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Abstract—In this paper we characterize the scaling laws of the generated traf-
fic and scheduling delays associated with the broadcast problem in dense multi-
hop sensor networks where sample measurements are highly correlated. More
specifically, we assess the benefits, and possibly the trade-offs, of exploiting sam-
ple correlations via cooperatively compressing the data as it hops around the net-
work. First, we determine, with the aid of basic information theory, the transport
traffic and schedule length growth rates under the no cooperation and network-
wide cooperation extremes. We observe that network-wide cooperation signif-
icantly improves the transport traffic growth rate, without any degradation in
the linear schedule length growth rate. Second, we propose a novel two-phase
cooperation strategy that localizes cooperation within regions of the network in
an attempt to optimize the schedule length for a given network size. We demon-
strate the role of the cooperation set size in trading transport traffic for schedule
length, or vice versa, and how the two extreme strategies turn out to be special
cases of the two-phase cooperation framework.

Keywords— Wireless sensor networks, source coding, spatial correlations,
transport traffic, scheduling, scaling laws.

I. INTRODUCTION

Future wireless networks are expected to accommodate large num-
bers of embedded devices that operate cooperatively to achieve a pre-
specified sensing/monitoring task. One of the main hurdles towards
the realization of this objective is network scalability. It has been
shown in [1] that the peer-to-peer (or one-to-one) transport capacity
of wireless ad hoc networks scales as O(

√
N) where N is the num-

ber of nodes per unit area. This, in turn, implies that the per-node
throughput scales as O( 1√

N
), and, hence, asymptotically vanishes

as the node density grows to infinity. Therefore, it was concluded
that designers should focus on wireless networks of small numbers
of nodes. In [2], the authors studied the problem of broadcast com-
munications (also known as flooding or many-to-many communica-
tions) in multi-hop sensor networks where samples of a random field
are recorded at each node in the network and disseminated to all
other nodes in order to obtain an estimate of the entire field within
a prescribed distortion value. They observed that the scaling laws
derived in [1] are based on the assumption that the traffic generated
at different nodes in the network is generally independent. Further-
more, they argued that this conclusion may not be generally true for
wireless sensor networks due to the fact that spatially close sensors
experience correlations among their sample measurements. Thus,
they proposed to use classical source codes and then re-encode the
data as it hops around the network in order to remove correlations
and, hence, reduce the traffic generated by each sensor. However,
this may involve a trade-off between transport traffic and transmis-
sion scheduling delays that has been illustrated via a simple example
in [2]. In this paper, we focus on this trade-off and potential avenues
for solving it. In [3], a distributed algorithm for removing correla-
tions among sensor data via computing wavelet transforms has been
proposed. However, the scaling laws of the associated traffic and
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scheduling delays were left as open problems. On the other hand,
[4], [5] fall within the scope of distributed source coding that utilizes
Slepian-Wolf coding schemes [6] to remove correlations without any
communications among sensors. Finally, the many-to-one capacity
of dense sensor networks was characterized in [7] and [8] under dif-
ferent sets of assumptions.

Our contribution in this paper is two-fold: i) Characterize the scal-
ing laws of the transport traffic and scheduling delays associated
with two extreme cooperation strategies, namely no cooperation and
network-wide cooperation and ii) Analyze a novel two-phase co-
operation strategy that opens room for optimizing the transmission
schedule length for a given network size. Thus, given a set of sen-
sors whose sample measurements are correlated, our main objective
is to quantify how the generated traffic and scheduling delays asso-
ciated with the extreme strategies behave as the network size grows.
Motivated by the scaling laws of those extremes, we propose a two-
phase cooperation strategy, whereby sensors in the same cooperation
set cooperatively encode their sample measurements according to a
network-wide cooperation scheme in the first phase. In the second
phase, respective cooperation sets exchange their samples without
any compression (according to the no cooperation extreme). This,
in turn, opens room for trading traffic for scheduling delays or vice
versa via controlling the cooperation set size.

