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Abstract—This paper proposes a restoration scheme based on  Typically, mobility databases are hierarchically composed
mobility learning and prediction in the presence of the failure of ijn PCS networks. When users move across a registration area
mobility databases in personal communication systems (PCSS)'boundary, mobility databases are updated to include the users’

In PCSs, mobility databases must maintain the current location locati Thi d hich is k msati
information of users to provide a fast connection for them. new location. IS procedure, which 1S known ation

However, the malfunction of mobility databases may cause some registration is initiated by users. When users are called, the
location information to be lost. As a result, without an explicit mobility databases are queried to find the location where users
restoration procedure, incoming calls to users may be rejected. currently visiting. This procedure, referred tolasation query
Therefore, an explicit restoration scheme against the malfunction is performed by systems.

of mobility databases is needed to guarantee continuous service . . -
availability to users. Introducing mobility learning and prediction Over the years, several strategies have been devised for mini-

into the restoration process allows systems to locate users after aMizing the cost of the location management in the existing stan-
failure of mobility databases. In failure-free operations, the move- dards, 1S-41 in the United States and GSM in Europe. Most of
ment patterns of users are learned by a Neuro-Fuzzy Inference them have focused on optimizing the registration and location
System (NFIS). After a failure, an inference process of the NFIS query costs [3]-[6]. However, there have been a few works on
is initiated and the users'’ future location is predicted. This is hg reliability aspect of mobility databases. When the mobility
used to locate lost users after a failure. This proposal differs from qdatabases fail. the location records stored in the databases are

previous approaches using a checkpoint because it does not nee . ; . . .
a backup process nor additional storage space to store checkpoint [0St @nd incoming calls to users may be rejected. This results in

information. In addition, simulations show that our proposal can @ large service delay and a serious deterioration in the perfor-
reduce the cost needed to restore the location records of lost usersmance of systems. Thus, there is a need for an explicit restora-

after a failure when compared to the checkpointing scheme. tion procedure for mobility databases to guarantee continuous
Index Terms—Mobility database failure restoration, mobility ~ Service availability to users. .
learning and prediction, personal communication systems. Without an explicit restoration procedure, the delay in

restoring location information after a failure depends on the
length of the users’ silence period. In 1S-41 [7], there is no
|. INTRODUCTION explicit expedient to restore mobility databases. After a failure,

ERSONAL communication systems (PCSs) [1], [2] enabl@obility databases incrementally reconstruct the location
users to communicate with each other at any time frotiformation of a user each time the user sends a registration
any location. Thus, users no longer need to remain at a fixB¥¢ssage. Before the users originate any message, all incoming
location to receive messages. However, to do this, the locat@dls to them are rejected. In GSM [8], mobility databases
information of users should first be identified to systems befof§€ backed up periodically, i.e., a checkpointing procedure is
a connection is established. In PCSs this location informati0nqgrf_cl’rm‘adhfc’r the recovery of failed m?b'“ty databfases. Afterl
usually maintained in mobility databases. When there are calid® ure,|_t| e databases etl)re |kmmed|atzy restobred brorr ? S}:‘t?]e
for users, the calls are delivered using the location informatio) orage. Mowever, Some backup records may be ODSOIEte. €
interval between the checkpointing time and the failure time of
mobility databases is relatively long, the users’ latest location
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on [9]-[11]. In this paper, we consider user mobility prediction
for the restoration of failed mobility databases in PCSs.

Our restoration scheme is based on learning and predictin
the movement patterns of users. Whenever users register a ne
location, their movement patterns are learned by a Neuro-Fuzz
Inference System (NFIS). When a failure occurs in mobility
databases, the probable location of users may be predicted by tl
NFIS. This predicted location is used to find the users’ current
location. Contrary to other approaches using checkpoint, ou
restoration scheme does not need any backup process. Thus
has less costs during failure-free operations. In addition, there’,
no need for additional storage space to store checkpoint infor
mation and users experience only slight delays in service.

This paper is organized as follows. In Section II, we briefly
describe location management and fault tolerance in PCS ne
works. Section Il provides an overview of related works on
the restoration of mobility databases. In Section IV, we presen
a brief introduction to NFIS and model mobility learning and
prediction in mobile environments. In Section V, we propose
a restoration scheme based on mobility learning and predic
tion. Procedures for the restoration of mobility databases arc
also presented in this section. Section VI shows the performal?:g:ge 1
evaluation of our restoration scheme with simulations. This sec-

tion also compares our scheme with the periodic checkpointin%

scheme. Finally, the conclusion of this paper is given in Se@A The location query procedure is used for establishing an
tion VILI. incoming call to users. Below is a description of the location

