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Abstract

The paper introduces a mechanism to implement distributed scheduling for the CAN-bus resource in order to meet the
requirements of a dynamic distributed real-time system. The key issues considered here are multicasting, distinguishing between hard
real-time, soft real-time, and non-real-time constraints, achieving high resource utilization for the CAN-bus, and supporting dynamic
hard real-time computing by allowing dynamic reservation of communication resources. ( 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

A real-time communication system (RTCS) constitutes
the backbone of distributed control applications. In
order to support the timely completion of distributed
real-time activities, RTCS must ensure bounded delivery
delay for real-time messages. Assuming the existence of
hard real-time, soft real-time and non-real-time-distrib-
uted activities in a complex distributed real-time system,
communication activities can also be considered to have
hard real-time, soft real-time, and non-real-time natures.
While the timeliness of hard real-time communication
must be guaranteed, the delivery delay of a soft real-time
message may exceed the desired bound in overload situ-
ations. For the delivery of non-real-time messages no
delay bound is de"ned. This behavior of the real-time
communication must be provided to the application level
by the RTCS.

The design of a real-time communication system must
exploit the predictability features of the lower system
levels, in order to achieve predictable behavior at the
higher levels. If a communication medium exhibits un-
predictable behavior (e.g. unbounded transmission delay)
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then a high-level communication protocol will hardly be
able to provide a predictable real-time communication to
the application.

In the area of industrial automation and the automo-
tive industry, "eld busses are used to disseminate time
critical messages because of their high predictability.
Among "eld busses, the CAN bus (BOSCH, 1991) pro-
vides advanced built-in features, which make it suitable
for complex real-time applications. Some of these fea-
tures include high robustness against electro-magnetic
interference, priority-based multi-party bus access con-
trol, bounded message length, e$cient implementation of
acknowledgment and error indication, and automatic
fail-silence enforcement with di!erent fault levels.

As a common resource, the CAN bus has to be shared
by all computing nodes. Access to the bus has to be
scheduled in a way that allows distributed computations
to meet their deadlines in spite of competition for the
communication medium. Since the scheduling of the bus
cannot be based on local decisions, a distributed consen-
sus about the bus access has to be achieved.

There exist several alternative approaches to solve this
problem. All of them take advantage of the priority-
based arbitration mechanism of CAN (cf. Section 3),
which is also called carrier sense multiple access with
collision avoidance (CSMA/CA). Unlike the CSMA/CA
mechanism known from the wireless LAN literature, this
mechanism does not avoid collisions; it uses collisions to
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compare frame identi"ers and assess the frame with the
lowest identi"er value on the #y.

Deadline-monotonic priority assignment (Audsley,
Burns, Richardson & Wellings, 1992; Tindell & Burns,
1994) ensures that deadlines are met by an o!-line feasi-
bility test for a static system with periodic and sporadic
tasks. Due to the tight relationship between the identi"er
and the priority of CAN messages, the "xed priority
assignment has been applied in the most common CAN-
based communication systems implicitly, e.g. CAL (CiA,
1993), SDS (Crovella, 1994), and DeviceNet (Noonen,
Siegel and Maloney, 1994).

The CANopen standard (CiA, 1996), which is based on
CAL, de"nes periodic communication. According to this
scheme, any synchronous message is transmitted with
a high priority at most once during each `communica-
tion cycle perioda. The transmission of synchronous
messages usually takes only part of a communication
cycle. During the rest of the communication cycle, asyn-
chronous messages* which do not have a well-de"ned
occurrence cycle* are transmitted with lower priorities.
The CANopen standard approaches the determinism of
time-division multiple-access (TDMA) using the "xed
priority scheme. However, while a real TDMA protocol
like the time-triggered protocol (TTP) (Kopetz & GruK n-
steidl, 1994) is well suited for fault-tolerant applications,
CANopen systems are generally not fault-tolerant. This
is because in CANopen a communication cycle begins
with the propagation of a special message (the SYNC
object) by a certain node (the SYNC master). Thus, the
SYNC master constitutes a single point of failure for the
whole system.

