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ABSTRACT 
 
Multiple description video coding is one method that can be used to reduce detrimental effects caused by transmission 
over lossy packet networks. In a multiple description system, a video sequence is segmented into two or more 
complimentary streams in such a way that each stream is independently decodable. When combined, the streams 
provide the highest level of quality, yet if one of the streams is lost or delivered late the video can be played out with 
only a slight reduction in overall quality. Each approach to multiple description coding consists of a tradeoff between 
compression efficiency and robustness. How efficiently each method achieves this tradeoff depends on the level of 
quality and robustness desired and on the characteristics of the video itself. Previous approaches to multiple description 
coding have made the assumption that a single segmentation method would be used for an entire sequence. Yet, the 
optimal method of segmentation can vary depending on the goals of the system, it can change over time, and it can vary 
within a frame. This work introduces a unique approach to multiple description coding through the use of adaptive 
segmentation. By selecting from a set of segmentation methods, the system adapts to the local characteristics of the 
video and maximizes tradeoff efficiency. We present an overview of this system and analyze its performance on real 
video sequences. 
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1. INTRODUCTION 
 
Streaming video applications have become increasingly popular over the past few years, and by all indications their use 
will continue to grow in the future. However, the Internet provides only a best-effort service, characterized by variable 
bandwidths, packet losses and delays. This environment is inhospitable to real-time applications which require a 
minimum quality of service in order to maintain synchronization between the sender and receiver. Applications must be 
able to withstand changing conditions on the network or they can suffer severe performance degradations. For many 
applications, these problems can be solved to some extent with a suitable amount of buffering at the receiver. However, 
buffering introduces an additional delay into the system which is unacceptable for interactive applications.  

There are many examples of interactive video applications including video conferencing and video-on-demand. Both of 
these require a high degree of communication between opposite ends of the network and stringent demands on end-to-
end delay. In the case of video conferencing, there exists a limit on the amount of delay which can exist between two 
users attempting to maintain a reasonable conversation. Once this limit is exceeded, the two parties can no longer 
interact without significant effort. Thus, significant buffering is not an option. Even in applications where some amount 
of buffering is acceptable, the amount of buffering necessary in any situation is unknown ahead of time due to the time-
varying properties of the network. Occasionally network links fail altogether, and there may be some extended period of 
time during which two points in the network cannot talk to one another at all. This type of outage can underflow any 
reasonably sized buffer. For this reason, current approaches to interactive video streaming often suffer from severe 
glitches each time the network becomes congested.  



Multiple description (MD) video coding is one method that can be used to reduce the detrimental effects caused by this 
type of best-effort network. In a multiple description system, a video sequence is segmented into two or more 
complementary streams in such a way that each stream is independently decodable. When combined, the streams 
provide the highest level of quality, but even independently they are able to provide an acceptable level of quality. 
These streams can then be sent along separate paths through the network to experience more or less independent losses 
and delays. In the event that a portion of one of the streams is lost or delivered late, the video playback will not suffer a 
severe glitch or stop completely to allow for rebuffering. On the contrary, the remaining stream(s) will continue to be 
played out with only a slight reduction in overall quality.  

Previous approaches to multiple description coding have made the assumption that one approach must be used for an 
entire sequence. Yet, the optimal method of segmentation will depend on many factors including the amount of motion 
in the scene, the amount of spatial detail, desired levels of quality, current network conditions, and so on. Each 
segmentation method proposed consists of a tradeoff between compression efficiency and robustness. How efficiently 
each method achieves this tradeoff depends on the quality of video desired, the preferred level of robustness, and the 
characteristics of the video itself. Some methods work well when looking for slight increases in robustness but are very 
inefficient when pushed to their limits. Other methods are well suited for adding a significant amount of redundancy but 
require too much overhead when absolute reliability is not necessary. Some methods work well in stationary regions, 
others work well in moving regions. Thus, it is not an optimal choice to use any one segmentation method for an entire 
sequence.  

