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Restoration Scheme of Mobility Databases by
Mobility Learning and Prediction in PCS Networks
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Abstract—This paper proposes a restoration scheme based on
mobility learning and prediction in the presence of the failure of
mobility databases in personal communication systems (PCSs).
In PCSs, mobility databases must maintain the current location
information of users to provide a fast connection for them.
However, the malfunction of mobility databases may cause some
location information to be lost. As a result, without an explicit
restoration procedure, incoming calls to users may be rejected.
Therefore, an explicit restoration scheme against the malfunction
of mobility databases is needed to guarantee continuous service
availability to users. Introducing mobility learning and prediction
into the restoration process allows systems to locate users after a
failure of mobility databases. In failure-free operations, the move-
ment patterns of users are learned by a Neuro-Fuzzy Inference
System (NFIS). After a failure, an inference process of the NFIS
is initiated and the users’ future location is predicted. This is
used to locate lost users after a failure. This proposal differs from
previous approaches using a checkpoint because it does not need
a backup process nor additional storage space to store checkpoint
information. In addition, simulations show that our proposal can
reduce the cost needed to restore the location records of lost users
after a failure when compared to the checkpointing scheme.

Index Terms—Mobility database failure restoration, mobility
learning and prediction, personal communication systems.

I. INTRODUCTION

PERSONAL communication systems (PCSs) [1], [2] enable
users to communicate with each other at any time from

any location. Thus, users no longer need to remain at a fixed
location to receive messages. However, to do this, the location
information of users should first be identified to systems before
a connection is established. In PCSs this location information is
usually maintained in mobility databases. When there are calls
for users, the calls are delivered using the location information.
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Typically, mobility databases are hierarchically composed
in PCS networks. When users move across a registration area
boundary, mobility databases are updated to include the users’
new location. This procedure, which is known aslocation
registration, is initiated by users. When users are called, the
mobility databases are queried to find the location where users
currently visiting. This procedure, referred to aslocation query,
is performed by systems.

Over the years, several strategies have been devised for mini-
mizing the cost of the location management in the existing stan-
dards, IS-41 in the United States and GSM in Europe. Most of
them have focused on optimizing the registration and location
query costs [3]–[6]. However, there have been a few works on
the reliability aspect of mobility databases. When the mobility
databases fail, the location records stored in the databases are
lost and incoming calls to users may be rejected. This results in
a large service delay and a serious deterioration in the perfor-
mance of systems. Thus, there is a need for an explicit restora-
tion procedure for mobility databases to guarantee continuous
service availability to users.

Without an explicit restoration procedure, the delay in
restoring location information after a failure depends on the
length of the users’ silence period. In IS-41 [7], there is no
explicit expedient to restore mobility databases. After a failure,
mobility databases incrementally reconstruct the location
information of a user each time the user sends a registration
message. Before the users originate any message, all incoming
calls to them are rejected. In GSM [8], mobility databases
are backed up periodically, i.e., a checkpointing procedure is
performed for the recovery of failed mobility databases. After
a failure, the databases are immediately restored from a stable
storage. However, some backup records may be obsolete. If the
interval between the checkpointing time and the failure time of
mobility databases is relatively long, the users’ latest location
information may not be updated, in which case, location
records during this period may be rendered obsolete.

Users’ mobility plays an important role in locating lost users
after a failure. To verify the obsoleteness of backup records, lost
users should be paged, starting from the area recorded on the
backup. Unfortunately, unsuccessful paging occurs when users
move far away from the area recorded on the backup. This re-
sults in deteriorated system performances and service quality. If
systems can predict the probable location of users after a failure,
it would cut the paging cost tremendously. User mobility predic-
tion would be useful in enhancing the performance of systems
during the restoration of failed mobility databases. In fact, user
mobility prediction has been used in various application areas,
such as service pre-allocation, resource pre-assignment, and so
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on [9]–[11]. In this paper, we consider user mobility prediction
for the restoration of failed mobility databases in PCSs.

Our restoration scheme is based on learning and predicting
the movement patterns of users. Whenever users register a new
location, their movement patterns are learned by a Neuro-Fuzzy
Inference System (NFIS). When a failure occurs in mobility
databases, the probable location of users may be predicted by the
NFIS. This predicted location is used to find the users’ current
location. Contrary to other approaches using checkpoint, our
restoration scheme does not need any backup process. Thus, it
has less costs during failure-free operations. In addition, there’s
no need for additional storage space to store checkpoint infor-
mation and users experience only slight delays in service.

This paper is organized as follows. In Section II, we briefly
describe location management and fault tolerance in PCS net-
works. Section III provides an overview of related works on
the restoration of mobility databases. In Section IV, we present
a brief introduction to NFIS and model mobility learning and
prediction in mobile environments. In Section V, we propose
a restoration scheme based on mobility learning and predic-
tion. Procedures for the restoration of mobility databases are
also presented in this section. Section VI shows the performance
evaluation of our restoration scheme with simulations. This sec-
tion also compares our scheme with the periodic checkpointing
scheme. Finally, the conclusion of this paper is given in Sec-
tion VII.

