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Abstract—We present a new framework for rate–distortion
( – ) analysis, where the coding rate and distortion are
considered as functions of which is the percentage of zeros
among the quantized transform coefficients. In [1], we observe
that, in transform coding of images and videos, the rate function
( ) is approximately linear. Based on this linear rate model,

a simple and unified rate control algorithm is proposed for all
standard video coding systems, such as MPEG-2, H.263, and
MPEG-4. In this paper, we further develop a distortion model and
an optimum bit allocation scheme in the domain. This bit allo-
cation scheme is applied to MPEG-4 video coding to allocate the
available bits among different video objects. The bits target of each
object is then achieved by our -domain rate control algorithm.
When coupled with a macroblock classification scheme, the above
bit allocation and rate control scheme can also be applied to other
video coding systems, such as H.263, at the macroblock level. Our
extensive experimental results show that the proposed algorithm
controls the encoder bit rate very accurately and improves the
video quality significantly (by up to 1.5 dB).

Index Terms—Bit allocation, rate control, rate-distortion anal-
ysis, video coding.

I. INTRODUCTION

T HE ULTIMATE objective in video coding and transmis-
sion is to provide the best video quality at the receiver

end, given the constraint of certain network conditions. Max-
imizing the picture quality implies minimizing the coding dis-
tortion of the reconstructed video. Given a bit budget, the best
picture quality or minimum coding distortion can be achieved by
optimum bit allocation [2] and accurate rate control [1], [3]–[6].
To be more specific, the bit allocation scheme is employed to
distribute the bits budget among the video data in such a way that
the overall distortion is minimized. The rate control algorithm is
then employed to meet the bit’s target by selecting appropriate
quantization settings for the video encoder. The key issue in bit
allocation and rate control is to estimate or model the rate–dis-
tortion ( – ) behavior of the video encoder. Note that the–
behavior of an encoder is characterized by its rate–quantization
( – ) and distortion-quantization (– ) functions, which are
collectively called – functions in this work.
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In the classic – analysis [3], [7], [8], the coding bit rate is
approximated by the zero-order entropy of the quantized coeffi-
cients. However, in transform coding of images and videos, es-
pecially at very low bit rates, there is a large mismatch between
the zero-order entropy and the actual coding bit rate [3]. This
is because, after discrete wavelet transform (DWT) or discrete
cosine transform (DCT), there is still significant correlation left
among the transform coefficients which can be further explored
by the coding algorithm. However, the analytic entropy formu-
lation does not take the efficient coding algorithm into account.

Since it is difficult to develop a closed-form expression to
directly model the R–D behavior, an empirical approach is
often used in – modeling and rate control. Several–
estimation, and control algorithms have been developed within
the context of video coding [3]–[6]. Some of them have been
adopted as international standards; typical of these are the
MPEG-2 Test Model Version 5 (TM5) rate control algorithm
[11], the H.263 Test Model Near-term Version 8 (TMN8)
algorithm [5], and the MPEG-4 Verification Model Version 8
(VM8) algorithm [4]. They are widely used in practical coding
applications. Besides these standard rate control algorithms,
many other algorithms have been proposed to target different
applications. A parametric – model has been proposed
by Tao et al. [14] for frame-level MPEG video coding. An
approach based on a normalized parametric– model [13]
has been developed for H.263-compatible video codecs.

Among the rate models used in these rate control algorithms,
some are based on the modified version of the classical–
functions which lead to logarithmic expressions [3], [5], [14].
Mathematical expressions of other types, such as power [6],
spline [12], and polynomial [4], have also been employed. It can
be seen that these– models have complex and highly non-
linear expressions. However, they still often suffer from rela-
tively large control errors and performance degradation at scene
changes. In addition, each of these– models and control al-
gorithms targets at a specific video coding system.

By introducing a new framework for – analysis, called
-domain – analysis, we developed a linear rate model

in [1]. Based on this simple rate model, a unified-domain
rate control ( -RC) algorithm is proposed for all the standard
video coding systems, such as MPEG-2, H.263 [15], [32] and
MPEG-4 [16]. Compared to other algorithms reported in the
literature, the -RC algorithm controls the encoder bit rate
much more accurately and robustly [1].