The paper is organized as follows: In section II, the network model
underlying this study is introduced. Afterwards, the traffic-delay
trade-off in cooperative sensor networks is investigated in section
III. This is followed by a detailed description and analysis of the
proposed two-phase cooperation strategy in section IV. Finally, con-
clusions are drawn in section V.

II. NETWORK MODEL

In this paper we limit our attention to one-dimensional sensor net-
works consisting of N stationary nodes which communicate only
via the wireless medium and are uniformly spaced along a horizon-
tal straight line of unit length. We assume that nodes are indexed
in an ascending order from left to right. Extending the results to
two-dimensional grids lies out of the scope of this paper and is a
subject of ongoing research. We assume that all nodes are equipped
with omni-directional antennas that radiate energy according to an
isotropic pattern. Moreover, nodes use fixed and equal transmission
power, which translates to the same transmission range (r), where

1
(N−1) ≤ r ≤ 2

(N−1) , i.e. nodes (m − 1) and (m + 1) are one-hop
neighbors of an arbitrary node m. All nodes are assumed to share
the same frequency band, and time is divided into equal size slots
and each transmission fits exactly into a single slot.

Each sensor is assumed to record periodic samples of the sensed
field, scalar quantize, encode and transmit them such that the sensed



field can be reconstructed at all nodes in the network up to cer-
tain level of distortion. We assume that successive samples taken
by the same sensor are temporally uncorrelated and, hence, we fo-
cus on the set of samples recorded by all sensors at a given time
instant and drop the time index. On the other hand, sensor measure-
ments are assumed to be spatially correlated according to a station-
ary one-dimensional spatial random process S(y), where S(y) is a
real-valued random variable representing the field value at location
0 ≤ y ≤ 1. This is motivated by the fact that the vast majority of
physical phenomena are analog such that sensors are better modeled
as continuous rather than discrete sources. Moreover, we assume
that the random process S(y) has the property that the correlation
between samples increases as the sensors get dense. We assume that
the reading of sensor m, denoted Sm, is quantized by a fixed quan-
tizer q(.) subject to a constraint on the average distortion per sample
(i.e. 1

N

∑N
m=1 E(d(Sm,Xm)) ≤ D) where q(Sm) = Xm, d(.,.) is

a distortion measure and D is a prescribed constraint on distortion.
Thus, the minimum number of bits needed to represent the output
of the quantizer of node m is given by the entropy H(Xm) of the
associated discrete random variable Xm [11]. Finally, we focus on
the sensor broadcast problem addressed in [2], [3], where each sen-
sor wishes to disseminate an approximation of its sample to all other
nodes in the network. This traffic pattern may arise under a wide vari-
ety of application scenarios ranging from collaborative video surveil-
lance where individual cameras display images from other cameras
in the area of interest to data gathering applications where the col-
lector node (sink) is an unmanned aerial vehicle (UAV) that deploys
a sensor network onto a geographical field and then intermittently
covers that field for the purpose of receiving the aggregated data.

III. THE TRAFFIC-DELAY TRADE-OFF IN DENSE SENSOR

NETWORKS

In this section, we derive the scaling laws for the transport traf-
fic and scheduling delays associated with the sensor broadcast prob-
lem under extreme cooperation strategies, namely no cooperation
and network-wide cooperation. Towards this objective, we employ
the notion of transport traffic (measured in bit-meters), introduced
in [1], to quantify the bandwidth requirements associated with the
sensor broadcast problem under a variety of cooperation strategies.
A network is said to transport one bit-meter when a single bit has
been forwarded a distance of one meter towards its destination. On
the other hand, the scheduling delays are measured in the number of
slots needed to complete the sensor broadcast task.

A. No Cooperation Strategy

Under this strategy, each sensor transmits a quantized version of its
sample to its neighbors. A node who receives a sample of a neighbor
is supposed to rebroadcast it blindly without eliminating correlations
with its own sample. Accordingly, node 1 generates H(X1) bits that
pass through (N − 1) hops to reach all other nodes. Next, node 2
generates H(X2) bits which, also, go over (N − 1) hops. The algo-
rithm proceeds until node N goes through the same procedure. This,
in turn, explains the non-cooperative nature of this strategy, where
the notion of cooperation in the context of this paper implies the role
that each sensor plays in re-encoding the data of other sensors as it
hops around the network.