II. L OCATION MANAGEMENT AND FAULT TOLERANCE IN PCS
NETWORKS

A. System Architecture

The network architecture of PCS is composed of two sets of
entities: one is the fixed network and the other is mobile units
(or mobile users). At the end of the fixed network, a base sta-
tion (BS) is augmented to provide users with an interface. Users
can only communicate with a BS through a wireless link. The
service area is partitioned into cells. A cell is the geograph-
ical area covered by a BS. Several cells compose a registration
area (RA). Each RA is connected to a mobile switching center
(MSC) through a wired network. An MSC typically provides
switching functions which coordinate location registration and
call delivery. The MSC has access to the mobility databases in
the network. These mobility databases are used to store the lo-
cation and service information for each registered user in PCS.
The architecture of mobility databases in PCS is typically based
on a two-tier hierarchy structure. With this structure, the mo-
bility databases consist of the home location register (HLR) and
the visitor location register (VLR). The HLR is a global data-
base which stores information about all users registered in PCS.
A VLR is a local database usually associated with the MSC. It
stores information about users visiting the MSC’s RA. When-
ever a handover occurs during the wireless connection of users,
the RA maintains information about the current cell location of
users. Fig. 1 shows the mobility database architecture of PCS
used in this paper.

B. Location Registration and Location Query

The location registration procedure is used to update loca-
tion records in mobility databases when users move into a new

Fig. 1. Mobility database architecture.

RA. The location query procedure is used for establishing an
incoming call to users. Below is a description of the location
registration and query procedures.

The location registration procedure works as follows: when a
user, move from a RA RA with MSC MSC to another RA
RA with MSC MSC , sends a location registration mes-
sage to MSC [Step 1 in Fig. 2(a)]. MSC delivers the regis-
tration message to the HLR [Step 2 in Fig. 2(a)] and confirms
the receipt of the registration message from MSC[Step 3 in
Fig. 2(a)]. The HLR also informs MSCabout the relocation of

. MSC deletes ’s entry in VLR on receiving this mes-
sage [Step 4 in Fig. 2(a)]. MSCalso updates VLRwith ’s
entry.

The location query procedure works as follows: when a user
calls another user , sends a location query message to

MSC [Step 1 in Fig. 2(b)]. MSCthen queries the VLRto find
the location information of the called user . If the information
is retrieved, MSC establishes a connection between and

. This case indicates that two users and reside in
RA . If the information does not exist in VLR, MSC queries
the HLR to find ’s location information [Step 2 in Fig. 2(b)].
The HLR determines the RA of the and sends a route request
message to MSC[Step 3 in Fig. 2(b)]. MSC then determines
a temporary location directory number for and transfers the
information to the HLR [Step 4 in Fig. 2(b)]. The HLR delivers
this information to MSC [Step 5 in Fig. 2(b)], and establishes a
connection between two users and [step 6 in Fig. 2(b)].

C. Failure of Location Databases

When a failure occurs in mobility databases, location records
stored in them are lost. In addition, location registration and lo-
cation query procedures can no longer be performed. So, the
exact location of users may not be identified, and the latest lo-
cation information of users may not be updated. In this situation,
a connection may not be established for incoming calls to users.



1964 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2001

(a)

(b)

Fig. 2. (a) Registration and (b) query procedure.

Typically, without an explicit restoration procedure, the loca-
tion information can be restored after a failure by means of one
of the following events.

• Autonomous location registration: Users periodically in-
form networks of their current location.

• Call origination: The current location of users is identified
to networks at a call origination.

• Registration boundary crossing: Users necessarily send a
registration message to networks when they cross a regis-
tration boundary.

The three events described above are used to restore mobility
databases in the absence of an explicit restoration procedure.
The delay and cost in restoring mobility databases depend on
the occurrence of three events by users. If any of these three
events does not occur after a failure, the location information of
users are permanently not restored. After a long time passes, if
one of these events occurs, the location information of users can
be restored by it. However, services may not be served to users
for the failure period.

Apart from the implicit restoration procedure in PCS, an ex-
plicit restoration procedure is required after a failure to recon-
struct lost location information. Consequently, the restoration of
mobility databases performed only by systems will guarantee
service availability to users.

