task A belonging to the
(i + 1) iteration of the original loop is executed. Hence
we say that the iteration index of A, A(4) = 1. Sim-
ilarly A(B) = 0, A(C') = 1 and A(D) = 0. Now for
the data dependency e = AB, data produced by task
A in iteration ¢ of the steady state is consumed by task
B in the iteration ¢ + 1 of the steady state. Therefore
the dependence distance of edge e = AB, §(AB) = 1.
Similarly 6(AC) = 0, §(BD) = 0 and 8(CD) = 1. The
D DG corresponding to the steady state is shown on the
right hand side of the figure.

3. Performance Evaluation Tool

The performance evaluation tool with its various sub-
blocks is shown in Figure 3. The inputs of the tool are
the partitioned DD, the codesign architecture and

Design Alternative | " Codesign |
(HW-SW Partitioned Design) Architecture!

Performance
Evaluation - -
Tool Q Q
Area Non-Pipelined Pipelined
Estimator Scheduler Scheduler

\User;
Schedule Analyzer

Runtime and Shared
Memory Estimates

Area Estimates

Figure 3. Performance Evaluation Tool

user specified data. A brief overview of the tool flow 1s
as follows. Given a partitioned D DG the area estimator
calculates the HW resources required by the design. De-
pending on the user the tool generates a non-pipelined
or pipelined schedule of the design. The schedule tries
to minimize the runtime of the design in the presence
of resource conflicts and communication delays. After
a schedule has been obtained the tool can estimate the
runtime and shared memory requirements of the de-
sign. A particular schedule is based on representative
task timings obtained during profiling. The user can
examine the performance of a particular non-pipelined
or pipelined schedule under different task timings by
using the schedule analyzer. In the following sections
we discuss each of these sub-blocks in detail.

3.1. Area Estimator

The area estimator calculates the total area occupied
by the tasks which are bound to the HW processor.
Since we assume that only one task can execute on the
HW processor at a given time, the HW tasks can share
resources. The resources of the task are classified into
two types: those that can be shared and those that
cannot be shared. The resources which can be shared
are functional units (for example adders, subtracters,
ALU) and registers. The resources which cannot be
shared are the controller and interconnect. The area
estimator takes the union of the shared resources asso-
ciated with all the tasks and then calculates the area
due to them. The area associated with resources which
are not shared is estimated by addition. The sum of the
areas due shared and non-shared resources is the total
area occupied by the tasks bound to the HW processor.

3.2. Non-pipelined Scheduler
A non-pipelined schedule of a DDG = G(V, E, A, §) is

an assignment of start times S to the tasks S : V —
IN such that all the data dependencies are honored,
that is V(u,v) € E such that §(u,v) = 0,S5(v) > S(u)+
Uegee, U,V € V. Ugze. 18 the total execution time of the
task. It is the sum of the task read time, runtime of the
task on the processor that it has been bound to and
task write time.

We use a list based scheduler to estimate the perfor-
mance of a non-pipelined design. The scheduler takes
resource conflicts due the HW processor, SW processor
and the shared memory into account. It also takes com-
munication delays into account. The list based sched-
uler maintains three ready lists: a HW ready list, a SW
ready list and a memory ready list. The list based sched-
uler also maintains a variable called fime to keep track
of passage of time as various tasks are scheduled. A
task is added to the HW or SW ready list when all its
predecessor tasks have been scheduled and completed
their execution. A task is selected to be scheduled from
the HW or SW ready list when the corresponding re-
source is free. The task is then considered to be in the
read state and it 1s added to the memory ready list. Af-
ter it has been selected from the memory ready list the
task does its read operation and runs on the assigned
resource. After the task has completed its run state, it
goes in to its write state and 1s again added to the mem-
ory ready list. A task finally finishes its execution when
it 1s selected from the memory ready list and scheduled
to do 1ts write operation. After all the tasks have been
scheduled the tool can estimate the total runtime of the
design.

Estimation of Shared Memory Requirement:
The shared memory required to implement the design
i1s the maximum amount of memory occupied during
one complete execution of the design. We assume that
a task during its execution needs shared memory space
for both its read and write variables. When a task com-
pletes execution it frees the shared memory occupied by
its read variables.