registration and query procedures.
Il. LOCATION MANAGEMENT AND FAULT TOLERANCE IN PCS The location registration procedure works as follows: when a
NETWORKS user,m; move from a RA RA with MSC MSG to another RA
) RA,; with MSC MSG,, m, sends a location registration mes-
A. System Architecture sage to MSG [Step 1 in Fig. 2(a)]. MSE delivers the regis-
The network architecture of PCS is composed of two setsfsétion message to the HLR [Step 2 in Fig. 2(a)] and confirms
entities: one is the fixed network and the other is mobile unitBe receipt of the registration message from M$Step 3 in
(or mobile users). At the end of the fixed network, a base staig. 2(a)]. The HLR also informs MSCabout the relocation of
tion (BS) is augmented to provide users with an interface. Users . MSC; deletesn;’s entry in VLR, on receiving this mes-
can only communicate with a BS through a wireless link. Trgage [Step 4 in Fig. 2(a)]. MSGilso updates VLRwith m;’s
service area is partitioned into cells. A cell is the geograpkatry.
ical area covered by a BS. Several cells compose a registratiorf he location query procedure works as follows: when a user
area (RA). Each RA is connected to a mobile switching cente; calls another usern;, m; sends a location query message to
(MSC) through a wired network. An MSC typically providesMISC; [Step 1 in Fig. 2(b)]. MS&then queries the VLRto find
switching functions which coordinate location registration ari¢he location information of the called uses. If the information
call delivery. The MSC has access to the mobility databasesisnretrieved, MSG establishes a connection between and
the network. These mobility databases are used to store therte- This case indicates that two users andm reside in
cation and service information for each registered user in PG®A; . If the information does not exist in VLRMSC, queries
The architecture of mobility databases in PCS is typically bas#ie HLR to findm,'s location information [Step 2 in Fig. 2(b)].
on a two-tier hierarchy structure. With this structure, the md-he HLR determines the RA of the, and sends a route request
bility databases consist of the home location register (HLR) amessage to MSC[Step 3 in Fig. 2(b)]. MSg then determines
the visitor location register (VLR). The HLR is a global dataa temporary location directory number fax, and transfers the
base which stores information about all users registered in P@8ormation to the HLR [Step 4 in Fig. 2(b)]. The HLR delivers
A VLR is a local database usually associated with the MSC.this information to MSG [Step 5 in Fig. 2(b)], and establishes a
stores information about users visiting the MSC’s RA. Whergonnection between two users andms [step 6 in Fig. 2(b)].
ever a handover occurs during the wireless connection of users,
the RA maintains information about the current cell location ¢¢. Failure of Location Databases

users. Fig. 1 shows the mobility database architecture of PCSyhen a failure occurs in mobility databases, location records
used in this paper. stored in them are lost. In addition, location registration and lo-
cation query procedures can no longer be performed. So, the
exact location of users may not be identified, and the latest lo-
The location registration procedure is used to update loazation information of users may not be updated. In this situation,
tion records in mobility databases when users move into a nawonnection may not be established for incoming calls to users.

BS: Base station

HLR: Home location register
MSC: Mobile switching center
VLR: Visitor location register
RA: Registration area

MU:  Mobile unit

Mobility database architecture.

B. Location Registration and Location Query
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* t_: time at which a checkpoint is taken
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* 1+, : time at which a failure occurs in the mobility database
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s 1.+7 :time at which a user registers his location

Fig. 3. Time flow example.

system, GSM has provided an explicit restoration procedure
[8] to recover mobility databases after a failure occurs. The
following procedure is performed for the recovery of failed
mobility databases. During failure-free operations, the location
information recorded in the mobility databases, HLR and VLR,
is periodically checkpointed into a stable storage co-located
in the mobility databases. After a failure occurs, the location
information is immediately reconstructed from the backup.
However, backup records are not always exact; some backup
records may be obsolete, because the location information may
have changed during the interval between checkpoint time and
failure time. In such instances, mobility databases are restored
from incorrect location information. Incoming calls to users
may be lost due to the absence of location information for the
users. Furthermore, users often experience delays in service
Typically, without an explicit restoration procedure, the loca4sing this checkpointing scheme, not to mention it takes up
tion information can be restored after a failure by means of oadditional storage space. The bigger the number of users,

Fig. 2. (a) Registration and (b) query procedure.

of the following events. the larger the amount of records needed to store the location
« Autonomous location registration: Users periodically ininformation of users. _
form networks of their current location. To overcome these problems, several restoration schemes

« Call origination: The current location of users is identified@ve been proposed in [12], [13]. These works have focused
to networks at a call origination. on deriving the optimal checkpoint interval to balance the

« Registration boundary crossing: Users necessarily senfi£ckpointing cost against the paging cost. However, it is not

registration message to networks when they cross a reggf %qu?te tohapply t_rll_ﬁ interval to at”tl:sﬁ s _due fto a d|ﬁ‘¢rer|1t mlo—
tration boundary, ility of each user. The movement behavior of users is closely

rﬁlated to the cost and delay required to locate users after a

The threg events described above are usedto rgstore mOblle'uYure. For example, fast-moving users may quickly move out
databases in the absence of an explicit restoration proced%r

; . . the last checkpointed location. In this case, systems should
The delay and cost in restoring mobility databases depend e entire cells within a RA due to the first unsuccessful
the occurrence of three events by users. If any of these th

q ft ail he | on inf : ing in the last checkpointed location. Moreover, if users
events does not occur after a failure, the location information ove far away from the last checkpointed location, more

users are permanently not restored. After a long time passeg, jfcessive paging must be executed, resulting in redundant
one of these events occurs, the location information of users GYing. Thus, the checkpointing of mobility databases does
be restored by it. However, services may not be served to USgf$ seem to be an appropriate approach for improving the
for the failure period. efficiency of a restoration procedure.

Apart from the implicit restoration procedure in PCS, an ex- et us consider an illustrative example. Fig. 3 shows a time
plicit restoration procedure is required after a failure to recoflow for such a situation. In this figure, represents the time at
struct lost location information. Consequently, the restoration @hich a checkpoint for mobility databases is taken. After check-
mobility databases performed only by systems will guarantgeinting, a user moves out of the checkpointed RA and moves
service availability to users. to a new RA attime;. 7. represents a residence time in the new
RA. That s, the user moves to the new RA at tithand moves
out of the RA at time; + 7... We assume that the failure of mo-
bility databases occurs at the tie-¢ » betweert; andt; + ...