This paper investigates the use of multiple modes of segmentation within a given sequence. In this way the MD encoder 
adapts to local characteristics of the video as well as to selected rate-distortion goals of the system. This paper 
introduces the proposed adaptive segmentation system and presents performance results in comparison to the 
corresponding nonadaptive systems. Section 2 provides a brief introduction to multiple description coding. Sections 3 
and 4 present an overview of the adaptive segmentation approach and discuss the details of the system which has been 
implemented based on this concept. Experimental results are provided in Section 5 which demonstrate the potential of 
the adaptive segmentation system. A summary of this work is provided in Section 6.  
 

2. MULITPLE DESCRIPTION CODING 
 
This paper focuses on improving streaming video applications through the use of multiple description coding. A 
multiple description coder segments a stream into two or more separately decodable streams and transmits these 
independently over the network. The quality of the received video improves with each received description, but the loss 
of any one of these streams does not cause complete failure. Thus video playback can continue, at a slight reduction in 
quality, without waiting for rebuffering or retransmission. 

As a simple example, consider a MD system in which a sequence is segmented in two by spatially sub-sampling each 
frame. For instance, the even numbered lines of each frame could be placed in one sequence and the odd numbered lines 
placed in another. This process generates two new sequences with half the vertical resolution. These two sequences can 
then be independently coded and transmitted across the network. In the event that both streams are received, the lines 
from each can be interleaved to reconstruct the full resolution sequence. In the event that one stream is lost, any number 
of interpolation techniques could be used to estimate the missing lines. In general, the distortion resulting from this 
estimation will be higher than that obtained when both streams are received, yet playback can continue despite the total 
loss of one stream.  

Of course, this gain in robustness comes with a cost. Spatially sub-sampling each frame lowers the spatial correlation, 
thus reducing coding efficiency and increasing the number of bits necessary to maintain the same level of quality. The 
total bit rate necessary for this MD system to achieve a given distortion will in general be higher than the corresponding 
rate for a single stream encoder to achieve the same distortion. It is a tradeoff between coding efficiency and robustness. 
However, in the type of application under consideration, it is not so much a question of whether it is useful to give up 
some amount of efficiency for an increase in reliability as it is a question of finding the most effective way to achieve 
this tradeoff.  

 



Many approaches have been previously suggested for multiple description coding. Some of the many contributions 
include, multiple description quantization1, correlating transforms2, spatial segmentation3, transform domain 
segmentation4, and temporal segmentation5. For an in depth review of MD coding see the overview by Goyal6. 

In the case of two independent streams, the problem can be formally defined as follows, (see Figure 1). A given source 
is encoded into two separate streams at rate 1 and 2 . These two streams are independently sent over two channels 
through the network. The receiver consists of three separate sub-decoders, the central decoder which outputs the 
sequence when both streams arrive intact, and two side decoders which output the sequence when only one of the 
streams has arrived. The distortion in the output from the central decoder is defined as 0 , and the two side distortions 
are defined as and . The state selector outputs the video stream from the most appropriate decoder. 
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The goal is to find an optimal quintuple,{ }1 2 0 1 2, , , ,R R D D D for a given situation. The relative importance of each of 
these five factors depends on the situation at hand. In some systems, reliability may be most important in which case 1  
and 2 become more significant and the importance of bit rate perhaps decreases. In some cases it is the opposite, and 
robustness may be sacrificed for coding efficiency. The system does not need to be balanced either; could be 
weighted more heavily than , and so on. 
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Figure 1. Model of a two stream multiple description encoder-decoder system. The input is compressed using two complementary 
encoders. Each of these streams is sent independently through the network. Depending on which streams are correctly received, the 
receiver decodes one of the two independent streams or combines the results of both. 
 

It should be noted here that multiple description coding is not the same as scalable video coding. Similar to MD coding, 
a scalable coder encodes a sequence into multiple streams called layers, see Figure 2. However, scalable coding makes 
use of a single independent base layer followed by one or more dependent enhancement layers. This allows some 
receivers to decode only the base layer to receive basic video, while others can decode the base layer and one or more 
enhancement layers to achieve improved quality, spatial resolution, and/or frame rate. Unlike MD coding, the loss of the 
base layer renders the enhancement layer(s) useless. In some sense, scalable coding is a special case approach to 
multiple description coding where it is assumed that the base layer will be delivered with absolute reliability. 
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Figure 2. An example of scalable video coding versus multiple description coding. In scalable coding (a) the enhancement layer(s) 
are dependent on the base layer while in multiple description coding (b), each stream is independently coded. 