Heuristic Select Function: The scheduler uses
the same heuristic priority function to select a task
from the three ready lists. The priority of a task to
be selected depends on the following three properties
in descending order : mobility, variable difference and
number of successors. A task with lower mobility is
selected to be scheduled before a task with higher mo-
bility. The variable difference for a task w is given by
vardif f(u) = rdvar(u) — wrvar(u), where rdvar(u)
(wrvar(u)) is the number of variables read (written)
by the task u from (to) the shared memory. The mem-
ory requirement of a schedule is given by the maximum
memory occupied by the data items during one iteration
of the steady state. A task which reads more variables
than it writes is likely to reduce the number of variables
present in the memory. Hence it should be scheduled
near its ASAP time. Alternatively a task which writes
more variables than 1t reads should be scheduled near
its ALAP time. Hence a task with lesser variable dif-

ference 1s selected to be scheduled before a task with
greater variable difference. A list scheduling algorithm
performs better when it has more choice in the ready
list [13]. Hence a task whose completion adds more
tasks to the ready list is selected.

3.3. Pipelined Scheduler

The pipelined schedule refers to the schedule of the
steady state of the pipeline. The pipelined schedule of
a DDG is characterized by its Initiation Interval (II)
which is the time difference between the start of two
consecutive iterations of the steady state. The pipelined
schedule with an initiation interval /7 is an assignment
of start times to tasks, S(v), such that for all tasks
v in the graph 0 < S(v) < IT [13]. For a depen-
dency e = (u,v), the schedule time of «w and v must
honor the data dependence, that is S(v) + §(e) x IT >
S(u) + Uegee = S(v) > S(u) + tegee — 8(e) x 1. We
obtain a pipelined schedule by scheduling and retiming
in an iterative manner as shown in Figure 4. Given a
D DG there exists a theoretical lower bound on the ini-
tiation interval of it pipelined schedule called the Min-
imum Initiation Interval (MII) [13]. The MIT is de-
termined by two factors: the number of resources in
the codesign architecture and recurrences (or cycles) in
the graph. We calculate the M 1], and try scheduling
the DDG in M1I time. We use the list based sched-
uler described in Section 3.2. Due to the schedule con-
straining dependencies and communication conflicts we
may not be able to schedule the DDG in MII. If we
can’t, we try selecting a dependency to be retimed. In
the case that we do find a dependency, we retime it
and try scheduling the DDG again. The objective of
retiming s to reduce the number of schedule constrain-
g dependencies. If we cannot find a dependency to
be retimed we increase the objective initiation inter-
val and try scheduling again. The increment factor is
set to maximum of one percent of MII or one time
unit. After a successful schedule of the steady state has
been obtained we generate the corresponding prologue
and epilogue graphs by using loop unrolling transfor-
mation [13]. We then schedule the prologue and epi-
logue graphs to estimate the performance of the com-
plete pipelined implementation.

Schedule constraining dependencies: Depend-
ing upon its dependence distance a dependency may or
may not constrain a pipelined schedule. A dependency
(u,v) with é(u,v) = 0 implies that the data produced
by the predecessor task u is consumed by the succes-
sor task v in the same iteration of the steady state and
hence it constrains the schedule. Such a dependency
is called a intra loop dependency (ILD). We assume

"~ Design Alternative |
' (HW/SW Partitioned DDG)!

‘ Codesign ‘
\ \Architectu re

Ao
Calculate Mil
Set Il = Ml
—_ &|Schedule DDG
in Il Time
Select a dependency
to Retime
Dependency

Pipelined
Scheduler

0t

0

\ncrease 1

Generate Pmlogue
and Epilogue Graphs

Schedule Prologue
and Epilogue Graphs
\J

Output succesful
pipelined schedule
and performance estimates

Figure 4. Pipelined Scheduling Design Flow

that the all the tasks belonging to one iteration of the
steady state are executed before any task belonging to
the next iteration. Also the HW and SW resources
are themselves non-pipelined with respect to task ex-
ecution. Then a dependency (u,v) with é(u,v) > 0
Such a de-
pendency is called a loop carried dependency (LCD).
A LCD represents a data dependence between tasks
belonging to different iterations of the steady state.

does not constrain the pipelined schedule.