The existing two standards, IS-41 and GSM, are based omAfter a failure occurs, any incoming calls to the user cannot
a two-tier hierarchical structure with two types of mobilitybe delivered to a target user during the time betweert ; and
databases, specifically HLR and VLR. Unlike the [S-4%; +7,. If 7. is relatively long, the no-service time for incoming

I1l. RELATED WORKS
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calls will be also long. When a failure occurs at the titng ¢ ¢, AE a fuzzy set for input variable; in the ith fuzzy
mobility databases are restored from a stable storage immedi- rule;

ately. At this time, the system starts to page the area recorded ow; a real number for output variablg in the ith
the checkpoint. If an interval betweénandt; +¢ ¢ is very long, fuzzyrule¢=1,2,...,n,7=1,2, ..., d).
the delay time for checkpointing will be short. However, mosgiven the real-valued input vectatr = [z1, 22, ..., 4], the

users may move far away from checkpointed location at time real-valued output of the fuzzy model is inferred as follows:
Since users may not reside in the cell which corresponds to the

checkpointed location, first paging for the cell may be unsuc- Z Wi - wi 4
cessful, at which time the system must perform entire paging N
within the new RA. As user mobility grows larger, the redun- @) === ’ Hi = H Faj (). 2)
dant paging becomes more. On the other hand, if an interval Zm =t
=1

betweert. andt; + t; becomes shorter, the restored location

from backup may be exact. However, the location informatiqRere, ;. ,: is a fuzzy membership function of the fuzzy sk

is frequently s_aved _into a stable storage and so the delay tiﬁlﬁjm is’a membership value ath fuzzy rule. This mapping

for checkpointing will be larger. , ~_is_performed using a singleton fuzzifier as fuzzification, a
So far, we have described some restoration schemes in P3quct-inference operator as fuzzy inference procedure, and

As shown in these schemes, an explicit restoration procedyr§yeighted-average technique as defuzzification. The fuzzy

after a failure is needed to provide users with continuoW§embership function can employ various forms such as

service availability. In addition, the failed mobility databaseﬁiangmar' trapezoid, and Gaussian according to application

should be aggressively restored by systems rather than by usg¥splems. Because of its smoothness and concise notation

So, restoration delay should not be dependent on user-initiaigd Gaussian function is becoming increasingly popular for

events. Moreover, it is important that user mobility be considpecifying fuzzy sets. Moreover, since the Gaussian function

ered during failure-free operations. To reduce obsolete locatigfs a continuous and differentiable property, it suitably applies

reconstructed with the location where users probably resigdg the fuzzy membership function

after a failure. This paper introduces the mobility learning of

users’ moving trajectory in failure-free operations. After a 1 [ —c;’» ?
failure, mobility prediction is used to restore failed mability Hal (z;) = exp 5 o ©)
databases. The next section describes mobility learning and /
prediction. wherec! is the central value of the fuzzy membership function
andaj is the variance of the central value of the fuzzy member-
IV. MOBILITY LEARNING AND PREDICTION ship function.

Mobility learning and prediction plays an important part in The parameters; ando; in (3) and the parameter; in (2)
our restoration procedure. User mobility is a key to locatingf® iteratively adjusted by backpropagation learning algorithms
users after a failure occurs in mobility databases. In existifigd] in order to minimize a learning erroe (& 1/2 >° (yp —
checkpointing schemes, there is a danger for some backip?) and produce a better output. The learning rules for these
records to be obsolete because the user mobility betwgsirameters are
checkpoint time and failure time is not updated. The more
complex the user mobility, the greater the chances for obsolete =) —p. — : ‘
information to occur. On the other hand, our approach %’qﬂrl) G = dc; - i Opyi O
mobility learning and prediction extrapolates probable user
locations using the previously known mobility information by
an NFIS. This approach promises better adaptability for various i N (wi(t) — Up)
types of user mobility. j )

A. Neuro-Fuzzy Inference Model k=1
In this paper, we use the simplified fuzzy inference model i zj — c5(t) (4)
form among various fuzzy models. The simplified fuzzy infer- ! (a;‘, (t))Q
ence model, referred to as the zero-order Sugeno’ model in [14], ! Ce
is based on the fuzay—THEN rules whose consequenceis areali( 4 1) = 5()—y - 8(3‘ = oi(t)—7- Oe  Opi /“;
number. Thus, this model provides the inference structure that ’ dot Y i Oy 9o
avoids the time-consuming process of defuzzification in an in-
ference procedure. The form of fuz#~THEN rules is as fol-
: ; N Wy t)— 4
lows: ‘ ‘ IO’;(t) —n- (yp _ yp) . ( (n) yp)
Rulei: IF x; is A and, ..., and 24 is A}, THEN y is w; Z m
h (l) k=1
where NS
i a fuzzy rule number; . M )
x1, ..., x4 iNpUt variables; (oi(1))
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wit+1) =w;(t) — 7 - e whereD; is a distance betweeR; andS®. In (8), ask; and S,
dw; become more simila¥y; grows smaller. Then, itis necessary to
determine the degree of similarity betwe&nandS? . To deter-
mine this similarity, we define a radius By using (8) and the

=wi(t)—n- nui (yp — Up) (6) radiusr, a similarity degree between a movement state vector
Z m and each cluster is defined as followsiif < r, the similarity
b1 is high, otherwise it is low.