3. ADAPTIVE SEGMENTATION 
 
In order to improve compression efficiency, video compression systems attempt to remove as much correlation as 
possible from a video sequence prior to coding. However, each approach to MD coding creates two or more 
descriptions with some amount of correlation between them. This correlation helps to improve the performance of the 
system in the event one of the descriptions must be estimated from the remaining descriptions, yet it reduces the 
compression efficiency of the video coder. How efficiently each method achieves this tradeoff depends on the quality of 
video desired, the preferred level of robustness, and the characteristics of the video itself. Most approaches to MD 
coding are done in a nonadaptive fashion where one method is used for the entire sequence. However, since the encoder 
in this system has access to the original sequence, it could easily measure the resulting rate-distortion statistics and 
could adaptively select a method for a given region in an intelligent manner  

The encoder in the adaptive segmentation system presented in this paper analyzes local regions of the input sequence, 
and selects a segmentation mode for that particular region. The encoder has full knowledge of the reconstruction 
methods used by the decoder in any of the possible loss-scenarios, and thus, it can fully calculate the rate-distortion 
set{ }1 2 0 1 2, , , ,R R D D D during encoding and choose the best method for the current block. It can choose from among the 
given set the single method which meets bit rate, distortion, and robustness goals most efficiently. The end result is a 
system that adapts to both the characteristics of the video as well as the performance goals of the system.  

The focus of this paper is on a balanced two channel system, where both channels are considered of equal importance. 
This is a special case of the more general MD problem, but it is common in practice since the time varying properties of 
the network make it difficult to characterize or prioritize any path. In this case the problem formulation simplifies to 
optimizing a three parameter set, the total bit rate 1 2TotalR R R= + , the central distortion 0CentralD D= , and the average 
side channel distortion 1 2 . The system could be generalized to handle more than two channels or a 
situation in which one channel takes preference over the other in a fairly straightforward manner. 

average( , )SideD D= D

The goal of this system is to minimize some function of the central and side distortions subject to a bit rate constraint.  

 ( ) Totalminimize  ,        given the constraint RCentral Sidef D D R≤  (1) 

Define ,i jR  as the number of bits necessary to code region i with segmentation mode j , and
,Central i j

and
,Side i j

as the 
resulting distortions. This goal of adaptive segmentation may then be summarized as follows. For a given total rate R, 
choose the set of modes,

D D

j , which satisfy ,i j
i

R R≤∑  and minimize the distortion metric ( ),Central Side

i

f D D∑ .  

The function used in the above approach could, in practice, be any reasonable function. However, it 
should be chosen in such a way that the minimization of this function attempts to maximize the utility of the end user. 
For instance, one reasonable approach is to attempt to minimize the expected distortion. Under certain assumptions 
about the loss characteristics of the network, an expression for the expected distortion in the output can be obtained. By 
using this expression as the distortion metric,

( ,Central Sidef D D )

( ),Central Sidef D D , the above approach will minimize the expected 
distortion of the system. 

One simple function that could be used for this purpose is a weighted average 

 ( ) ( ), 1         0 1Central Side Central Sidef D D D Dα α α= − ⋅ + ⋅ ≤ ≤   (2) 

This approach in a sense measures the tradeoff efficiency of each mode, whereα defines the relative value of robustness 
versus coding efficiency. The parameterα can be adjusted based on the performance goals of the system and expected 
loss characteristics of the network. For example, in a system where coding efficiency is the primary goal,α can be set to 
0. This would amount to choosing the set of modes which minimize central distortion. Similarly, if robustness happened 
to be the most significant factor,α could be set to 1, which would result in choosing those modes which minimize the 
side distortion. The parameterα in effect defines an acceptable tradeoff ratio between the two distortions. 