In this paper, based on the proposed– analysis frame-
work, we develop a distortion model in thedomain. Cou-
pled with the linear rate model, a-domain optimum bit allo-
cation scheme is developed. This bit allocation scheme is ap-
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plied to MPEG-4 video coding to distribute the bits among the
video objects in the scene. The bit budget allocated to each
video object is achieved by the-RC rate control algorithm.
For nonobject-based video coding, such as H.263, we propose
a macroblock (MB) classification scheme, and apply the pro-
posed algorithm to the macroblock classes. Our experimental
results show that with the proposed optimum bit allocation and
accurate rate control scheme, the coded picture quality is signif-
icantly improved (by up to 1.5 dB).

The rest of this paper is organized as follows, In Section II,
we introduce the -domain – analysis framework. For the
integrity of this paper, a brief review of the linear rate model and
-RC algorithm developed in [1] is provided in Section III. The
-domain distortion model is developed in Section IV. Section V

presents the-domain bit allocation scheme. In Section VI, we
apply the proposed bit allocation and rate control algorithm to
MPEG-4 object-based video coding. In Section VII, with mac-
roblock classification, the algorithm is applied to H.263 video
coding. The respective experimental results are included in each
section. Section VIII provides some concluding remarks.

II. -DOMAIN – ANALYSIS

It has been observed that zeros play a key role in transform
coding, especially at low bit rates [17]. All typical coding al-
gorithms treat zeros in a special way and address most of the
effort to efficient coding of zeros. For example, in JPEG and
MPEG coding, run-length representation and a special symbol
of end-of-block (EOB) are employed to code the zeros [9], [10].
In H.263 video coding, a special binary flag named “LAST”
is introduced to signal that all the remaining coefficients in a
zig-zag order in the current block are zeros [15], [32]. After the
DCT coefficients are quantized with a quantization parameter
, let be the percentage of zeros among the quantized coeffi-

cients. Note that in typical transform coding systems,mono-
tonically increases with. (Here we have made a trivial assump-
tion that the distribution of the transform coefficients is contin-
uous and positive.) Hence, there is a one-to-one mapping be-
tween and . This implies that, mathematically, and are
also functions of , denoted by and . A study of the
rate and distortion as functions ofis called -domain analysis.

The one-to-one mapping betweenand can be directly
computed from the distribution information of the transform co-
efficients. This is because in typical transform coding systems,
such as JPEG, MPEG-2, H.263, and MPEG-4, each transform
coefficient is quantized separately. In the following, we take
the H.263 coding as an example to explain how to compute the
one-to-one mapping betweenand . In the H.263-style quan-
tization scheme, the quantization index of a DCT coefficient
is given by

Round if is a DC coefficient
in an intra-MB

if is an AC coefficient
in an intra-MB

if is a coefficient
in an inter-MB

(1)

where “UTQ” represents the uniform threshold quantization

if

if

if .

(2)

Here, is the dead zone threshold. Let and be the
distributions of the DCT coefficients in the intracoded and inter-
coded macroblocks, respectively. Note that, in general, the DC
coefficients from the intracoded macroblocks will not be quan-
tized to zeros because of their relatively large values. Therefore,
for any quantization parameter, the corresponding percentage
of zeros can be obtained as follows:

(3)

where is the number of coefficients in the current video frame.
Note that in the H.263 codec, the DCT coefficients are rounded
to integers [18]. Therefore, and are actually his-
tograms of the DCT coefficients, and (3) becomes

(4)

It can be seen that (4) only involves a few addition operations.

III. -DOMAIN LINEAR RATE MODEL AND RATE CONTROL

For the integrity of this paper, in this section, we provide a
brief review of the -domain linear rate model and rate control
algorithm presented in [1].