Based on this criterion, the movement state vector of users

wherey,, is the actual output for thgth input—output datay, is can be subdivided into three classes:

the output of the NFIS for theth input—output data, anglis a

learning rate. * not defining the movement state vector as a cluster (fuzzy
rule);
B. Mobility Learning and Prediction System + defining the movement state vector as a cluster,

We h devised bility | . d oredicti tem t « defining the movement state vector as a cluster, but consid-
€ have devised a mobility iearning and prediction system to ering the movement state vector as an unnecessary cluster.

predict the probable location of users. The mobility leaming andThe first class indicates that a movement state vector is added

prediction system expresses user mobility as the movement ye:
. T : . tofuzzy rulebase as a new cluster (fuzzy rule) because the move-
locity and direction. It predicts a future location from the move-

. ment state vector does not correspond to any cluster among pre-
ment factors of current and past locations. Kétbe the state defi : P y gp
. " efined ones. In this case, the antecedent and consequence of a
k at timet of the movement of users;, represents the move-

ment factors that determine the next location to which users wri]ﬁ."“W fuzzy rule are organized as follows:
move. In this papeis}, = (v}, 8}) such thatc < K andt € 7.
Here, K is the number of states in the state spdtés the set 1 _ gD 2
j k w: — G+l
’ T Mk

of time, v}, is thekth movement velocity at time andéj, is the  ju4: (z;) = exp | = -

2 T

kth movement direction at time We assume that a movement
state can be changed when a period of tineapses. 9
Using the movement states defined above, the movement

function which maps current and past movement states into ﬁ 561 andr d1oth | valug Y and
future movement state can be denoted by Whereo, andr correspond to the central valug) an

the variancerfj) of a fuzzy membership function, respectively,
NFIS (5}“ St 5;;(’“1)) — St (7) andS;tt corresponds to the real number;) of consequence
part.
where NFIS is a neuro-fuzzy inference system which is The second class indicates that a movement state vector has
based on the neuro-fuzzy model described in Section IV-#high degree of similarity to several clusters among predefined
and & is the number of current and past movement stateshes. In this case, by increasing the importance of the clusters,
Equation (7) uses the current and past movement stafies NFIS results in a more exact prediction when a similar move-
St, 5t Sim% Y to predict the future movement statement state vector with predefined movements states appears in
Sittost S L, S,i_(h_l) represents the location historythe movement path of users. In order that the movement state
which includes the movement patterns accumulated in thaen affect the real value of the consequence part in fuzzy rules,
previous days or months. They are used for the input of the is updated as follows:
NFIS. The output of (7) is the future movement state inferred

by the NFIS. The probable location of users is obtained from "
the velocity and direction of the future movement stsf&". Z Sitt
In order to construct fuzzy rulebase from movement k=1
. wp=—— (20)
states for several days or months, we use clustering-based m;

techniques [14] that can automatically generate fuzzy rules

according to the degree of similarity of movement stategneres,. is the number of movement state vectors within the
The clustering-based techniques partition movement Stajg$|yster. Using (10), we get the updated weight which corre-
into some clusters so that the similarity within a cluster igyonds to the mean of future movement states within a cluster.
larger than that within others. Each cluster has a cluster CeNterrya third class indicates that a movement state vector had
The cluster center is .used as the central value of the fuzgy,, previously defined as a fuzzy rule, but is currently consid-
memﬂbershlpl fun2ct|on n ;[he antecgdent part of a fuzzy ruIgred unnecessary. This means the wrong reflection of the latest
Let (= [A;, Ry oo Rib]),b? theith fllj(ftﬁr) center among mqyement state in fuzzy rulebase. This situation happens when
M clusters ands} (= [Si. S, .-, S ]) be thekth  the hast movement of users differs from their ordinary move-
movement state vector at timeln order to measure a similarity ment patterns. The cluster (fuzzy rule) made from this situa-
degree betweel; and.5}, a distance function can be definedjg, causes incorrect predictions. So, the unnecessary fuzzy rule
by should be eliminated from fuzzy rulebase according to an appro-
priate mobile situation. In other words, those fuzzy rules that

D; = ‘SZ - R; (8) suitably reflect the latest movement state should be stored in
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the fuzzy rulebase. Thus, it is necessary for a criterion to de- [ Mobility DB Restoration j
termine the elimination of an unnecessary fuzzy rule from the

fuzzy rulebase. Such a criterion is given as
| Failure-free Operations |
L{age;) = exp[—a - agey] —
Rulei — {young if L(age;) > 3 1) Neuro-Fuzzy Model QA lisltte};irl; a
old if L{age;) < f v
‘ Mobility Learning
where
age; the age of theth fl_JZZy rule; | Failure Recovery Operations |
«@ the parameter which controls the age of a fuzzy rule;
Jéj the parameter which determines the elimination of a . .
fuzzy rule. Mobility Prediction
The age of a fuzzy rule is updated as follows. If a distance v -
between a current movement state vector and a cluster center is Paging e ————
less than the radius, the age of a fuzzy rule becomes zero. On Mo DB

the other hand, if the distance is larger than the radius, the age
of a fuzzy rule is increased by one. To determine how much thg 4. The overall structure of our restoration scheme.
movement state of users affects fuzzy rules, we introduce the

arametef3. According to the value of, fuzzy rules are sub- . .
P F 9 0b y émgmate a call, when a handover occurs, and so on. These

divided into two groups: young fuzzy rules and old fuzzy rules. i q irel link tion. Th i
Since the young fuzzy rules suitably reflect the latest moveme SUMPLoNS réduce WIreless fink consumption. The movemen
%tterns based on the formatu¢rent exact location, current

state, it is desirable that they be used as fuzzy rules. The i t directi d veloti thered at
fuzzy rules are built from the movement state which is foun e, current movement direction and velopiye gathered a

just once in the movement path of users duginghere is a very the MSC and periodically transferred to the HLR via the VLR.