Shared memory requirement of the Steady
State: LC Ds represent data dependencies between
tasks belonging to different iterations of the steady
state. Hence before an iteration of the steady state
can begin there is already some memory occupied
by the LCD data which is given by Mempcp =
> ccrcp 0(e) x var(e), where var(e) is the number of
variables transferred across the data dependence e. The
memory required during one iteration of the steady
state is the maximum amount of memory occupied by
the data items during execution, Mem.;... This mem-
ory 18 both due to ILDs and LCDs. The memory
requirement of the steady state, MemReq is then given
by: MemReq = max(Mempcp, Memege.).

RECOD, A retiming heuristic: =~ We do retiming
when we are unable to schedule a DDG in the desired
initiation interval. Retiming changes the iteration in-
dices of nodes and dependence distances of edges to

produce an equivalent DDG with tasks belonging to
different iterations of the original loop. In other words
retiming helps in producing a pipelined DDG. The ob-
jective of retiming i1s to decrease the number of sched-
ule constraining dependencies with the least increase in
shared memory requirements. The performance evalua-
tion tool uses RECOD [5] which optimizes the resource
and memory utilization of HW/SW codesigns. A brief
explanation of the heuristics is as follows. RECOD does
retiming in two steps.

RECOD Step 1: In the first step RECOD selects a
dependency which on retiming gives maximum freedom
to the scheduler. Such a dependency is an I LD between
tasks bound to heterogeneous resources.

RECOD Step 2: Weretime a dependency by increas-
ing its dependence distance thereby converting it into a
LCD. However in order to apply a legal retiming trans-
formation which results in an equivalent graph there are
other dependencies that may also need to be retimed.
In step 2, RECOD selects a set of dependencies which
on retiming give the least increase in shared memory
requirements. Given a dependency (u,v) to be retimed
we can define the following three sets with respect to u:
V. = {connected component {o which u belongs }

P = {w € V |there is a path from wto u } U {u}

S ={w € V|there is a path from u to w }
R=V,—{PUS}

In the second step RECOD partitions the set R into
sets P and S such that the number of variables trans-
fered across the cut are minimized. RECOD retimes
the DDG by using the following two equations:

Vu € P, A(u) = Mu) + 1

V(u,v) € E,u € P,v ¢ P,6(u,v) = 8(u,v) + 1

Generation of Prologue and Epilogue Graphs:

Consider the retimed data dependency graph,
DDG,etimeq shown in Figure 5. The retimed graph rep-
resents the steady state of the pipelined schedule. At
the 7*? iteration of the steady state, a task u represents
the execution of the same task belonging to iteration
i+ A(u) of the original un-retimed DDG. For example
at the first (0'") iteration of the steady state task B rep-
resents the execution of the same task belonging to the
second (0 4+ A(B) = 1) iteration of the original DDG.
Since the maximum iteration index is Apyay = A(A) = 2,
the prologue must contain instances of task A belonging
to iterations 0 to Apqp — 1 of the original DDG. In or-
der to obtain the prologue we unroll the original DDG
(Amaz — 1) times and assign tasks to prologue. In the
figure we unroll the original DDG one time. We assign
tasks A, BandC' belonging to iteration zero; and task
A belonging to iteration one to the prologue. Now as-
sume that the steady state is executed zero times. Since

Retimed DDG

Figure 5. Prologue and Epilogue Graphs

the prologue has some tasks belonging to iterations 0
to Amar — 1 of the original DDG, the epilogue must
have the remaining tasks of the graph belonging to the
same iterations. For every incomplete iteration ¢ of the
unrolled DD in the prologue, the epilogue must have
the remaining tasks which complete that iteration. We
therefore assign task D belonging to iteration zero; and
tasks B, C'landD of iteration one to the epilogue.