A. Linear Rate Model

Based on extensive experimental results, we have shown in
[1] that, in all standard video coding systems such as MPEG-2,
H.263, and MPEG-4, for different types of source data such as
, , and frames, the base layer and enhancement layer, the

rate function in the -domain is approximately a linear function.
In other words, has the following expression:

(5)

where is a constant. In the following experiment, we show
that this linear rate model is also valid in object-based MPEG-4
coding. We run the MPEG-4 codec on the “News” sequence
(with two objects: foreground and background objects) at
different quantization parameters, and generate several points

on the rate curve . Let be the corre-
lation between and . In Fig. 1, we plot the value of

for each coded video object plane (VOP). It can be
seen that is very close to 1, which implies that there
is a very strong linear relationship between and . The
rate model in (5) is very simple due to its linear expression. It
is also very accurate because it represents the actual coding bit
rate of the image/video encoder.

In Table I, we list the average percentage of zeros among
the quantized DCT coefficients for a wide range of coding bit
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Fig. 1. Correlation coefficient (inverse) between the percentage of zeros� and
the coding bit rateR for each VOP in the foreground and background objects
of “News.”

rates. The coding algorithm is MPEG-4. The four test videos
are “Carphone,” “Akiyo,” “Foreman,” and “Football” in QCIF
format coded at 15 frames per second (fps). The last row of the
table lists the corresponding peak signal-to-noise ratio (PSNR)
for 960 kbps. We can see that these bit rates and PSNR values
are much higher than those required in practical video coding
applications. Even for 960 kbps, which is an extremely high
coding bit rate for QCIF videos, the average value ofis still
above 70%. Therefore, for practical purposes, we only need to
consider larger than 70%. For the coding bit rates commonly
used in practical applications, such as those less than 384 kbps,

is mostly larger than 90%.

B. Estimation of

The only parameter of the linear rate model in (5) is the slope
. In [1], we propose an adaptive estimation algorithm to esti-

mate the value of for each frame. Let be the number of
the coded macroblocks in the current frame. Note that in a 16

16 macroblock, there are totally 384 luminance and chromi-
nance coefficients. Let be the number of bits already used
to encode these macroblocks. Let be the number of zeros
produced by the quantization of these macroblocks. According
to (5), can be adaptively estimated as follows:

(6)

The estimated is then applied to rate control of the current
macroblock.

C. -Domain Rate Control

Based on the linear rate model and the adaptive estimation
of , a -domain rate control (-RC) algorithm is proposed. Let
the target bits per frame (or channel bandwidth) be. Let the
encoder buffer size be and the number of bits in the buffer
be . The available bits for coding the current frame is

(7)

TABLE I
AVERAGE PERCENTAGE OFZEROS FOR AWIDE RANGE OFCODING BIT RATES

where the target buffer levelis, by default, set to be 0.2 [5]. Let
be the number of macroblocks in a video frame. (For QCIF

videos, is 99.) The quantization parameter is determined by
the following steps.

Step 1 Initialization: Before encoding the first mac-
roblock, set . Generate the distribu-
tions and for the DCT coefficients in
the intra and inter macroblocks, respectively. Set

, which is its average value.
Step 2 Determine the quantization parameter: Suppose

the current MB number is . The number of co-
efficients in the remaining uncoded MBs is

. Note that there are still bits
available. According to (5), the percentage of zeros
to be produced by the quantization of the remaining
macroblocks should be

(8)

Based on the one-to-one mapping betweenand
, the step size is then determined. The current

macroblock is quantized withand entropy coded.
Step 3 Update: Let and be the number of zeros and

number of bits produced by the current macroblock,
respectively. Set , , and

. If , update the value of
according to (6). At the same time, subtract the

frequencies of the DCT coefficients in the current
macroblock from if it is an intra macroblock,
or from if it is an inter macroblock.

Step 4 Loop: Repeat steps 2 and 3 for the next macroblock
until all the macroblocks in the current frame are
encoded.