In the following, we determine the transport traffic (TT) generated
under the no cooperation strategy. Towards this objective, we assume
that each node sends only one sample per transmission, i.e. it does

not include multiple samples from different sensors (generated and
forwarded) in the same transmission2. Accordingly, the TT under
this strategy would be given by,

TT (No Coop) =
1

(N − 1)
[(N − 1)H(X1) + (N − 1)H(X2)

+ . . . + (N − 1)H(XN )]

=
N∑

j=1

H(Xj)

= O(N) bit.meters (1)

In the remaining of this section, we determine the schedule length
(SL) growth rate with the network size. To this end, we quantify
the following two parameters: i) Total number of transmissions (NT)
needed to complete the broadcast task and ii) Maximum number of
non-conflicting transmissions per slot (NTPS). Accordingly, the min-
imum schedule length would be given by,

SL =
NT

NTPS

As pointed out earlier, the sample of each node has to be forwarded
over (N − 1) hops to reach all other nodes. Thus, NT would be
given by N(N − 1), i.e. O(N2). On the other hand, the NTPS de-
pends solely on the interference model. We adopt an interference
model that is widely employed in the multi-hop packet radio net-
works literature [9], [10], whereby a collision arises whenever multi-
ple transmissions are heard by a receiver in the same slot. Otherwise,
a transmission is deemed successful if it is the only one heard by the
receiver. Accordingly, the broadcast transmissions of nodes who are
more than two-hops away are considered non-conflicting and may
share the same time slot. This, in turn, guarantees that: i) No simul-
taneous transmission/reception could arise at a node and ii) No multi-
ple transmissions to the same receiver could co-exist in the same slot.
Thus, it is straightforward to notice that NTPS would be �2N

3 � when
each node broadcasts its own sample to its left and right neighbors.
On the other hand, when a node forwards a sample of another node
received through one of its neighbors, its broadcast would yield one
useful sample transfer to the other neighbor. Hence, NTPS would be
given by �N

3 � under this scenario. Notice that the former scenario
occurs only once for each node, whereas the latter one arises sev-
eral times throughout the sample forwarding process. Accordingly,
we argue that �N

3 � ≤ NTPS ≤ � 2N
3 � and, hence, SL(No Coop)

would scale as O(N). Thus, we conclude that both, transport traffic
and schedule length of the non-cooperative broadcast strategy, grow
linearly with the size of the network. In the next section, we explore
candidate cooperation strategies for achieving sub-linear growth rate
for the transport traffic. Moreover, we assess the price paid in terms
of the schedule length growth rate.

2”Even if multiple samples are transmitted in a single slot via increasing the link
data rate, it can be shown that the scaling laws determined in this section would still
hold.”



B. Network-wide Cooperation

We commence with a simple sequential cooperation strategy
where each node takes a turn in a round-robin fashion to encode
its sample given the samples of left nodes received through its left
neighbor. Accordingly, node 1 generates H(X1) (since it has no
left neighbors). Next, node 2 sends back H(X2|X1) to 1 (de-
noted “2|1” in Figure 1) and sends a joint version of the two
samples, i.e. H(X1,X2) (denoted ”1,2” in Figure 1), to node
3. The scheme proceeds in the same manner with node m send-
ing H(Xm|X1,X2, . . . , X(m−1)) to node (m − 1) followed by
H(X1,X2, . . . , Xm) to node (m + 1) until m = N as shown in
Figure 1 for N = 4. Notice that the encoded sample of node m sent
to node (m − 1) should be propagated in the left direction until it
reaches node 1. This is essential for each node to get the samples of
all other nodes. Thus, the transport traffic generated by this coopera-
tion strategy would be given by,

TT (Seq Coop) =
1

N − 1
[H(X1) + H(X2|X1) + H(X1,X2)

+2H(X3|X1,X2) + . . . + (N − 1)H(XN |X1, . . . , X(N−1))]