III. RELATED WORKS

The existing two standards, IS-41 and GSM, are based on
a two-tier hierarchical structure with two types of mobility
databases, specifically HLR and VLR. Unlike the IS-41

Fig. 3. Time flow example.

system, GSM has provided an explicit restoration procedure
[8] to recover mobility databases after a failure occurs. The
following procedure is performed for the recovery of failed
mobility databases. During failure-free operations, the location
information recorded in the mobility databases, HLR and VLR,
is periodically checkpointed into a stable storage co-located
in the mobility databases. After a failure occurs, the location
information is immediately reconstructed from the backup.
However, backup records are not always exact; some backup
records may be obsolete, because the location information may
have changed during the interval between checkpoint time and
failure time. In such instances, mobility databases are restored
from incorrect location information. Incoming calls to users
may be lost due to the absence of location information for the
users. Furthermore, users often experience delays in service
using this checkpointing scheme, not to mention it takes up
additional storage space. The bigger the number of users,
the larger the amount of records needed to store the location
information of users.

To overcome these problems, several restoration schemes
have been proposed in [12], [13]. These works have focused
on deriving the optimal checkpoint interval to balance the
checkpointing cost against the paging cost. However, it is not
adequate to apply the interval to all users due to a different mo-
bility of each user. The movement behavior of users is closely
related to the cost and delay required to locate users after a
failure. For example, fast-moving users may quickly move out
of the last checkpointed location. In this case, systems should
page entire cells within a RA due to the first unsuccessful
paging in the last checkpointed location. Moreover, if users
move far away from the last checkpointed location, more
successive paging must be executed, resulting in redundant
paging. Thus, the checkpointing of mobility databases does
not seem to be an appropriate approach for improving the
efficiency of a restoration procedure.

Let us consider an illustrative example. Fig. 3 shows a time
flow for such a situation. In this figure, represents the time at
which a checkpoint for mobility databases is taken. After check-
pointing, a user moves out of the checkpointed RA and moves
to a new RA at time . represents a residence time in the new
RA. That is, the user moves to the new RA at timeand moves
out of the RA at time . We assume that the failure of mo-
bility databases occurs at the time between and .

After a failure occurs, any incoming calls to the user cannot
be delivered to a target user during the time between and

. If is relatively long, the no-service time for incoming
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calls will be also long. When a failure occurs at the time ,
mobility databases are restored from a stable storage immedi-
ately. At this time, the system starts to page the area recorded on
the checkpoint. If an interval betweenand is very long,
the delay time for checkpointing will be short. However, most
users may move far away from checkpointed location at time.
Since users may not reside in the cell which corresponds to the
checkpointed location, first paging for the cell may be unsuc-
cessful, at which time the system must perform entire paging
within the new RA. As user mobility grows larger, the redun-
dant paging becomes more. On the other hand, if an interval
between and becomes shorter, the restored location
from backup may be exact. However, the location information
is frequently saved into a stable storage and so the delay time
for checkpointing will be larger.

So far, we have described some restoration schemes in PCS.
As shown in these schemes, an explicit restoration procedure
after a failure is needed to provide users with continuous
service availability. In addition, the failed mobility databases
should be aggressively restored by systems rather than by users.
So, restoration delay should not be dependent on user-initiated
events. Moreover, it is important that user mobility be consid-
ered during failure-free operations. To reduce obsolete location
information minimally, the failed mobility database should be
reconstructed with the location where users probably reside
after a failure. This paper introduces the mobility learning of
users’ moving trajectory in failure-free operations. After a
failure, mobility prediction is used to restore failed mobility
databases. The next section describes mobility learning and
prediction.

IV. M OBILITY LEARNING AND PREDICTION

Mobility learning and prediction plays an important part in
our restoration procedure. User mobility is a key to locating
users after a failure occurs in mobility databases. In existing
checkpointing schemes, there is a danger for some backup
records to be obsolete because the user mobility between
checkpoint time and failure time is not updated. The more
complex the user mobility, the greater the chances for obsolete
information to occur. On the other hand, our approach to
mobility learning and prediction extrapolates probable user
locations using the previously known mobility information by
an NFIS. This approach promises better adaptability for various
types of user mobility.

A. Neuro-Fuzzy Inference Model

In this paper, we use the simplified fuzzy inference model
form among various fuzzy models. The simplified fuzzy infer-
ence model, referred to as the zero-order Sugeno’ model in [14],
is based on the fuzzyIF–THEN rules whose consequence is a real
number. Thus, this model provides the inference structure that
avoids the time-consuming process of defuzzification in an in-
ference procedure. The form of fuzzyIF–THEN rules is as fol-
lows:

Rule
(1)

where
a fuzzy rule number;
input variables;

a fuzzy set for input variable in the th fuzzy
rule;
a real number for output variable in the th
fuzzy rule ( , ).