It can be seen that the above rate control algorithm is concep-
tually simple with very low computational complexity. It only
involves addition and few simple multiplication operations.
Therefore, the proposed algorithm also has a low implementa-
tion cost. The experimental results presented in [1] show that
our -RC algorithm outperforms other rate control algorithm
reported in the literature by providing much more accurate and
robust rate control.

IV. -DOMAIN DISTORTION MODEL

In the classical – analysis, the distortion (the mean
square error between the reconstruction frame and the original
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(a) (b)

Fig. 2. Distortion curves of each frame in Foreman.qcif in (a) theq domain
and (b) the� domain.

one) is considered to be a function of the quantization param-
eter , denoted by . From [1], we know that the rate func-
tion has a unique behavior in thedomain. This moti-
vates us to also study the distortion function in thedomain. Let

be the normalized distortion, where is the picture
variance. In Fig. 2, we plot the normalized distortion function
in the domain and the one in the-domain for
each video frame of “Foreman” coded by H.263. Two observa-
tions are made from these plots. First, in thedomain, is
defined over an infinite range . This is because theoret-
ically the quantization step size can be arbitrarily large. How-
ever, in the domain, the distortion function is defined
within a finite range [0, 1], since the largest value ofis 100%.
Mathematically, it is more convenient to analyze functions over
a finite range than an infinite range. Note that when ,
which means that the quantization parameteris very small,
we have . When , which means that the quan-
tization parameter is very large, we have . Second,
in the -domain, for different video frames, the plots of
are quite different from each other. However, in thedomain,
for different video frames, the variation of is very small.
This implies that the distortion function has a more robust and
regulated behavior in the domain than in the domain. We
observe that, for each video frame, has an exponential be-
havior and can be well approximated by

(9)

where is a constant that normally ranges from 10 to 20. As-
sume that the DCT coefficients have a Laplacian distribution
[19] given by

(10)

As we know, the relationship betweenand is given by

(11)

Fig. 3. Comparison between the actual�-domain distortion function and the
exponential distortion model.

For a uniform threshold quantizer with a dead-zone threshold
, where is a nonnegative constant, the quan-

tization distortion is given by

(12)

The corresponding percentage of zeros is given by

(13)

(14)

Combining (12) and (14), we have

(15)

where and . Obviously, this distor-
tion function is highly nonlinear and complex. It will be very
difficult to develop a close-form formula for the optimum bit
allocation based on such a complex distortion model. However,
we observe that given by (15) can be closely approximated
by (9), which is much simpler. To show this, in Fig. 3, we plot
the functions in (15) and (9) for and . We can
see that the simple exponential distortion model approximates
the actual distortion function very closely. For this reason, we
use (9) instead of (15) as our-domain distortion model.

V. OPTIMUM BIT-ALLOCATION SCHEME

Based on the distortion model in (9) and the linear rate model
in (5), a -domain optimum bit allocation scheme is developed
in this section.
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A. Bit Allocation in Brief Review

Before the formulation of our bit allocation scheme, we
briefly review some existing bit allocation schemes developed
in the literature. In transform coding of images and videos,
bit allocation is employed to distribute the bit’s budget among
different groups of transform coefficients to achieve the min-
imum overall quantization distortion. The problem of optimum
bit allocation was first addressed by Huang and Schultheiss
[20], where only an approximate solution to the problem was
provided. Further improvements have been suggested in [2],
[21], and [22] within the context of source quantization and
coding. The optimum bit allocation scheme can be applied
to various image-coding algorithms to improve their coding
performance, such as JPEG [23] and wavelet-based image
coding [24]. In video coding, bit allocation can be incorporated
into the rate control algorithm to further extend the capability
of the control algorithm and to improve the video presentation
quality [5], [11], [25].