=
1

N − 1
[(N − 1)H(X1,X2, . . . , XN )]

= O(H(X1,X2, . . . , XN )) (2)

≤ O(N) (3)

Notice that the second equality follows from the chain rule for en-
tropies. Moreover, equality in (3) is satisfied when the sensors are
sufficiently far to render their sample measurements independent.
This, in turn, confirms that network-wide cooperation attempts to
exploit correlations among sensor samples whenever they exist. For
a given sensor density and spatial random process, if the sensor sam-
ples turn out to be uncorrelated, then no cooperation is needed. How-
ever, correlations may arise among sensor samples due to: i) Deploy-
ing dense sensor networks dictated by reliability and network con-
nectivity constraints or ii) Measuring the random field with adaptive
spatial resolution depending on the sensor activation strategy and the
spatial process bandwidth which may be time varying.

The next step towards quantifying the TT under the sequential co-
operation strategy is to determine the scaling law of the joint en-
tropy of N quantized random variables given in (2). This prob-
lem has been addressed by Marco et al. in [7] for a stationary
Gaussian random process and a scalar quantizer with uniform step
size and infinite number of levels. Furthermore, it was assumed
that the distortion measure is mean square error (MSE) and the
autocorrelation function of the spatial process S(y) is exponential
and is given by Rs(y) = e−y2

. For this setup, they showed that
H(X1,X2, . . . , XN ) scales as O(log N) as N → ∞. Thus, we
conclude that the TT for the sequential cooperation strategy grows
only logarithmically with the network size, that is well below the
linear scaling law achieved by the no cooperation strategy.

Next, we quantify the schedule length using the same procedure
followed in the previous section. According to Figure 1, it is evident
that node 1 participates in 1 transmission and (N − 1) receptions,
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Fig. 1. Sequential cooperation over a 4 node sensor network

node 2 participates in 1 transmission and (N − 2) receptions, and
node (N − 1) participates in 1 transmission and 1 reception. Hence,
NT would be given by (N−1)(N+2)

2 , i.e. O(N2).
Notice that sequential cooperation enforces certain order on

nodes’ communication since node m has to wait for the joint samples
of nodes 1,2, . . . , (m − 1), in order to generate its own conditional
and joint samples. This significantly limits spatial slot reuse which
causes NTPS to be one and SL(Seq Coop) to scale as O(N2). This
considerable degradation, compared to the no cooperation extreme,
may suggest that sequential cooperation reduces the transport traffic
growth rate at the expense of longer schedule lengths. However, we
show next that this is not generally the case since sequential coop-
eration discussed so far is highly inefficient. The key observation
that led to this conclusion is two-fold. First, there is no need to have
dedicated transmissions for individual conditional samples to send
them back to left nodes as shown in Figure 1. This is attributed to
the fact that conditional samples could be sent collectively in a more
efficient way. Second, slot reuse plays an important role in mini-
mizing the schedule length. Next, we illustrate these observations
with the aid of two examples. In the first example, we eliminate
the dedicated intermediate conditional sample transmissions propa-
gated to left nodes. Instead, we gather the joint samples of all nodes
at node N , through cooperation in the forward direction, and then
start sending collective conditional samples in the reverse direction
at higher data rates, compared to the transmission rate of individ-
ual conditional samples, in order for each transmission to fit in a
single slot. We refer to this strategy as forward/reverse coopera-
tion since nodes cooperate in the forward direction first and then
in the reverse direction as shown in Figure 2. It is straightforward
to show that this strategy entertains a logarithmic growth rate for
the transport traffic as the sequential cooperation strategy. Further-
more, it consumes (N − 1) transmissions in the forward direction
and (N − 1) transmissions in the reverse direction, i.e. NT scales as
O(N). On the other hand, NTPS turns out to be one since, again, this
policy does not exploit spatial reuse of slots. Accordingly, we con-
clude that SL(Forward/Reverse Coop) scales as O(N), well below
the quadratic growth rate associated with sequential cooperation. In
the second example, we investigate the impact of slot reuse on the
scaling laws of the forward/reverse cooperation strategy. Notice that
the transmissions of nodes m + 3j, where j takes integer values, can
share the same slot and, hence, cooperation in the forward direction

consumes
∑�N

3 �
j=1 3j slots in this case. This is attributed to the fact

that cooperation is limited to reuse clusters (of size 3 nodes)3 and is
repeated over those clusters in order to achieve network-wide coop-
eration. On the other hand, cooperation in the reverse direction will
remain unchanged (i.e. O(N)) since it involves propagating condi-