Given the real-valued input vector , the
real-valued output of the fuzzy model is inferred as follows:

(2)

Here, is a fuzzy membership function of the fuzzy set
and is a membership value ofth fuzzy rule. This mapping
is performed using a singleton fuzzifier as fuzzification, a
product-inference operator as fuzzy inference procedure, and
a weighted-average technique as defuzzification. The fuzzy
membership function can employ various forms such as
triangular, trapezoid, and Gaussian according to application
problems. Because of its smoothness and concise notation,
the Gaussian function is becoming increasingly popular for
specifying fuzzy sets. Moreover, since the Gaussian function
has a continuous and differentiable property, it suitably applies
to the learning rules. Thus, we employ the Gaussian function
as the fuzzy membership function

(3)

where is the central value of the fuzzy membership function
and is the variance of the central value of the fuzzy member-
ship function.

The parameters and in (3) and the parameter in (2)
are iteratively adjusted by backpropagation learning algorithms
[14] in order to minimize a learning error (

) and produce a better output. The learning rules for these
parameters are

(4)

(5)
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(6)

where is the actual output for theth input–output data, is
the output of the NFIS for theth input–output data, andis a
learning rate.

B. Mobility Learning and Prediction System

We have devised a mobility learning and prediction system to
predict the probable location of users. The mobility learning and
prediction system expresses user mobility as the movement ve-
locity and direction. It predicts a future location from the move-
ment factors of current and past locations. Letbe the state

at time of the movement of users. represents the move-
ment factors that determine the next location to which users will
move. In this paper, such that and .
Here, is the number of states in the state space,is the set
of time, is the th movement velocity at time, and is the

th movement direction at time. We assume that a movement
state can be changed when a period of timeelapses.

Using the movement states defined above, the movement
function which maps current and past movement states into a
future movement state can be denoted by

NFIS (7)

where NFIS is a neuro-fuzzy inference system which is
based on the neuro-fuzzy model described in Section IV-A
and is the number of current and past movement states.
Equation (7) uses the current and past movement states

to predict the future movement state
. represents the location history

which includes the movement patterns accumulated in the
previous days or months. They are used for the input of the
NFIS. The output of (7) is the future movement state inferred
by the NFIS. The probable location of users is obtained from
the velocity and direction of the future movement state .

In order to construct fuzzy rulebase from movement
states for several days or months, we use clustering-based
techniques [14] that can automatically generate fuzzy rules
according to the degree of similarity of movement states.
The clustering-based techniques partition movement states
into some clusters so that the similarity within a cluster is
larger than that within others. Each cluster has a cluster center.
The cluster center is used as the central value of the fuzzy
membership function in the antecedent part of a fuzzy rule.
Let be the th cluster center among

clusters and be the th
movement state vector at time. In order to measure a similarity
degree between and , a distance function can be defined
by

(8)

where is a distance between and . In (8), as and
become more similar, grows smaller. Then, it is necessary to
determine the degree of similarity betweenand . To deter-
mine this similarity, we define a radius. By using (8) and the
radius , a similarity degree between a movement state vector
and each cluster is defined as follows: if , the similarity
is high, otherwise it is low.

Based on this criterion, the movement state vector of users
can be subdivided into three classes:

• not defining the movement state vector as a cluster (fuzzy
rule);

• defining the movement state vector as a cluster;
• defining the movement state vector as a cluster, but consid-

ering the movement state vector as an unnecessary cluster.
The first class indicates that a movement state vector is added

to fuzzy rulebase as a new cluster (fuzzy rule) because the move-
ment state vector does not correspond to any cluster among pre-
defined ones. In this case, the antecedent and consequence of a
new fuzzy rule are organized as follows:

(9)

where and correspond to the central value () and
the variance ( ) of a fuzzy membership function, respectively,
and corresponds to the real number () of consequence
part.

The second class indicates that a movement state vector has
a high degree of similarity to several clusters among predefined
ones. In this case, by increasing the importance of the clusters,
the NFIS results in a more exact prediction when a similar move-
ment state vector with predefined movements states appears in
the movement path of users. In order that the movement state
can affect the real value of the consequence part in fuzzy rules,

is updated as follows:

(10)

where is the number of movement state vectors within the
th cluster. Using (10), we get the updated weight which corre-

sponds to the mean of future movement states within a cluster.
The third class indicates that a movement state vector had

been previously defined as a fuzzy rule, but is currently consid-
ered unnecessary. This means the wrong reflection of the latest
movement state in fuzzy rulebase. This situation happens when
the past movement of users differs from their ordinary move-
ment patterns. The cluster (fuzzy rule) made from this situa-
tion causes incorrect predictions. So, the unnecessary fuzzy rule
should be eliminated from fuzzy rulebase according to an appro-
priate mobile situation. In other words, those fuzzy rules that
suitably reflect the latest movement state should be stored in
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the fuzzy rulebase. Thus, it is necessary for a criterion to de-
termine the elimination of an unnecessary fuzzy rule from the
fuzzy rulebase. Such a criterion is given as

Rule
if
if

(11)

where
the age of theth fuzzy rule;
the parameter which controls the age of a fuzzy rule;
the parameter which determines the elimination of a
fuzzy rule.