The optimum bit allocation is carried out based on the–
functions of the encoder. The analytic formulas of the–
functions are used to derive the closed-form expression for the
optimum bit allocation scheme as in [2], [5], [20]–[22]. As
mentioned in Section I, the analytic models in the conventional

– analysis often suffer from relatively large estimation
error. As a result, the optimum bit allocation based on these

– models cannot be truly optimum [6]. For this reason, in
practical image/video coding, more accurate operational–
curves are employed to perform the optimum bit allocation
[12], [24]. Since the generation of the operational– curves
often has very high computational complexity, this type of
operational bit allocation scheme does not work efficiently
in practical video applications, especially in real-time video
coding and transmission. In the previous sections, we have
shown that the – functions have unique properties in the

domain and developed simple and accurate models for the
– functions. Based on these models, we can then develop

an optimum bit allocation scheme in thedomain.

B. -Domain Bit Allocation

In transform coding of images and videos, we need to take
two major steps to achieve the best picture quality. The first
step is the optimum bit allocation. Specifically, we need to de-
termine the number of bits assigned to each data source in such
a way that the overall distortion is minimized. Here, “source” is
a generic term. In video coding, it could be a frame, a video ob-
ject, or a group of macroblocks inside one frame. In the second
step, we need to accurately select the quantization parameter to
meet the bit budget for each source, which is exactly the problem
of rate control. We have solved this problem by developing the
-RC rate control algorithm. So, the only remaining issue is to

develop a -domain optimum bit allocation scheme.
In the domain, the rate and distortion functions for each

input source are given by (5) and (9), respectively. Let
be the input sources. For each, we have

(16)

(17)

Fig. 4. Illustration of the video objects segmentation in MPEG-4 coding.

The optimum bit allocation problem can then be formulated as
follows:

(18)

(19)

where is the size of and is total number of bits avail-
able. With the Langrange multiplier, the constrained minimiza-
tion problem can be converted to the following unconstrained
problem:

(20)

Following the same minimization procedure as described in
[27], we obtain the optimum number of bits for each input
source

(21)

where . In the following, we apply this optimum bit
allocation scheme to practical video coding.

VI. SCALABLE RATE CONTROL FORMPEG-4

The ISO MPEG-4 video coding supports content-based in-
teractivity which allows the access and manipulation of video
objects in the compression domain [16]. To this end, each video
frame is segmented into several objects associated with some
physical meaning, such as foreground people and background
scene, as illustrated in Fig. 4. Each video object is then coded
separately. The MPEG-4 output bit stream syntax also allows
the separate decoding and reconstruction of each video object.
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Fig. 5. Value of slope� for each VOP in “News” sequence.

In this way, scene editing, such as adding, deleting, or moving a
video object can be performed directly on the bit stream. With
this type of content-based coded representation of video data,
the video information can used and presented in a much more
flexible way.

In the rate control for MPEG-4 coding, the available bit
budget for each video frame can be determined from the
channel bandwidth and the buffer status. The optimum bit allo-
cation scheme developed in Section V can then be employed
to efficiently distribute these bits among the video objects to
maximize the overall picture quality. Once the bits’ target
for each video object is obtained, the macroblock-level-RC
rate control algorithm, proposed in [1], can then be employed
to control the encoder to achieve the bits target.

A. Model Parameters

Note that, in the bit allocation scheme just described, there
are two model parameters and to be determined. In prac-
tical video coding, the parameterof the current object can be
determined by the coding statistics of the same object in the pre-
vious frame of the same type. To be more specific, after coding
the th frame, we already know the number of bitsused for
coding the object , the percentage of zeros produced by

. With (16), the values of can be determined as follows:

(22)

It is then used in the bit allocation for object in the current
th video frame. Note that, after scene segmentation, each

video object becomes more homogeneous. The temporal varia-
tion of the model parameteris significantly reduced. To show
this, we plot for each VOP in “News” in Fig. 5. It can be seen
that the variation of is very small. For this reason, the proposed
frame-level estimation of works quite well in practice. For the
model parameter , there is a direct and even more accurate
way to estimate it. Using (12) and (14), we can computeand

for a given quantization parameter. According to the dis-

Fig. 6. Bits per frame when (solid line) the proposed algorithm and (dotted
line) the VM8 algorithm are applied to the MPEG-4 codec.