3”A reuse cluster is defined as a group of nodes where no slots are reused within
this group.”



tional samples throughout the entire the network. Accordingly, NT
scales as O(N2) for the forward/reverse cooperation strategy with
slot reuse. Moreover, NTPS scales as O(N) based on arguments
similar to those used in the previous section. Therefore, we notice
that SL still scales as O(N), even when slot reuse is exploited. This
result stems from the fact that slot reuse does not only increase NTPS
from one to O(N), but it also increases NT from O(N) to O(N2) in
order to achieve network-wide cooperation in the forward direction.
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Fig. 2. Forward/Reverse cooperation over a 4 node sensor network

Finally, we conclude that forward/reverse cooperation reduces the
transport traffic growth rate from linear to logarithmic, while main-
taining the linear growth rate for the schedule length. Motivated
by the scaling laws of the extreme cooperation strategies, we need
to investigate the trends of TT and SL over the space of strategies
bounded by the two extremes. This is achieved with the aid of the
two-phase cooperation framework introduced in the next section.

IV. TWO-PHASE COOPERATION

In this section, we propose a novel cooperation strategy that opens
room for optimizing the schedule length associated with the sensor
broadcast problem. The essence of this strategy is to ”localize” co-
operation within regions of the network, where nodes cooperate in
compressing each others’ samples, and beyond those regions no co-
operation is performed. This constitutes a simple approach for trad-
ing traffic for scheduling delays, or vice versa, via controlling the
size of the cooperation set. Under this strategy a one dimensional
network of N nodes is partitioned into N

i cooperation sets, each
accommodating i nodes as shown in Figure 3 for i = 2. As the
name indicates, this strategy proceeds through two phases. In the
first phase, members of each set cooperatively compress their sample
data according to the forward/reverse cooperation strategy described
in the previous section. Once this is done, any node in an arbitrary
set would have the sample measurements of all other nodes in its set,
however, it would lack the sample measurements of nodes in other
sets. Hence, the role of the second phase is to exchange the sam-
ple measurements among various cooperation sets. This is achieved
via inter-set exchange among representative nodes in respective co-
operation sets (e.g. nodes 1,(i + 1),(2i + 1), . . . ,(N − i + 1)) in a
non-cooperative manner as described in section III.A4. This non-
cooperative exchange should be followed by data distribution within
each set in order to disseminate the sample measurements gathered
at the representative nodes to the other members in their respective
sets.

Next, we determine the scaling laws for the transport traffic under
the two-phase cooperation strategy. In the first phase, cooperation
takes place within N

i sets in parallel. This could be achieved assum-
ing that neighboring nodes at the edges of two neighboring sets (e.g.
nodes i and (i+1)) do not interfere throughout their communication

4”We assume that the transmission power of the representative nodes could be raised
in order to reach each other directly over a single-hop.”
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Fig. 3. Example of a sensor network with cooperation set size i = 2

tasks (possibly using directional antennas). Accordingly, the trans-
port traffic generated in phase 1 would be,

TT (Phase 1) = [
(i − 1)
(N − 1)

H(X1,X2, . . . , Xi)]
N

i

= O(H(X1,X2, . . . , Xi)) (4)

On the other hand, the transport traffic generated in phase 2 would
be given by,

TT (Phase 2) = O(
N

i
H(X1,X2, . . . , Xi))

+ O(
i

N
H(Xi+1,Xi+2, . . . , XN |X1,X2, . . . , Xi)

N

i
) (5)