The age of a fuzzy rule is updated as follows. If a distance
between a current movement state vector and a cluster center is
less than the radius, the age of a fuzzy rule becomes zero. On
the other hand, if the distance is larger than the radius, the age
of a fuzzy rule is increased by one. To determine how much the
movement state of users affects fuzzy rules, we introduce the
parameter . According to the value of , fuzzy rules are sub-
divided into two groups: young fuzzy rules and old fuzzy rules.
Since the young fuzzy rules suitably reflect the latest movement
state, it is desirable that they be used as fuzzy rules. The old
fuzzy rules are built from the movement state which is found
just once in the movement path of users during. There is a very
strong possibility that the old fuzzy rules bring about incorrect
prediction. Thus, the old fuzzy rules should be eliminated from
the fuzzy rulebase. In our system, if the age of a fuzzy rule is
more than (the old fuzzy rules), this fuzzy rule is eliminated
as an unnecessary fuzzy rule.

So far, we have described the mobility learning and predic-
tion system based on the NFIS for modeling and predicting
the movement patterns of users. The next section proposes the
restoration scheme by mobility learning and prediction.

V. RESTORATION OFMOBILITY DATABASE BY MOBILITY

LEARNING AND PREDICTION

In this section, we describe the restoration scheme to provide
service availability to users even after the failure of mobility
databases. Our restoration scheme consists of two primary op-
erations: failure-free operations and failure recovery operations.
Fig. 4 shows the overall structure for the restoration of mobility
databases under our scheme. The following subsections present
a detailed description for each operation.

A. Failure-Free Operations

A single fault model is assumed in our restoration scheme.
The mobility databases are assumed to be fail-stop and so the
lost location records are restored immediately after a failure by
the mobility learning and prediction system described in Sec-
tion IV.

During failure-free operations, our restoration scheme learns
the users’ moving trajectory. We consider current movement
direction and velocity as user mobility parameters. Basically,
our restoration scheme assumes that users inform mobility
databases of their current location every time interval. Also,
mobility databases update their location records when users

Fig. 4. The overall structure of our restoration scheme.

originate a call, when a handover occurs, and so on. These
assumptions reduce wireless link consumption. The movement
patterns based on the format (current exact location, current
time, current movement direction and velocity) are gathered at
the MSC and periodically transferred to the HLR via the VLR.
Then, the NFIS learns the movement patterns using the latest
location information.

Here, we describe an overall algorithm for mobility learning
and prediction. The algorithm performs a learning procedure for
the movement patterns of users in order to construct more an
elaborate fuzzy rulebase. It also performs a prediction procedure
to predict the future location. The various steps are described as
follows.

Algorithm 1 : Mobility Learning and
Prediction
Let be the move-

ment state vector containing the current
and past movement information at time
( , ). We predict
the future movement state from
at time by the NFIS.

Step 1 : Starting with the first movement
state vector and the first future
movement state , establish a cluster
center at , set , and assign
zero to the age of the cluster . Se-
lect a radius .

Step 2 : Suppose that, when we con-
sider the th movement state vector ,
there are clusters with centers at

. Compute the similarity of
to these cluster centers by (8)

and let the highest similarity be ,
that is, the nearest cluster to is

( ).
a) If , establish as a new
cluster center , set
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, and assign zero to the age of the
new cluster .
b) If , update by Equation
(10) and set for
with .

Step 3 : Eliminate unnecessary clusters by
(11).

Step 4 : Compute the future movement state
at the th movement state vector

by (2).
Step 5 : Adjust the parameters , , and

as much as the number of learning it-
erations by (4)–(6).

Step 6 : Execute Steps 2–5 iteratively.

B. Failure Recovery Operations

After a failure, mobility databases must restore the same lo-
cation information as before. Our approach to restore failed
mobility databases is based on mobility learning and predic-
tion. When a failure occurs, the mobility learning and prediction
system is initiated to predict a user’s probable location. Let
be the time at which a failure occurs in mobility databases, and

be the th movement state vector at time. After time ,
the movement state vector at future timecannot employ cur-
rent and past movement information any more ( ). Thus,
in our scheme, to predict theth movement state at current time

( ), future movement state vectors are recursively con-
structed with the location information predicted by NFIS up to
time . The th movement state vector at time, , is orga-
nized as follows:

if

if
(12)

where and represent the movement states included with
and the predicted movement states by NFIS, respectively.

Using (12), we can get different movement state vectors
whether or not is included with the movement state vector
at time . is used for predicting the movement state at
time and is used for organizing the movement state
vector at time . This process is repeated up to time
by NFIS in order to predict the movement state at time .
The prediction information derived in this way is used as the
first paging cell to locate lost users. This prediction information
represents the probable cell of users at the failure time of the
mobility databases. The accuracy of predicting the probable
cell location of users depends on the time interval between

and . In general, users may move farther and farther
away from their location at time , as the time interval grows
longer. However, if the mobility learning and prediction system
correctly learns user mobility during failure-free operations, it
can predict the probable cell of users at time, with a high
rate of accuracy. In this case, only one paging is needed to
locate lost users after a failure. So, as the rate of accuracy in
predicting location increases, paging cost goes down.