Fig. 7. Bits assigned to each video object in the “News” sequence when the
weighted optimum bit allocation scheme is applied to the MPEG-4 codec. The
x axis represents the frame number; while they axis represents the number of
bits per frame.

tortion model (17), can be determined as follows:

(23)

B. Experimental Results

We incorporate the proposed bit allocation and rate control
algorithm into the MoMuSys MPEG-4 codec [28] and compare
it to the VM8 rate control scheme [4]. The test QCIF video is
“News” at 64 kbps with two objects as shown in Fig. 4. The
frame rate is 10 fps. The buffer size is set to be 6400 bits, which
is the target number of bits per frame. Fig. 6 shows the number of
bits produced by each video frame when the proposed algorithm
and the VM8 algorithm are applied. The actual coding bit rate is
much closer to the target bit rate when the proposed algorithm
is applied. The numbers of bits assigned to each video object
are depicted in Fig. 7. Note that Object 2 (background) takes
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Fig. 8. PSNR of each frame when (solid line) the proposed algorithm and
(dotted line) the VM8 algorithm are applied to the MPEG-4 codec.

more bits than Object 1 (foreground). This is because the major
activity in the scene is from the dancers (center background) in
Object 2. Fig. 8 shows the overall PSNR of each video frame.
With the proposed bit allocation scheme, we see that the picture
quality is significantly improved. The improvement, about 1.15
dB on average, achieved by the proposed algorithm is due to its
more accurate – models and more robust rate control.

It is straightforward to extend the proposed bit allocation
scheme to take into account the subjective quality. For example,
in general, the user is more interested in the moving foreground
objects in the scene. In our bit allocation and rate control
scheme, we can assign more bits to these objects and code
them with higher fidelity. This can be realized by introducing a
distortion weight for each object into the objective function
as follows:

(24)

(25)

In this case, the optimum number of bits assigned to each object
is given by

(26)

Obviously, the objects of interest should have relatively larger
weights to guarantee that they are coded with less distortion.
In Fig. 9, we plot the PSNR of each VOP when the distortion
weights of the foreground and background objects are set to
be 1.1 and 0.9, respectively. We can see that with weighted bit
allocation, the object of interest has better quality.

Fig. 9. PSNR of each VOP in the foreground and background video objects
when their distortion weights are set to be 1.1 and 0.9 in the bit allocation
scheme.

VII. – OPTIMIZED CODING FORH.263

In the above section, the optimum bit allocation scheme de-
veloped in Section V is applied to MPEG-4 coding at the video
object level. As we can see in this section, it can also be applied
to video coding at the macroblock level. In a QCIF video frame,
there are 99 16 16 macroblocks. We observe that it is not effi-
cient to apply the bit allocation scheme directly to distribute the
bit budge among these 99 macroblocks for the following two
reasons. First, a very large number of data sources implies on
average very few bits allocated to each source. Effective distri-
bution of a smaller number of bits requires more accurate–
models used in the bit allocation scheme. In others words, a very
small – modeling error may cause significant performance
degradation of the bit allocation. Second, these 99 macroblocks
may have a wide range of– characteristics. For example,
some macroblocks may be very active while others may be in-
active. (Their coefficients are very close to zeros.) This will in-
troduce strong singularity into the bit allocation scheme, which
often results in negative bits assigned to those inactive mac-
roblocks.

To improve the efficiency and robustness of the optimum bit
allocation scheme, we first classify the 99 macroblocks into
three classes according to their activity measures. The bit alloca-
tion scheme is then employed to distribute the bit budget among
these three classes instead of among the 99 macroblocks. We ob-
serve that, after classification and grouping, the singularity in-
troduced to the allocation process is significantly reduced. From
our extensive simulation experience, it appears that “three” is a
good choice for the class number with which the optimum bit
allocation operates most effectively and robustly.

A. Macroblock Classification

The activity measure we choose for macroblock classification
is the variance of the macroblock, denoted by ,
where is the total number of macroblocks in the current video
frame. In our classification scheme, we first rearrange all of the
macroblocks in decreasing order according to their variances.
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Fig. 10. Bits per frame when the proposed algorithm and the TMN8 algorithm
are applied to the H.263 codec. “Foreman” at 48 kbps and “News” at 24 kbps.