It should be noted here that it is in general not possible to simultaneously minimize both the central and side distortions. 
For a given mode, fixing any one parameter in the set{ }, ,Total Central SideR D D completely specifies the remaining two 
parameters. For example, consider two extreme modes, a multiple description repetition coder repeating all data in both 



streams versus a standard single stream encoder. For a given rate, the single stream encoder will be far more efficient in 
general and would have a much lower distortion than the repetition approach. At the same time, the excessive 
redundancy of the repetition coder would result in a significantly lower side distortion. Minimizing the central distortion 
would require the encoder to choose only the single stream mode, while minimizing the side distortion would result in 
choosing only the repetition mode. For this reason, it becomes necessary to minimize a function of the central and side 
distortions as in the weighted approach suggested above.  

 
4. SYSTEM IMPLEMENTATION 

 
The system presented below has been used to examine two test sequences (Foreman and News). Both of these test 
sequences consisted of 50 frames of progressive scan video at CIF resolution (288 rows x 352 columns) in 4:2:0 YUV 
format. For the purposes of this paper, the distortion caused by losses during data compression as well as losses during 
network transmission have been quantitatively measured using PSNR (the peak-signal-to-noise ratio of the luminance 
component between the original and reconstructed video) and bit rates have been expressed in bits-per-pixel (BPP). It 
should be noted that PSNR and perceived quality are not always directly correlated. Higher PSNR does not necessarily 
indicate higher quality video, but the use of PSNR is a common practice and has been found to be a useful estimate of 
video quality. All three components of the original 4:2:0 YUV sequences have been coded to calculate bit rates despite 
the fact that only the luminance component is used in PSNR analysis. 

The adaptive segmentation MD coder described in the following sections has been implemented based on the main 
profile of the H.264/MPEG4 Part 10 advanced video coding standard7. The current implementation uses a single I-
frame (intra-coded frame) followed by P-frames (inter-predicted frames) and refreshes the prediction loop by 
periodically updating lines of macroblocks using intra-frame coding. Each line of macroblocks is placed into a slice and 
packetized using RTP (real-time transport protocol) by the H.264 encoder. The following sections describe the 
functionality of the adaptive system in further detail. 

4.1. Frame Partitioning 
Adaptive segmentation is performed by partitioning each frame into blocks of 16x16 pixels and selecting one 
segmentation method for each of these blocks. The most appropriate block size used for segmentation remains an area 
of interest since smaller block sizes and/or adaptive block sizing could improve the performance of the system but has 
not been investigated in this paper. As the blocks are made smaller, the system can adapt more efficiently to the local 
regions of the image. However, using smaller blocks increases the number of blocks per frame, which will lead to more 
overhead when the mode for each block is encoded. At some point the benefits of finer adaptation may be 
overshadowed by the increase in bit rate. 

4.2. Segmentation Mode Set 
There are a number of methods previously developed to solve the MD problem, each with their own strengths and 
weaknesses. For adaptive segmentation to be effective, it is useful to find a set which complements each other well; one 
method strong where another is weak and vice versa. Some well-rounded methods that provide reasonable performance 
under any situation may not turn out to be as useful in this system as methods which provide excellent results in their 
own specialized cases. For this reason, particular attention should be given to methods which provide exceptional 
performance in certain situations (moving regions, stationary regions, etc…), but may have been previously overlooked 
due to having poor performance when applied to an entire video sequence. It is also necessary to choose an appropriate 
number of modes. Additional modes require additional overhead since the decoder will need to know which mode was 
selected. Assuming the number of available modes is small, the overhead required to code each mode is relatively 
minor, perhaps only 1-2 bits per block. However, as the number of modes increases this overhead could become 
significant. 

Selecting a set of useful methods is certainly an interesting problem, yet the optimization of this set and of the methods 
themselves is not the main focus of this work. Note that it is always possible to add improved methods to the system in 



the future with expectations of similar gains in performance, as long as both the encoder and decoder are updated 
accordingly.  