strong possibility that the old fuzzy rules bring about incorre\g‘en’ the NFIS learns the movement patterns using the latest

prediction. Thus, the old fuzzy rules should be eliminated fro c:tlon mfo(;matu_)t?. Il alaorithm f bility | .
the fuzzy rulebase. In our system, if the age of a fuzzy rule is ere, we describe an overail aigorithm for mobliity learning

more than3 (the old fuzzy rules), this fuzzy rule is eIiminatea‘"md prediction. The algorithm perfprms a learning procedure for
the movement patterns of users in order to construct more an
as an unnecessary fuzzy rule. laborate f leb ital ‘ dicti d
So far, we have described the mobility learning and predig-a 0:15_‘ ?tﬁzzfytru elaset._ a_?_ﬁ pertorms atpre Ic |odn progbe dure
tion system based on the NFIS for modeling and predictiria{:ore ict the Tulure location. The various steps are described as
the movement patterns of users. The next section proposes QWS-
restoration scheme by mobility learning and prediction.
Algorithm 1 : Mobility Learning and

V. RESTORATION OFMOBILITY DATABASE BY MOBILITY Prediciion et t—(h—1)
LEARNING AND PREDICTION Let Si(=  [Sk S5 --s Sk ]) be the move-

) . ) ) . ment state vector containing the current
In this section, we describe the restoration scheme to provide, 4 past movement information at time ¢

service availability to users even after the failure of mobility (k=1,2..K t=12..,T). We predict
databases. Our restoration scheme consists of two primary opqe future movement state St from St
erations: failure-free operations and failure recovery operations o time ¢ by the NFIS. K K
Fig. 4 shows the overall structure for the restoration of mobilitg;, 1 - Starting with the first movement
databases under our scheme. The following subsections presegFate vector gfi and the first future

a detailed description for each operation. movement state  SI*!, establish a cluster

center R, at S!, set w; =5, and assign

A. Failure-Free Operations zero to the age of the cluster age;. Se-
A single fault model is assumed in our restoration scheme.lect a radius 7.

The mobility databases are assumed to be fail-stop and so $iiep 2 : Suppose that, when we con- .

lost location records are restored immediately after a failure bysider the  kth movement state vector St

the mobility learning and prediction system described in Sec-there are M clusters with centers at

tion IV. Ry, Ry, ..., Ry Compute the similarity of
During failure-free operations, our restoration scheme learnsS}, to these M cluster centers by (8)

the users’ moving trajectory. We consider current movementand let the highest similarity be _ Dw,

direction and velocity as user mobility parameters. Basically, that is, the nearest cluster to Stis

our restoration scheme assumes that users inform mobility,r (&' =1,2, ..., M). .

databases of their current location every time interyalAlso, a) If Dy > r, establish Si as a new

mobility databases update their location records when usergluster center EM+1 = §L, set w1 =
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Si*l, and assign zero to the age of the Our restoration scheme consists of the HLR failure restora-
new cluster AGEN +1- tion procedure and the VLR failure restoration procedure.
b) If Dy < r, update wp by Equation Fig. 5(a) and (b) shows the overall flow of the failure restora-
(10) and set age; =age;+1 for 1=1,2, ..., M tion of two databases, the HLR and the VLR, respectively.
with [ # k. Algorithms 2 and 3 also show the restoration step of two
Step 3 : Eliminate unnecessary clusters by mobility databases after a failure.
(11).
Ste&rf: Compute the future movement state  ajgorithm 2 HLR Failure Restoration by
ST at the kth movement state vector St Mobility Prediction
by (2). . ) ) Step 1: The failed HLR sends a restora-
Step 5: Adjust the parameters ¢, oj, and tion initiation message to all VLR's in

w; as much as the number of learning it-

; order to gather the lost location infor-
erations by (4)—(6).

mation of users.

Step 6 : Execute Steps 2-5 iteratively. Step 2 : Each VLR that receives the
restoration initiation message is
B. Failure Recovery Operations queried to search the lost location

|o.information of users.

égdep 3: The failed HLR receives an exact
location information of users from all
VLR's. The HLR is reconstructed using
the location information.