Performance Estimation of the pipelined de-
sign: After the prologue and epilogue graphs have
been obtained the performance evaluation tool esti-
mates the memory requirement and runtime of the
prologue and epilogue graphs by using the list based
scheduler. Let the runtime of the prologue and epi-
logue graphs be given by runtime,,, and runtime.p;
respectively. Then the execution time of the pipelined
design for n iterations of the steady state is given
by: EzecutionTimepipeiine = runtimepr, +n - I +
runtime.y;. The memory requirement of the pipelined
design is the maximum of the memory requirement of
the steady state, prologue and epilogue.

3.4. Schedule Analyzer

The task runtimes which are stored in the DDG are
representative task runtimes which may change depend-
ing on the inputs. Therefore the performance of the ob-
tained schedule will also vary. The designer may need to
analyze the performance of a given schedule for differ-
ent task timings. This is done by the schedule analyzer.
The schedule analyzer constructs another graph called
the estimate graph which embeds the schedule informa-
tion inside the DDG. Consider the example shown in
Figure 6. The DDG contains 7 tasks labeled A to G.
The schedule time of each task is shown in the figure.
The execution order of the tasks according to the sched-
ule on the SW processor is [4, B, C, D]. Similarly the
execution order on the HW processor is [F, F, (7]. Since

Estimate Graph

SW Tasks // HW Tasks

Figure 6. Construction of Estimate Graph

the schedule of the DDG honors the data dependen-
cies between the tasks, the execution order of the tasks
for a resource honors the data dependencies between
tasks bound to that resource. Hence we can replace the
data dependencies between tasks bound to the same
resource, and add new directed edges between succes-
sive tasks in the order to obtain the estimate graph. In
the figure all data dependencies between tasks bound
to the same resource have been deleted, for example
between tasks A and C. Extra edges are introduced be-
tween successive tasks in the execution ordering ,for
example tasks I and E. Note we do not remove depen-
dencies between tasks bound to different resources.

The user can determine the performance of the sched-
ule by a breadth first traversal of the estimate graph.
Also he can change the runtime of any task and ob-
tain estimates about the performance of the schedule.
Performance estimation using estimate graph gives the
correct estimates for only the run time of a particular
schedule. It does not take in to account any change in
memory requirements that might occur.

4. Case Study

We discuss the HW-SW codesign of JPEG algorithm
for rapid-prototyping [10]. The codesign architecture
consists of a Pentium based PC operating at 100 Mhz
and the protozone [15] coprocessor. The protozone
board consists of two banks of 8 bit, 32K memory and
a Xilinx 4010 FPGA. The memory access time of the
protozone board is 125 ns. As a result the maximum op-
erating frequency of the HW is limited to 8 MHz. The
various tasks that are performed during JPEG compres-
sion and decompression are shown in Figure 7. Our im-
plementation of JPEG differs from the standard since
we process a 4x4 block of pixels instead of a 8x8 block.
We do this because we are constrained by the size of
the shared memory on the protozone board.

The SW code of the JPEG algorithm was profiled us-
ing commercial tools and it was noticed that the dis-
crete cosine transform (DCT) task takes over 75% of
the time both during compression and decompression
[10]. The DCT is composed of smaller sub-tasks as
shown in Figure 8. The profiling results indicated that
scalar to scalar multiplication (ssprod) takes over 60%

JPEG COMPRESSION FLOW

Image Pre- axa| ' [Foct [Quantzation]— Zig-zag Huffman | | Compressed
Daza4 A [FoeT]-o[Quantzaton Transform Encoding [+~ File

| Inverse [

Dats | provonsing || ook [12CT [+—{pe-Guanizaton S
IDCT De-Quanitzation Zig-Zag -

Data Processing Block 1 - Decoding |

Transform

JPEG DECOMPRESSION FLOW

Figure 7. JPEG Algorithm

Pre-processing sSw
and DCT
4

oct| ey
' 4,
Call 2 times with16 data inputs ssprod | | HW
and obtains 16 data items as results i |
matrix-matrix Repeated 224 | :
multiplication pnmes = 1
Call 4 times with 16 data inputs |)
and obtains 16 data items as results call return! 3 swW
L

vector-matrix
tpicaton
and obtains 16 data items as results 1

Call 4 times with 16 data inputs
vector-vector
uantization, sw
multiplication a

Call 7 times with 4 data inputs
and obtains 1 data item as results 16

scalar-scalar ssprod
multiplication P!