The system described in this paper uses three possible segmentation modes; temporal segmentation, spatial 
segmentation, or no segmentation at all. The no-segmentation method essentially performs standard single description 
encoding; all data for the current block is placed in one description or the other. This method is the most efficient 
method in terms of reducing bit rates, however if a block is lost there is no information available in the opposite stream 
to help in reconstruction. In this case the system simply repeats the data from the previously decoded frame. In many 
regions, (e.g. stationary areas) this type of reconstruction is good enough, so there is no need to sacrifice coding 
efficiency in an attempt to improve error resilience. 

The temporal segmentation method used in the adaptive system separates the original sequence along the temporal 
direction. Even frames are predicted only from even frames and odd frames are predicted only from odd frames. This is 
essentially the same as the video redundancy coding (VRC) method which is a portion of the H.263 standard for 
providing error resilience8. This approach creates two separate prediction loops, where a loss of data in an even frame 
does not propagate to the odd frames, and vice versa. The fact that the neighboring frames remain unaffected by a loss 
allows for more sophisticated reconstruction methods as has been suggested by Apostolopoulos5. The current system 
makes use of a motion compensated interpolation scheme similar to that presented by Wong and Au9. Temporal 
segmentation is less efficient than single stream encoding since temporal prediction efficiency in general decreases as 
the temporal distance between frames increases.  

The spatial segmentation method used is essentially the spatial equivalent of the temporal method presented above. Here 
the encoder splits the data into even and odd lines rather than frames. Even lines are predicted only from previous even 
lines and odd lines are predicted only from previous odd lines. The even data is placed into one description and the odd 
data is placed into the other. In the event of a loss, half of the lines may be correctly reconstructed using the lines 
contained in the opposite description, and the missing lines may be reconstructed using standard interpolation 
techniques. This method tends to complement the temporal method well. It tends to have higher performance in the 
regions where translational block motion estimation fails to accurately model the scene. 

4.3. Optimal Mode Selection 
Given the problem formulation above, the optimal mode choice can be determined using Lagrangian optimization 
techniques10. As stated previously, the objective of the adaptive segmentation system is to solve the budget constrained 
allocation problem presented in Section 3. 

The goal is to minimize the distortion metric, 

 ( ), ,
,

i j i jCentral Side
i

f D D∑ ,  (3) 

while satisfying the bit rate constraint  

 ,i j
i

R R≤∑ . (4) 

This problem can be solved using the discrete version of Lagrangian optimization. Rather than attempting to solve the 
above budget constrained minimization directly, a Lagrangian cost function can be minimized instead. 

 ( ) ( )( )
, , ,,

i j i jCentral Side i j
i

J f D Dλ = ∑ Rλ+  (5) 

The Lagrange multiplier λ  is a non-negative real number which can be varied to achieve various operational points. 
When this Lagrangian cost function is minimized, if λ  is chosen such that the budget constraint is satisfied, the 
distortion metric will be minimized as well.  

Thus, the optimal solution to the given problem can be determined by encoding the current block with each 
segmentation mode and choosing the mode which minimizes the Lagrangian cost function. The value of λ  can be 
varied until the given budget constraint is satisfied. For instance, setting 0λ =  is equivalent to minimizing the 



distortion metric without a budget constraint, while setting λ  arbitrarily high is equivalent to minimizing the bit rate. 
Once the budget constraint has been met, the resulting mode decisions will achieve the minimum distortion. 

The one exception to this approach comes when considering the temporal segmentation method. The only difference 
between standard single description coding and temporal segmentation is whether the current block is predicted from 
the previous frame or from two frames ago. This reference picture choice certainly affects the coding efficiency of the 
current block, yet it has little effect on the reconstruction quality in the event this block is lost. If the current block is 
lost, all prediction information is lost as well, so it makes little difference if it had been predicted from one or two 
frames ago. Consider the situation where the previous frame has been lost. If the current block is predicted from two 
frames ago, it will be unaffected by this loss and could be used effectively for temporal interpolation of the missing 
frame. However, if the current block is predicted from the missing frame, it is no longer available to assist in 
reconstruction and some other approach like frame repetition must be used. Thus, the choice of reference frame can 
potentially have a significant effect on the reconstruction quality of the previous frame. This additional distortion in the 
previous frame due to the reference picture choice can be calculated during encoding and can be compared against the 
additional bit rate necessary to predict from two frames ago, and thus the reference picture choice can also be optimized 
in the Lagrangian rate-distortion manner presented above. 