Notice that the first term corresponds to the non-cooperative data ex-
change among the representative nodes of various cooperation sets,
whereas the second term represents the transport traffic associated
with distributing the sample measurements to other members within
each set. The summation of (4) and (5) yields the transport traffic
associated with the two-phase cooperation strategy as follows,

TT (Two Phase Coop) = O(H(X1,X2, . . . , Xi)

+
N

i
H(X1,X2, . . . , Xi)

+H(Xi+1,Xi+2, . . . , XN |X1,X2, . . . , Xi))

= O(H(X1,X2, . . . , XN ) +
N

i
H(X1,X2, . . . , Xi)) (6)

It is straightforward to verify the scaling law in (6) via observing
that the special cases of i = 1 and i = N simply reduce to the
no cooperation and network-wide cooperation extremes described in
the previous section. Moreover, it is evident that the transport traf-
fic monotonically increases as the cooperation set size (i) decreases.
This is attributed to the fact that the first term in (6) does not depend
on i and constitutes the minimum amount of transport traffic when
i = N . For 1 < i < N , the two terms in (6) persist and hence the
transport traffic would be greater than the first term. Finally, it is easy
to show that as i decreases the second term increases.

In the remaining of this section, we determine the behavior of the
schedule length under the two-phase cooperation strategy. It is evi-
dent that phase 1 consumes O(i) slots to be completed. In addition,
phase 2 consumes O(N

i ) throughout the non-cooperative sample ex-
change task and O(i) for distributing the gathered sample measure-
ments throughout each set. Therefore, the schedule length for this



policy, SL(Two-phase Coop), scales as O(i + N
i ) slots. Although

the linear growth rate with N still persists, the parameter i provides
a degree of freedom for optimizing the schedule length for a given
network size. The question that remains unanswered is: How does
SL vary with i? For a given N , the non-linear dependence of SL
on i suggests that this function has an extremum which turns out to
be a minimum at i∗ = c

√
N , where c is a constant. For i < i∗,

SL decreases as i increases until it reaches the minimum at i∗. For
i > i∗, SL increases with i until the two-phase cooperation scheme
reduces to network-wide cooperation at i = N . Accordingly, with
proper choice of the parameter i, we can control the relative impor-
tance of TT and SL. For instance, the best operating point for SL
is around its minimum. However, if the associated TT is excessive,
then we should start increasing i in order to reduce the generated
traffic. Thus, we conclude that two-phase cooperation attempts to
strike a balance between minimizing traffic and minimizing schedul-
ing delays. Moreover, extending two-phase cooperation to hierar-
chical logiN -phase cooperation constitutes a potential approach for
achieving sub-linear SL growth rate. Quantifying the scaling laws
for hierarchical cooperation lies out of the scope of this paper and is
the subject matter of [12].

V. CONCLUSIONS

In this paper, we studied the trade-off between generated traf-
fic and scheduling delays associated with the broadcast problem in
dense multi-hop sensor networks where sample measurements are
correlated. First, we determined the transport traffic and schedule
length scaling laws under the no cooperation and network-wide co-
operation extremes. We observed that the no cooperation extreme
experiences the worst (linear) scaling laws among all strategies. At
the other extreme, we analyzed two examples of network-wide co-
operation, namely sequential and forward/reverse cooperation. We
showed that the former reduces the transport traffic scaling law from
O(N) to O(log N) at the expense of a quadratic schedule length
growth rate. On the other hand, the latter achieves a logarithmic scal-
ing law for the transport traffic while preserving the linear schedule
length growth rate. Second, we introduced a novel two-phase coop-
eration framework that localizes cooperation within regions of the

network in an attempt to investigate the trends over the space of
strategies bounded by the aforementioned extremes. This strategy
introduces the cooperation set size as a degree of freedom to trade-
off between transport traffic and scheduling delays for a given net-
work size. Extending the results of this paper to two-dimensional
grids is a potential avenue for future work. Furthermore, it is imper-
ative to employ more realistic interference models where the signal-
to-interference-and-noise-ratio (SINR) at the receiver serves as the
main criteria for successfully receiving a signal.
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