zig-zag sSwW

16

huffman sw

Figure 8. Call Graph for ssprod and corre-
sponding DDG representation

of the total execution time. Hence as a first cut it was
decided that ssprod be implemented in HW. The DDG
representation of the design is shown in Figure 8 along
with the task bindings. The JPEG algorithm was fully
implemented and the achieved execution times for var-
ious designs were compared with the runtime estimates
obtained by using the performance evaluation tool. The
results of the comparison are in Table 1. As can be seen
from the table we were able to obtain tight runtime es-
timates for both the compression and decompression
algorithm. The tool required less than 2 seconds to
generate each of these estimates.

It was observed that the JPEG implementation with
ssprod in HW actually runs slower than the SW im-
plementation. This was because of the communication
overheads of the design. As can be seen from the DDG
shown in Figure 9 for a single block of 16 pixels ssprod
is called 224 times leading to the high communication
times. Also it was noticed that with ssprod in HW there
was an under-utilization of the available HW resources.
Therefore it was decided to implement the entire DCT
in HW. The DDG for the design was similar to the
JPEG algorithm flow shown in Figure 7. It was a lin-
ear graph consisting of the four JPEG tasks. Again the
design was implemented [10] and the achieved runtimes
were compared with those obtained by our tool. The
results of this comparison are in Table 2. We are able

Compression Decompression

Input Run time (s) % Run time (s) %
File Act. Est. Err. Act. Est. Err.
Scenery 293 292.6 | 0.14 288 287.9 | 0.03
Portrait 284 284.4 | 0.14 279 297.8 6.7
Parrots 146 145.6 | 0.27 143 143.2 | 0.14
Turbo 34.85 34.5 1 34.12 | 33.94 0.5
Group 28.98 | 27.84 3.9 27.68 | 27.39 | 1.04
XV_sym | 27.26 271 0.6 26.87 | 26.66 0.7

Table 1. Comparison of times for Design 1

Compression Decompression
Input Run time (s) % Run time (s) %
File Act. Est. Err. Act. Est. Err.
Scenery 19.68 | 19.52 | 0.81 18.04 | 17.85 1.05
Portrait 18.69 | 1897 | 1.49 | 16.85 | 17.35 2.96

Parrots 9.54 9.71 1.78 8.76 8.88 1.36
Turbo 2.4 2.3 4.16 2.26 2.11 6.63
Group 1.97 1.85 6.09 1.85 1.7 8.10
XV_sym 1.88 1.81 3.72 1.76 1.65 6.25

Table 2. Comparison of times for Design 2
to estimate the runtimes of the designs within 8% error
margins. The time required to generate the estimates
was about 1 second.

In both design implementations discussed so far the
SW processor is idle when the HW executes and vice
versa. JPEG is a loop oriented algorithm and therefore
ideal for pipelined implementation. Pipelining of the
design will allow the SW and HW to execute in paral-
lel and increase the resource utilization of the design.
The pipelined implementation of the JPEG algorithm
overlapped the execution of preprocessing and DCT be-
longing to one iteration of the loop with quantization,
zigzag transform and huffman encoding of the previous
iteration of the loop [10]. The pipelined design required
4 seconds to compress a 10000 pixel file. The tool es-
timated the execution time for the same file as 4.8 sec-
onds. The decompression of the same file required 4.2
seconds, while the performance estimate by the tool was
for 4.14 seconds. The tool required less than 2 seconds
to generate the estimates.

5. Conclusion

In this paper we presented a performance evalua-
tion tool for rapid prototyping of pipelined and non-
pipelined HW-SW codesigns. The case study of the
JPEG algorithm showed that the tool is able to gener-
ate accurate estimates within a short time period (less
than 2 seconds). The limitation of the tool is its rather
simplistic data dependency graph representation. An-
other limitation is that the performance estimates are
only as good as the representative task timings gath-
ered during profiling. It is up to the designer to use a
good test set to obtain these timings.

References

[1] S. Bakshi and D.D. Gajski, “Hardware/Software Partitioning and
Pipelining,” Proceedings of 34" Design Automation Conference,
Anaheim, CA, June 1997.