4.4. Overview of Macroblock Encoding Process  
An overview of proposed encoding process based on these concepts is presented below. Figure 3 presents a flowchart of 
the macroblock encoding process. The system codes each block using each mode and then reconstructs the blocks under 
three possible situations; no streams are lost, stream #1 is lost, and stream #2 is lost. The resulting distortions for these 
three scenarios are calculated and the weighted average of the three is generated as suggested in (2). This weighted 
average and the corresponding number of bits required for this mode are used to calculate the Lagrangian cost function. 
Once all modes have finished, the mode which minimizes the cost function is selected and the bits for this block are 
written into the output stream. 
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Figure 3. Flowchart demonstrating the proposed macroblock encoding process. Each macroblock (MB) is coded with each mode and 
the corresponding central and side distortions are calculated. Lagrangian optimization is used to choose which mode to write to the 
output stream. 

5. EXPERIMENTAL RESULTS 
 
The results of coding the Foreman and News sequences with the adaptive segmentation system are presented in the 
following sections. In each case the adaptive system is compared against its nonadaptive counterparts. The weighted 
average distortion from (2) was used with 0.4α = . Section 5.1 shows the loss-recovery characteristics of each of the 
methods under a single loss event. Section 5.2 shows the rate-distortion curves for each of the systems under a 
simulated binomial packet loss model where each packet has a 5% probability of being lost independent of other 
packets.  

5.1. Single Loss Event 
This section illustrates the performance of each of the systems after a single frame has been lost. The decoder simulated 
a loss of the sixth frame to demonstrate the severity of this loss for each of the systems and to show the recovery from 



this error. The results of this experiment are shown in Figure 4. The four systems shown here are single description 
coding (SD), temporal segmentation, spatial segmentation, and adaptive segmentation.  

In order to make a fair comparison, the systems have been adjusted to have the same central distortion. This distortion 
was held approximately constant across all frames at around 35.5 dB for the Foreman sequence and 36dB for the News 
sequence. Each of the systems has varying levels of efficiency/redundancy and thus would in general require different 
bit rates to maintain the same central distortion. To account for this fact while still maintaining a fair comparison, the 
frequency of intra-coding has been adjusted in each system until the bit rates of all the systems were as close as possible 
to identical (about .25 BPP for the Foreman sequence and .18 BPP for the News sequence). In general more frequent 
intra-coding helps to increase the speed at which a system recovers from an error, yet requires a higher bit rate. The 
excess bit rate available in the more efficient systems is used to increase the rate of recovery from the loss. 
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Figure 4. Loss/Recovery characteristics after single frame loss. (a) Forman sequence. (b) News sequence. The decoder simulated the 
loss of the sixth frame to analyze the severity of this loss for each of the systems and to demonstrate how each system recovers from 
this error. 



The SD coding method has the highest coding efficiency and thus recovers fastest from the error due to more frequent 
intra coding. It could be argued that this quick recovery indicates the SD system has the highest performance. However, 
the initial error due to this loss tends to be quite severe and very objectionable, while the remaining systems are able to 
mitigate this initial error more effectively and more smoothly recover from the loss. The SD coding method performs 
slightly better in the News sequence since this sequence contains a large stationary background region which is 
reconstructed nearly perfectly by the frame repetition approach. However, the regions which contain motion are 
reconstructed poorly with the SD method. This type of large localized error is something not well captured by PSNR 
analysis.  

The temporal segmentation approach significantly improves the reconstruction of the missing frame compared to the SD 
method. An improvement of approximately 2dB is seen in frame 6 of the Foreman sequence. This improvement is not 
as significant in the News sequence, again due to the larger stationary background region. Due to the fact that the even 
frames and odd frames have separate prediction loops in the temporal approach, the odd frames are unaffected by the 
loss of the sixth frame. This fact helps to improve the recovery of the missing frame, yet this oscillation between high 
and low distortion can also create objectionable flicker in the resulting sequence. As was previously mentioned, the 
motion compensated prediction used in the temporal method will in general be less efficient than the SD method, so the 
system uses less frequent intra coding than the SD method and recovers from the error at a slower rate. 