After a failure, mobility databases must restore the same
cation information as before. Our approach to restore fail
mobility databases is based on mobility learning and predic-
tion. When a failure occurs, the mobility learning and prediction
system is initiated to predict a user’s probable location.tl.et
be the time at which a failure occurs in mobility databases, and
S} be thekth movement state vector at timg. After ime¢;, Algorithm 3 : VLR Failure Restoration by
the movement state vector at future timeannot employ cur- Mobility Prediction
rent and past movement information any marge € ¢). Thus, Step 1: The failed VLR sends a restora-
in our scheme, to predict thgh movement state at currenttime tion initiation message to the HLR in
t, (¢ < t,), future movement state vectors are recursively con-order to gather the lost location infor-
structed with the location information predicted by NFIS up to mation of users.
time ¢,. The kth movement state vector at tines’t | is orga- Step 2: The HLR that receives the

nized as follows: restoration initiation message predicts
[Siv g’t;l’ o ng+17 the location of .the requested. users.
gts gtr=1 Step 3: Thg failed VLR receives the pre-
St = ey, _ dicted location from the HLR.
S I; ifty <t<t;y+h  Step 4: The predicted location is paged
[S‘,ﬁ, St ﬁ,z_(h_l)} , ift>tp4+h to locate users.

(12) Step 4.1 : A cell corresponding to the

whereS; andS; represent the movement states included with predicted location is paged. If any re-
5% and the predicted movement states by NFIS, respectively. SPonse from the paged user is returned,

Using (12), we can get different movement state vectorsthe location information for the user is
whether or notS; is included with the movement state vector reconstructed. _
at timet. S is used for predicting the movement stafg at ~ Step 4.2 : If there is no response
timet + 1 and St is used for organizing the movement state Within a specific time, the adjacent
vector§t+! at timet + 1. This process is repeated up to tige ~ C€!IS Of the predicted location are
by NFIS in order to predict the movement stalg at timet,,. paged. . s
The prediction information derived in this way is used as the Step 4.3 : . If there’s still No response
first paging cell to locate lost users. This prediction information from th_e _adjacent cell paging, entire
represents the probable cell of users at the failure time of t e(:e"S within a RA are paged..
mobility databases. The accuracy of predicting the proba P 5.: _The faﬂgd VLR receives an exact
cell location of users depends on the time interval betweenloc"’1t|0n mformatlon of the paQEd USErs.
ty and t,. In general, users may move farther and farther ;Ii_gr? |\r/1 L_oﬁml;ti(;icol?sggmergsuilr?sge t?r?)mloca-
away from their location at timey, as the time interval grows h d - T any P d aft
longer. However, if the mobility learning and prediction systemt € paged users IS UOt returne aner
correctly learns user mobility during failure-free operations, it thrge successive pagings, the failed VLR
can predict the probable cell of users at tife with a high waits until the users originate a call.
rate of accuracy. In this case, only one paging is needed to
locate lost users after a failure. So, as the rate of accuracy inThe checkpointing scheme is a passive restoration strategy in
predicting location increases, paging cost goes down. which the location information of users is backed up into a stable
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Fig. 5. Mobility database restoration by mobility prediction: (a) HLR and (b) VLR.

storage during failure-free operations. Because failed databatses. The user mobility model presents a method of modeling
are restored from storage, restored location information magers’ movement behavior in terms of their velocity and di-
be obsolete. So, restoration efficiency under the checkpointiregtion. Based on the user mobility model, mobility data are
scheme is very sensitive to user mobility. On the other hargknerated.

our scheme is an aggressive restoration strategy in which théJsers have their own movement behavior. The movement
lost location information is recovered by predicting the userbehavior is defined as the act of moving from one given ge-
movements at the failure time. It predicts the probable locati@graphical location to another, over a spatial dimension. Ac-
of users after a failure and uses this predicted location informaarding to their movement behavior, users have specific move-
tion as a starting paging cell. Since the predicted location iment patterns. Many previous researches [15]-[17], have used
formation is based on the movement patterns of users dursmme version of a random-walk mobility model. However, the
failure-free operations, we expect it to be more accurate armhdom-walk mobility model fails to take into account certain
therefore entail less number of paging. aspects of movement behavior, such as users’ movement pat-
terns. In [18], the traveling demand model is proposed to rep-
resent observed travel patterns by travel mode. This is based

In this section, we evaluate the performance of our restoratign transportation planning and traffic engineering models that

. . . . scribe and predict travel demand, typically concentrating on
scheme through simulations. Our simulations are performe(ab . o S
urban areas [19]. In this model, it is assumed that individual

with the mobility (jata, Wh'C.h are approximated to users re?rlavelers make travel choices which are “best” for them. Based
movements. We first describe how to generate mobility data

L . on the traveling demand model, we extract the mobility data in
Then, to show an efficiency of our restoration scheme, V\{grms of users’ movement velocity and direction

compare our scheme with a restoration scheme that uses . ! ; .
P The velocity of users can be interpreted in two ways: using

periodic checkpointing scheme [13]. mean velocity and an arbitrary velocity variation. In a real situ-
ation, when users move at a mean velocity, the velocity variation
- , . would be nearly zero. If users move without any periodicity for
Mobility data could be collected from real mobile environs, velocity per period of time, they move at a random velocity in

ments. However, these data are too complicated to be collecfgd range of a mean velocity. Thus, at time 1, users have the
directly from the real mobile environments. The procedure ¥Bllowing velocity:

generate mobility data is presented here. This procedure con-
sists of a user mobility model and user mobility data genera-

VI. PERFORMANCEEVALUATION

A. Mobility Data Generation

(13)

Vgl = Uy + Uy
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TABLE | TABLE 1
USER CLASSES AND PARAMETER VALUES SIMULATION PARAMETERS

Velocity Direction Parameter Description Values

Class | Meaning | Value (¢.) || Class Meaning Value (p) The number of mobility data (days) 30