[2] J. Buck, S. Ha, E.A. Lee and D.G. Messerschmitt, “Ptolemy:
A Framework for Simulating and Prototyping Heterogeneous Sys-
tems,” International Journal of Computer Simulation, VOL C-
36, NO. 1, pp 24-35, January 1987.

[3] P. Bjorn-Jorgensen and J.Madsen, “Critical Path Driven Cosyn-
thesis for Heterogeneous Target Architectures,”, Proceedings of
Fifth International Workshop on Hardware/Software Codesign,
Braunschweig, Germany, March 1997.

[4] T. Benner and R. Ernst, “A combined Partitioning and Schedul-
ing Algorithm for heterogeneous Multiprocessor systems,” Tech-
nical Report CY-96-2, Technical University of Braunschweig, Ger-
many.

[5] K.S. Chatha and R. Vemuri, “RECOD: A Retiming Heuristic To
Optimize Resource And Memory Utilization in HW/SW Code-
signs,” Proceedings of Sixth International Workshop on Hard-
ware/Software Codesign (CODES-CASHE’98), Seattle, March
1998.

[6] RK. Gupta and Giovanni De Micheli, “Hardware-Software
Cosynthesis for Digital Systems”, IEEE Destgn and Test of Com-
puters, pp. 29-41, September 1993.

[7] R.W. Hartenstein, J. Becker and R. Kress, “A Profiling-driven
Hardware/Software Partitioning of High-Level Language Specifi-
cations,” IFIP International Workshop on Logic and Architec-
ture Synthests, Grenoble, France, 1995.

[8] S-Sco Lim, Y.H. Bae, G.T. Jang, B-Do Rhee, S.L. Min, C.Y.
Park, H. Shin, K. Park, S-Mook Moon, C.S. Kim, “An Accurate
Worst Case Timing Analysis for RISC Processors,” IEEE Trans-
actions on Software Engineering, Vol 21, No. 7, July 1995.

[9] R.Lauwereins, M. Engels, M. Ade and J.A. Peperstraete, “Grape-
II: Graphical Rapid Prototyping Environment for Digital Signal
Processing Systems,”, IEEE Transactions on Computers, pp 35-
43, February 1995.

[10] N. Narasimhan, V. Srinivasan, M. Vootukuru, J. Walrath, S.
Govindrajan and R. Vemuri, “Rapid Prototyping of Reconfig-
urable Coprocessors,” Proceedings of the 1996 International Con-
ference on Application-Specific Systems, Architectures and Pro-
cessors, IEEE Press, August 1996.

[11] C. Passerone, M. Chiodo, W. Gosti, L. Lavagno and A.
Sangiovanni-Vincentelli, “ Evaluation of trade-offs in the design
of embedded systems via co-simulation,”, Technical Report Ver-
sion (UCB/ERL M96/12), University of California at Berkeley,
Berkeley, CA.

[12] K. K. Parhi and D.G. Messershmitt, “Static rate-optimal
scheduling of iterative data-flow programs via optimum unfold-
ing,” IEEE Transactions on Computers, 178-1951991.

[13] F. Sénchez, Loop Pipelining With Resource And Timing Con-
straints, Ph.D. Dissertation, UPC Universitat Politéchnica de
Catalunya, Barcelona, Spain, October 1995.

[14] M.B. Srivastava and R.W. Broderson, “SIERA: A Unified
Framework for Rapid-Prototyping of System-Level Hardware and
Software,” IEEFE transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, VOL. 14, NO. 6, June 1995.

[15] Stanford University, Protozone User’s Guide.

[16] C.A. Valderrama, A. Changuel, P.V. Raghavan, M. Abid, T. Ben
Ismail and A.A. Jerraya, “A Unified Model For Co-Simulation And
Co-Synthesis Of Mixed Hardware/Software Systems,” Proceedings
of European Design and Test Conference, March 1995, Paris,
France.

[17] V. Zivojnovié¢, H, Koerner and H. Meyr, “Multiprocessor
Scheduling with A Priori Node Assignment,” Proceedings of
VLSI’94, La Jolla, October 1994.