Similar to the temporal method, the spatial segmentation system attempts to reduce the initial error due to the loss at the 
cost of having a slower recovery time. Compared to the temporal method, the reconstruction quality of the spatial 
method tends to be slightly lower and the recovery rate is about the same or maybe slightly faster. In the News 
sequence, the spatial method is actually the worst performer in the PSNR sense, although one can argue that 
perceptually, the large localized errors in the SD method are more objectionable than the smaller distributed errors in 
the spatial approach. 

The adaptive system is able to take advantage of the strengths of each of the systems and in both sequences 
demonstrates the highest performance of the group. It is able to reduce the initial error caused by the loss more 
effectively than any of the non-adaptive methods and recovers from this error as fast as or faster than either the spatial 
or temporal methods. The adaptive system is making decisions to give up the coding efficiency of the SD method in 
those blocks where it determines the gain in robustness from the spatial or temporal methods outweighs the 
corresponding loss in coding efficiency.  

5.2. Rate-Distortion Curves under Binomial Loss Model 
While the analysis above is useful for demonstrating the loss/recovery characteristics of each system, it does not provide 
a very realistic loss scenario and fails to give a true representation of system performance. A single frame loss does not 
model actual packet loss on a network and the results can vary significantly depending on which frame was lost. To 
account for this, a similar experiment was run with two main differences. First, rather than simulating the loss of a 
whole frame, the following experiment was run by simulating a binomial packet loss model. In this model, each packet 
has a fixed probability of being lost independent of other packets; specifically the packet loss rate used was 5%. 
Secondly, the PSNR results have been averaged over all 50 frames and the experiment has been performed at various bit 
rates to generate rate-distortion (RD) curves for each system. These RD curves can be found in Figure 5. 

As was done in section 5.1, the intra-coding frequency of each system has been adjusted such that each system achieved 
the same distortion under loss-free conditions while simultaneously requiring the same bit rate. Thus all systems have 
identical central distortion curves. This curve is represented by the bold line in Figure 5. Each of the remaining lines in 
Figure 5 represents the RD curve for one of the systems after 5% packet loss.  

When analyzing this result, two things should be pointed out. First, as was mentioned in section 5.1, the News sequence 
has a large stationary background region which is reconstructed nearly perfectly by either the SD or temporal methods. 
The large localized errors which do show up may be very visible perceptually while not having a significant effect on 
the PSNR. Thus, these methods may have a slight advantage when considering only PSNR. Secondly, as was 
demonstrated in Figure 4, the temporal method has a significant amount of oscillation between frames with low 
distortion and frames with high distortion. When averaged across all frames, the perceptual flicker this generates is not 
taken into account.  
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Figure 5. Rate-distortion curves under 5% binomial packet loss. (a) Forman sequence. (b) News sequence. The bold central 
distortion line represents the equal performance of all the systems when no data is lost. The remaining lines represent the 
performance of each of the individual systems after losses have occurred. 
 
In both sequences, the adaptive system is able to increase the quality of the resulting video over the nonadaptive 
methods at a fixed bit rate or reduce the bit rate at a fixed level of quality. This gain becomes more significant at higher 
bit rates as the overhead required for adaptive segmentation has less of an effect. 

 

CONCLUSION 
 
This paper has introduced the concept of adaptive segmentation for multiple description coding. The system proposed 
makes use of multiple modes of segmentation within a given sequence allowing it to adapt to local characteristics of the 
video as well as to selected rate-distortion goals of the system. One such system has been presented in some detail along 
with performance results which have shown the potential for this adaptive approach to significantly improve video 



quality. The effectiveness of this adaptive scheme will certainly depend on the source material, and the results from the 
two sequences presented above cannot possibly hope to accurately represent the entire collection of possible video 
sequences. Even so, the results are quite promising, and it is apparent that the benefits of adaptive segmentation can be 
significant. Even the combination of a small number of simple segmentation methods can result in a considerable 
increase in error robustness. 
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