A regular (5, 25) X | almost straight | [0.0 0.1 0.8 0.1 0.0] The number of current and past movement states (h) 4

B moderate | (10, 40) Y moderate [010.2040.20.1] The change period of movement states (7) 0.0835

C | fluctuating | (20, 60) A staggering [0.20.20.2020.2] Radius (r) 0.3
Learning rate (1) 0.05

The number of learning iterations 50

Where@ isamean Velocity at tImE ﬂt is the variation ofamean The control parameter for the age of fuzzy rules (a) 0.1
The remove parameter for unnccessary fuzzy rules (3) 0.005

velocity at timet and it is selected using a uniform distribution
in the velocity variation rangp-7., %.]. In (13), as the velocity _ -
variation range increases, the velocity grows more random.  With mobility data for each user type, we evaluated the per-
On the assumption that users move toward a destination aldfgnance of our restoration scheme. During failure-free opera-
their route, users are differentiated using their target directigfn» NFIS learns the movement patterns of users with the mo-
toward the destination and a variation of the target directiofility data. For the sake of simplicity, it was assumed that the
Thus, the movement direction at time 1, 6,1 can be defined failure of mobility databases happens after it passes 30 days.

by Then, a hit ratio between a predicted location and actual loca-
tion was collected. These results were compared to those gath-
6,1 =8, + or i (14) ered using the periodic checkpointing scheme.
LT The performance of a restoration scheme with periodic

checkpointing is shown in [13]. After failed mobility databases
are restored from a stable storage, lost users are paged to find
their exact locations. If lost users are not found by the paging,
) o . . entire paging within an RA should be performed. This renders
k movement direction index and is selected with thfhe checkpointed location information obsolete because users

probability px, wherek € {0, 1, ..., d — 1}. . .
In (14), if the probability of the directiok toward a destination ha\rﬁ:‘ng\i‘i a:)v]\c/a;/ frreosTo:Zt?oﬁhi(c::l;]Zcr)r;rgev?/i :ﬁczgﬁgaghzﬁééi?

: . . pe
px is larger than that of other directions, users would move intds.

.= . o inting can be determined by a hit ratio between a restored
destination without abrupt direction changes. On the other haﬁg 9 y

it all probabilities are equal. users would move into a destinati location and the probable location of lost users after a failure.
I"e P nties ) qual, u wou %ccordingly, it is shown in [13] that users’ residence time in
with a random direction.

- . n RA follows an exponential distribution with mearn,,,,
Through the mobility model described above, users are Ca\?vqﬁere)\m is a mean probability that users move out of the RA.

gorized into several movement types. In this paper, we will mall(fnder this observation, the probabilifyy, which users move
the mobility data per each movement type and employ them.in ’ v

evaluating the performance of our restoration scheme in‘an RA at a time between 0 afi§- before checkpointing and
valuating P u : ) move out of the RA at the tim&;- after a failure is derived as

0 current direction toward a destination at time
d number of movement directions;

T
B. Simulation Environments Pr, = 1 / A @y —s) g
. . . Ty
When carrying out the simulations, we assume that users vJo
move to any cell in the hexagon cell environments along 1 — ¢ ATy (15)
unknown movement paths according to their movement prop- T Ty A

erties. The assumed total number of cells is 256. Each ViwhereTy is an average checkpoint interval. From (15), we can
has the same number of cells. It is also assumed that the radieduce that users do not move out of the RA of a checkpointed
of a cell is 500 m. Within these geographical parameters, tlozation after a failure occurs at mobility databases. It should
location information of users is measured at every 0.0835 h fio¢ noted that, as the probability becomes lower, the paging area
30 days. to locate lost users grows wider. In our simulations, (15) was
In order to extract mobility data, we classify users into ninesed to compare the performance of our restoration scheme with
user types by the combination of three kinds of velocitids ( that of a restoration scheme with periodic checkpointing. For
B, andC) and three kinds of directions(, Y, andZ). Table | demonstration purposes, we assume Mat= 0.4.
shows the user classes for velocity and direction. Among nineThe performance of our restoration scheme is determined by
user types, the users of the typeX always move toward a the degree of accuracy of actual location vis-a-vis predicted lo-
destination, keeping a mean velocity and direction. On the ottezttion by the NFIS. If our scheme can predict the probable lo-
hand, the users of the tygeZ display a random velocity and cation of users after a failure, only one paging is needed to lo-
direction in their movement paths. cate the users. This dramatically decreases paging cost. In order
For the sake of simplicity, we assume that = 5 km/h to analyze the performance of our restoration scheme, we eval-
andd = 5 for all time ¢. Thus, users have different movementiate how many location records are exactly restored after the
paths according to the velocity variation rangg)@nd the di- failure of mobility databases elapses. As the criterion of the per-
rection probability vectorg{ = [po, p1, --., pa—1] Such that formance, we use an exact cell hit ratio (ECHR) and an adjacent
Z‘,ﬁ;i pr. = 1). Parameters values for each user class are at=ll hit ratio (ACHR). The ECHR is defined as a ratio of the
shown in Table II. correctly restored location information by a single paging to the
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Fig. 6. Average hit ratio as a time after a failure elapses.