Our restoration scheme consists of the HLR failure restora-
tion procedure and the VLR failure restoration procedure.
Fig. 5(a) and (b) shows the overall flow of the failure restora-
tion of two databases, the HLR and the VLR, respectively.
Algorithms 2 and 3 also show the restoration step of two
mobility databases after a failure.

Algorithm 2 : HLR Failure Restoration by
Mobility Prediction
Step 1 : The failed HLR sends a restora-

tion initiation message to all VLR’s in
order to gather the lost location infor-
mation of users.

Step 2 : Each VLR that receives the
restoration initiation message is
queried to search the lost location
information of users.

Step 3 : The failed HLR receives an exact
location information of users from all
VLR’s. The HLR is reconstructed using
the location information.

Algorithm 3 : VLR Failure Restoration by
Mobility Prediction
Step 1 : The failed VLR sends a restora-

tion initiation message to the HLR in
order to gather the lost location infor-
mation of users.

Step 2 : The HLR that receives the
restoration initiation message predicts
the location of the requested users.

Step 3 : The failed VLR receives the pre-
dicted location from the HLR.

Step 4 : The predicted location is paged
to locate users.
Step 4.1 : A cell corresponding to the
predicted location is paged. If any re-
sponse from the paged user is returned,
the location information for the user is
reconstructed.
Step 4.2 : If there is no response
within a specific time, the adjacent
cells of the predicted location are
paged.
Step 4.3 : If there’s still no response
from the adjacent cell paging, entire
cells within a RA are paged.

Step 5 : The failed VLR receives an exact
location information of the paged users.
The VLR is reconstructed using the loca-
tion information. If any response from
the paged users is not returned after
three successive pagings, the failed VLR
waits until the users originate a call.

The checkpointing scheme is a passive restoration strategy in
which the location information of users is backed up into a stable
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(a)

(b)

Fig. 5. Mobility database restoration by mobility prediction: (a) HLR and (b) VLR.

storage during failure-free operations. Because failed databases
are restored from storage, restored location information may
be obsolete. So, restoration efficiency under the checkpointing
scheme is very sensitive to user mobility. On the other hand,
our scheme is an aggressive restoration strategy in which the
lost location information is recovered by predicting the users’
movements at the failure time. It predicts the probable location
of users after a failure and uses this predicted location informa-
tion as a starting paging cell. Since the predicted location in-
formation is based on the movement patterns of users during
failure-free operations, we expect it to be more accurate and
therefore entail less number of paging.

VI. PERFORMANCEEVALUATION

In this section, we evaluate the performance of our restoration
scheme through simulations. Our simulations are performed
with the mobility data, which are approximated to users’ real
movements. We first describe how to generate mobility data.
Then, to show an efficiency of our restoration scheme, we
compare our scheme with a restoration scheme that uses a
periodic checkpointing scheme [13].

A. Mobility Data Generation

Mobility data could be collected from real mobile environ-
ments. However, these data are too complicated to be collected
directly from the real mobile environments. The procedure to
generate mobility data is presented here. This procedure con-
sists of a user mobility model and user mobility data genera-

tion. The user mobility model presents a method of modeling
users’ movement behavior in terms of their velocity and di-
rection. Based on the user mobility model, mobility data are
generated.

Users have their own movement behavior. The movement
behavior is defined as the act of moving from one given ge-
ographical location to another, over a spatial dimension. Ac-
cording to their movement behavior, users have specific move-
ment patterns. Many previous researches [15]–[17], have used
some version of a random-walk mobility model. However, the
random-walk mobility model fails to take into account certain
aspects of movement behavior, such as users’ movement pat-
terns. In [18], the traveling demand model is proposed to rep-
resent observed travel patterns by travel mode. This is based
on transportation planning and traffic engineering models that
describe and predict travel demand, typically concentrating on
urban areas [19]. In this model, it is assumed that individual
travelers make travel choices which are “best” for them. Based
on the traveling demand model, we extract the mobility data in
terms of users’ movement velocity and direction.

The velocity of users can be interpreted in two ways: using
mean velocity and an arbitrary velocity variation. In a real situ-
ation, when users move at a mean velocity, the velocity variation
would be nearly zero. If users move without any periodicity for
a velocity per period of time, they move at a random velocity in
the range of a mean velocity. Thus, at time , users have the
following velocity:

(13)
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TABLE I
USERCLASSES ANDPARAMETER VALUES

where is a mean velocity at time; is the variation of a mean
velocity at time and it is selected using a uniform distribution
in the velocity variation range . In (13), as the velocity
variation range increases, the velocity grows more random.