The first class consists of the top ten macroblocks which
are the most active. The third class consists of the last 69
macroblocks which are most inactive. The remaining 20 mac-
roblocks are placed into the second class. The class sizes
10, 20, and 69 are chosen based on our experience. Certainly,
more sophisticated classification scheme [26] can be applied
to further improve the bit allocation and coding performance.
However, for low computational complexity and implementa-
tion cost, we just use the above simple macroblock classification
scheme in our bit allocation and rate control algorithm. After
macroblock classification, each class is then treated as a sepa-
rate input source. The parameters of the– models for each
source can be determined by the same method as discussed in
Section VI-A. To be more specific, we just treat each class of
macroblocks as a generic video object as in MPEG-4 coding,
and estimate the value ofwith (22) and (23). Once these two
model parameters are obtained, with the optimum bit allocation
scheme, the number of bits assigned to each class is deter-
mined by (21). The -RC rate control algorithm can be em-
ployed to achieve the bits target for each class during the
coding process.

B. Experimental Results

We incorporate the proposed bit allocation scheme and rate
control algorithm into the H.263 codec [18] and compare it
with the TMN8 rate control scheme [5]. The two test QCIF
videos are “Foreman” at 48 kbps and “News” at 24 kbps. The
frame rate is fixed at 10 fps. Fig. 10 shows the number of bits
produced by each video frame when the proposed algorithm
and the TMN8 algorithm are applied. The numbers of bits as-
signed to each macroblock class are depicted in Figs. 11 and
12. The actual coding bit rate is shown to be much closer to
the target bit rate when the proposed algorithm is applied, es-
pecially at lower bit rates. Fig. 13 shows the PSNR value of
each video frame. With the proposed bit allocation scheme, the
picture quality is significantly improved. Note that the TMN8
rate control algorithm has already included an optimum bit al-
location scheme. But, the TMN8 bit allocation is based on the

Fig. 11. Numbers of bits assigned to each macroblock class when the proposed
bit allocation scheme is applied to H.263 coding of “Foreman.”

Fig. 12. Numbers of bits assigned to each macroblock class when the proposed
bit allocation scheme is applied to H.263 coding of “News.”

traditional -domain – formulas. The improvement, about
0.8–1.0 dB, achieved by the proposed algorithm is due to our
more accurate rate and distortion models.

The macroblock classification can also be combined with
other functionalities, such as motion tracking [29] and re-
gion-of-interest coding [30], [31]. For example, we can classify
the macroblocks in the current frame into the following classes:
region of interest, background, and everything else in between.
In this way, the macroblock classification is closely related
to the user’s interests and requirements. In the optimum bit
allocation scheme, we can assign different distortion weights
to different regions. In this way, the region of interest can be
assigned more bits and coded with higher quality.

VIII. C ONCLUDING REMARKS

In this paper, based on the-domain – analysis frame-
work, a distortion model is first developed in thedomain.
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Fig. 13. PSNR of each frame when the proposed algorithm and the TMN8
algorithm are applied to the H.263 codec. “Foreman” at 48 kbps and “News” at
24 kbps.

Based on this distortion model and the linear rate model devel-
oped [1], an optimum bit allocation scheme is developed. It is
applied to MPEG-4 video coding to distribute the bit budget
among different video objects. It has also been applied to H.263
coding at the macroblock level when coupled with macroblock
classification. The proposed bit allocation scheme extends
the capability of the -RC rate control algorithm. In addition,
significant picture quality improvement is achieved due to
the accurate – models developed in the-domain. The
proposed -domain – analysis framework, bit allocation,
and rate control scheme also have potential applications in
other video coding scenarios, such as video transcoding, picture
quality optimization in VBR coding for stored or streaming
video under buffer constraint,– optimized adaptive frame
rate selection, joint source-channel coding, etc.
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