total number of lost location information at a future time afteregular movement patterns. The ECHR of the users is in the
a failure. The ACHR is defined as a ratio of correctly restore@nge of 80%—90% up to a failure duration time of roughly 110
location information by the paging of adjacent cells around pratin. On the other hand, the users of the typ& who have
dicted cell to the total number of lost location information at aomewhat random movement patterns have the lowest hit ratio.
future time after a failure. Even though the ECHR of this type is not high as that of the
other types, there is no steep slope during an initial stage after a
failure. We can see in Fig. 7 that the users of this type maintain a

Fig. 6 shows the average hit ratio of all user types as a tirsgiform ECHR up to a failure duration time of roughly 60 min.
after the failure of mobility databases elapses. In this figure, theUpon analyzing the ECHR of Fig. 7, we can find that, as
solid line indicates the average hit ratio of the checkpointirtfje variation of velocity and direction increases, the ECHR de-
scheme. The dotted line and the dashed line indicate the averaig@ises. Nevertheless, for all user types, there is no steep slope
ECHR and ACHR of our restoration scheme, respectively. Tlakiring the initial stage of a failure. This means that the loca-
checkpointing scheme shows a steep descent as a time elagi#srecords of lost users can be restored with uniform paging
Besides, we can see that the curve sharply goes down at ¢hets in the initial state of a failure regardless of users’ random
initial stage of the failure. On the other hand, our restorationovements.
scheme maintains a high average hit ratio for all user types untilOur restoration scheme is based on user mobility learning and
a time after a failure elapses in the range from 50 to 70 miptediction to locate lost users after a failure. To get a higher
Even though the ECHR is somewhat low, the ACHR, which kestoration accuracy, it would require a number of learning itera-
a hit ratio for the adjacent cells of a predicted cell, is considefons for the past movement patterns of users during failure-free
ably high. Thus, this figure shows that the performance of tlagerations. The learning rules [see (4)—(6)] are iteratively per-
checkpointing scheme is very sensitive to the time elapsed afiefmed as much as needed in order to optimize the parame-
a failure. On the other hand, the performance of our restoratitgisc;, o, andw;. This can be an overhead for our restoration
scheme does not depend on the elapsed time. Even though &¢beme. However, excessive learning for the parameters may
of time has elapsed after a failure, our restoration scheme maieklessly learn noise patterns in movement states, and more-
tains a high average hit ratio. over, it requires a great deal of learning time. So, even though

From the results of Fig. 6, we observe that our restoratidhe learning phase is performed using many learning iterations,
scheme can reduce the cost needed to restore location recthdsperformance of our restoration scheme should not always
in the presence of the failure of mobility databases. This reduge enhanced in proportion to the increase of the learning iter-
tion indicates that our restoration scheme is able to predict tagons. On the other hand, scarce learning for the parameters
probable location of lost users after a failure. In addition, oumay require less learning time, but suitable values for the pa-
restoration scheme can sufficiently locate lost users using legmeters cannot be derived. Thus, it is important to choose the
paging, resulting in a dramatic decrease in paging costs. On thamber of learning iterations suitably so that, during failure-free
other hand, the checkpointing scheme can locate lost usersopgrations, learning time is reduced as much as possible. In our
paging an entire RA after the first unsuccessful paging. In pragimulation, we used the number of learning iterations at 50 and
tical systems, an RA consists of dozens or hundreds of cells. §covered that this value is quite suitable.
the checkpointing scheme would page a lot of cells to locate lost
users, as compared to our restoration scheme.

We now examine the effect of the users’ random movement
on the ECHR. Fig. 7 shows the ECHR of nine user types as theMe have proposed an approach based on mobility learning
elapsed time after a failure. It shows the probability that useasd prediction to failure restoration for PCS mobility databases.
exactly reside on the predicted cell by the NFIS after a failuMhenever users register a new location, their movement pat-
occurs. In Fig. 7, the users of the typeX have the highest terns are learned by an NFIS. When a failure occurs in mobility
hit ratio from among nine user types because they have faidgtabases, the location information of users is predicted by the

C. Simulation Results

VII. CONCLUSION
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Fig. 7. ECHR for all users. (a) Almost straight direction. (b) Moderate direction. (c) Staggering direction.

NFIS. The predicted location is used to determine the probalsiemewhat sensitive to the variation of movement velocity and
location of lost users after a failure. Unlike previous approachdsection, but it can restore the location records of lost users
using the checkpointing scheme, our restoration scheme canwéh a high restoration rate after a failure.
duce the cost needed to restore the location records of lost useds our restoration scheme, the NFIS replaces the role of
after a failure by using less paging. the checkpoint as mobility learning and prediction. Thus,
The simulations showed that mobility prediction providesur restoration scheme has no backup process and therefore
considerably high restoration accuracy. While the checfewer failure-free operation costs. In addition, it needs no
pointing scheme becomes less accurate as the checkpetotage space to store the checkpoints. We conclude that our
interval becomes larger, our restoration scheme with mobilisgheme produces a more accurate restoration rate than the
learning and prediction capability maintains a considerabgheckpointing scheme, at less delay and lower cost.
high restoration rate regardless of the time elapsed after thén our paper, we applied the mobility prediction to mobility
failure of mobility databases. We also examined througiatabase restoration in PCS networks. The mobility prediction
simulations an effect of users’ random movements. The resulteuld have applicability to various areas, such as service pre-
showed that the performance of our restoration schemeaitocation, resource pre-assignment, seamless handovers, con-
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text transfers, and so on. In particular, IP networking like IETTwm 1
SeaMoby [20] seems to need this mobility prediction to provic
mobile users with a high quality of services.
L’F g
g
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