On the assumption that users move toward a destination along
their route, users are differentiated using their target direction
toward the destination and a variation of the target direction.
Thus, the movement direction at time , can be defined
by

(14)

where
current direction toward a destination at time;
number of movement directions;
movement direction index and is selected with the
probability , where .

In (14), if the probability of the direction toward a destination
is larger than that of other directions, users would move into a

destination without abrupt direction changes. On the other hand,
if all probabilities are equal, users would move into a destination
with a random direction.

Through the mobility model described above, users are cate-
gorized into several movement types. In this paper, we will make
the mobility data per each movement type and employ them in
evaluating the performance of our restoration scheme.

B. Simulation Environments

When carrying out the simulations, we assume that users
move to any cell in the hexagon cell environments along
unknown movement paths according to their movement prop-
erties. The assumed total number of cells is 256. Each VLR
has the same number of cells. It is also assumed that the radius
of a cell is 500 m. Within these geographical parameters, the
location information of users is measured at every 0.0835 h for
30 days.

In order to extract mobility data, we classify users into nine
user types by the combination of three kinds of velocities (,

, and ) and three kinds of directions (, , and ). Table I
shows the user classes for velocity and direction. Among nine
user types, the users of the type always move toward a
destination, keeping a mean velocity and direction. On the other
hand, the users of the type display a random velocity and
direction in their movement paths.

For the sake of simplicity, we assume that km/h
and for all time . Thus, users have different movement
paths according to the velocity variation range () and the di-
rection probability vector ( such that

). Parameters values for each user class are also
shown in Table II.

TABLE II
SIMULATION PARAMETERS

With mobility data for each user type, we evaluated the per-
formance of our restoration scheme. During failure-free opera-
tion, NFIS learns the movement patterns of users with the mo-
bility data. For the sake of simplicity, it was assumed that the
failure of mobility databases happens after it passes 30 days.
Then, a hit ratio between a predicted location and actual loca-
tion was collected. These results were compared to those gath-
ered using the periodic checkpointing scheme.

The performance of a restoration scheme with periodic
checkpointing is shown in [13]. After failed mobility databases
are restored from a stable storage, lost users are paged to find
their exact locations. If lost users are not found by the paging,
entire paging within an RA should be performed. This renders
the checkpointed location information obsolete because users
have moved away from the checkpointed location. Thus, the
performance of a restoration scheme with periodic check-
pointing can be determined by a hit ratio between a restored
location and the probable location of lost users after a failure.
Accordingly, it is shown in [13] that users’ residence time in
an RA follows an exponential distribution with mean ,
where is a mean probability that users move out of the RA.
Under this observation, the probability which users move
in an RA at a time between 0 and before checkpointing and
move out of the RA at the time after a failure is derived as

(15)

where is an average checkpoint interval. From (15), we can
deduce that users do not move out of the RA of a checkpointed
location after a failure occurs at mobility databases. It should
be noted that, as the probability becomes lower, the paging area
to locate lost users grows wider. In our simulations, (15) was
used to compare the performance of our restoration scheme with
that of a restoration scheme with periodic checkpointing. For
demonstration purposes, we assume that .

The performance of our restoration scheme is determined by
the degree of accuracy of actual location vis-à-vis predicted lo-
cation by the NFIS. If our scheme can predict the probable lo-
cation of users after a failure, only one paging is needed to lo-
cate the users. This dramatically decreases paging cost. In order
to analyze the performance of our restoration scheme, we eval-
uate how many location records are exactly restored after the
failure of mobility databases elapses. As the criterion of the per-
formance, we use an exact cell hit ratio (ECHR) and an adjacent
cell hit ratio (ACHR). The ECHR is defined as a ratio of the
correctly restored location information by a single paging to the
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Fig. 6. Average hit ratio as a time after a failure elapses.

total number of lost location information at a future time after
a failure. The ACHR is defined as a ratio of correctly restored
location information by the paging of adjacent cells around pre-
dicted cell to the total number of lost location information at a
future time after a failure.

C. Simulation Results

Fig. 6 shows the average hit ratio of all user types as a time
after the failure of mobility databases elapses. In this figure, the
solid line indicates the average hit ratio of the checkpointing
scheme. The dotted line and the dashed line indicate the average
ECHR and ACHR of our restoration scheme, respectively. The
checkpointing scheme shows a steep descent as a time elapses.
Besides, we can see that the curve sharply goes down at the
initial stage of the failure. On the other hand, our restoration
scheme maintains a high average hit ratio for all user types until
a time after a failure elapses in the range from 50 to 70 min.
Even though the ECHR is somewhat low, the ACHR, which is
a hit ratio for the adjacent cells of a predicted cell, is consider-
ably high. Thus, this figure shows that the performance of the
checkpointing scheme is very sensitive to the time elapsed after
a failure. On the other hand, the performance of our restoration
scheme does not depend on the elapsed time. Even though a lot
of time has elapsed after a failure, our restoration scheme main-
tains a high average hit ratio.

From the results of Fig. 6, we observe that our restoration
scheme can reduce the cost needed to restore location records
in the presence of the failure of mobility databases. This reduc-
tion indicates that our restoration scheme is able to predict the
probable location of lost users after a failure. In addition, our
restoration scheme can sufficiently locate lost users using less
paging, resulting in a dramatic decrease in paging costs. On the
other hand, the checkpointing scheme can locate lost users by
paging an entire RA after the first unsuccessful paging. In prac-
tical systems, an RA consists of dozens or hundreds of cells. So,
the checkpointing scheme would page a lot of cells to locate lost
users, as compared to our restoration scheme.

We now examine the effect of the users’ random movement
on the ECHR. Fig. 7 shows the ECHR of nine user types as the
elapsed time after a failure. It shows the probability that users
exactly reside on the predicted cell by the NFIS after a failure
occurs. In Fig. 7, the users of the type have the highest
hit ratio from among nine user types because they have fairly

regular movement patterns. The ECHR of the users is in the
range of 80%–90% up to a failure duration time of roughly 110
min. On the other hand, the users of the type who have
somewhat random movement patterns have the lowest hit ratio.
Even though the ECHR of this type is not high as that of the
other types, there is no steep slope during an initial stage after a
failure. We can see in Fig. 7 that the users of this type maintain a
uniform ECHR up to a failure duration time of roughly 60 min.

Upon analyzing the ECHR of Fig. 7, we can find that, as
the variation of velocity and direction increases, the ECHR de-
creases. Nevertheless, for all user types, there is no steep slope
during the initial stage of a failure. This means that the loca-
tion records of lost users can be restored with uniform paging
costs in the initial state of a failure regardless of users’ random
movements.

Our restoration scheme is based on user mobility learning and
prediction to locate lost users after a failure. To get a higher
restoration accuracy, it would require a number of learning itera-
tions for the past movement patterns of users during failure-free
operations. The learning rules [see (4)–(6)] are iteratively per-
formed as much as needed in order to optimize the parame-
ters , , and . This can be an overhead for our restoration
scheme. However, excessive learning for the parameters may
recklessly learn noise patterns in movement states, and more-
over, it requires a great deal of learning time. So, even though
the learning phase is performed using many learning iterations,
the performance of our restoration scheme should not always
be enhanced in proportion to the increase of the learning iter-
ations. On the other hand, scarce learning for the parameters
may require less learning time, but suitable values for the pa-
rameters cannot be derived. Thus, it is important to choose the
number of learning iterations suitably so that, during failure-free
operations, learning time is reduced as much as possible. In our
simulation, we used the number of learning iterations at 50 and
discovered that this value is quite suitable.

VII. CONCLUSION

We have proposed an approach based on mobility learning
and prediction to failure restoration for PCS mobility databases.
Whenever users register a new location, their movement pat-
terns are learned by an NFIS. When a failure occurs in mobility
databases, the location information of users is predicted by the
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(a)

(b)

(c)

Fig. 7. ECHR for all users. (a) Almost straight direction. (b) Moderate direction. (c) Staggering direction.

NFIS. The predicted location is used to determine the probable
location of lost users after a failure. Unlike previous approaches
using the checkpointing scheme, our restoration scheme can re-
duce the cost needed to restore the location records of lost users
after a failure by using less paging.

The simulations showed that mobility prediction provides
considerably high restoration accuracy. While the check-
pointing scheme becomes less accurate as the checkpoint
interval becomes larger, our restoration scheme with mobility
learning and prediction capability maintains a considerably
high restoration rate regardless of the time elapsed after the
failure of mobility databases. We also examined through
simulations an effect of users’ random movements. The results
showed that the performance of our restoration scheme is

somewhat sensitive to the variation of movement velocity and
direction, but it can restore the location records of lost users
with a high restoration rate after a failure.

In our restoration scheme, the NFIS replaces the role of
the checkpoint as mobility learning and prediction. Thus,
our restoration scheme has no backup process and therefore
fewer failure-free operation costs. In addition, it needs no
storage space to store the checkpoints. We conclude that our
scheme produces a more accurate restoration rate than the
checkpointing scheme, at less delay and lower cost.

In our paper, we applied the mobility prediction to mobility
database restoration in PCS networks. The mobility prediction
would have applicability to various areas, such as service pre-
allocation, resource pre-assignment, seamless handovers, con-
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text transfers, and so on. In particular, IP networking like IETF
SeaMoby [20] seems to need this mobility prediction to provide
mobile users with a high quality of services.
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