In Zuberi and Shin (1995) a combination of "xed and
dynamic priority scheduling is adopted. But this ap-
proach fails to schedule messages in a bus with three or
more sender nodes because of too short a time horizon.
The term time horizon is explained later in the paper.

This paper presents a hybrid bus scheduling algorithm
that combines the determinism of TDMA and the #exib-
ility of dynamic Least-Laxity-First resource scheduling.1
The algorithm provides a mechanism to reserve enough
resources for critical hard real-time messages in order to
guarantee their timely transmission under anticipated
fault conditions. Even in situations where overload is
caused by a burst of soft real-time messages, deadlines of
hard real-time messages are met.

Unlike static TDMA schemes like TTP (Kopetz
& GruK nsteidl, 1994), the proposed scheme allows for the
dynamic reservation of communication resources for

1Due to the non-preemptive nature of the CAN bus and the low
variability of the length of CAN frames, the LLF and EDF (earliest
deadline "rst) schemes perform similarly here. However, LLF was
preferred for implementation reasons.

tasks, which only start if they obtain a guarantee of
timeliness (Stankovic & Ramamritham, 1989). Another
di!erence between hybrid bus scheduling and TDMA is
that in the static TDMA approach the reserved resources
are either used by their &owner' or they are left unused. In
contrast, in the hybrid bus scheduling approach, soft
real-time messages compete for unused reserved re-
sources according to the LLF scheme. In a fault-tolerant
system where time redundancy is applied to enable com-
munication failures to be tolerated, the reserved redund-
ant resources are usually not needed by the owner. Thus
the hybrid scheduling mechanism achieves a higher re-
source utilization by reusing redundant reserved times
for non-critical communication. Best-e!ort service of soft
real-time communication is achieved by applying non-
preemptive LLF scheduling, which is comparable to op-
timal EDF scheduling, and by assigning low priorities to
non real-time messages.

The paper is organized as follows: Section 3 gives
a brief description of the CAN arbitration mechanism.
Section 4 illustrates the underlying system model. Section
5 presents the hybrid bus scheduling mechanism, which is
a combination of dynamic TDMA scheduling for hard
real-time communication and the LLF scheduling for
soft real-time communication, both of which were de-
signed on top of a dynamic priority scheme. A summary
concludes the paper.

2. Notation

Network parameters
f is the anticipated maximum number of con-

secutive transmission failures,
j
.!9

the anticipated maximum bit-error rate of the
bus,

*bt the nominal bit-time of the bus, e.g. 1 ls at
1 Mbit/s,

*O
c

the maximum o!set between the global time
reference and any of the synchronized local
time references in the network,

Message parameters
b
m

is the number of data bytes in a message m,
¸
m

the worst-case length of a message m in bits
under assumption of maximum bit-stu$ng
("b

m
]9.6#75),

d
m

the transmission deadline of a message m, i.e.
the time when m must be transmitted success-
fully.

*¹
m

the worst-case transmission duration of
a message m, i.e. *bt¸

m
,

¸S¹
m

the latest transmission start time of a message
m, i.e. d

m
!*¹

m
,

*¸
m

the transmission laxity of a message m, i.e. the
time until ¸S¹

m
,
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Fig. 1. The CAN arbitration "eld.

*¹
.!9

the worst-case transmission duration of any
arbitrary message ("151]*bt),

*¹
"-0#,

the worst-case blocking time due to the non-
preemptive transmission of any arbitrary
message ("154]*bt),

*¹
&!*-

the worst-case time loss due to the transmis-
sion failure of any arbitrary message
("168]*bt).

Scheduling parameters
*R

m
is the length of reserved time slot for a hard
real-time message m,

S
m

the beginning of the reserved time slot of
a hard real-time message m,

¸R¹
m

the latest ready time of a hard real-time mess-
age m,

*R
.*/

the length of the shortest reserved time slot in
the system,

*R
.!9

the length of the longest reserved time slot in
the system,

*G
.*/

the minimum gap between two di!erent re-
served time slots, which is required due to
inaccurate global time reference
(*G

.*/
"2]*O

c
),

P
H
(*¸) the priority value for a hard real-time mess-

age with the current laxity *¸,
PHRT
.*/

the minimum priority value (highest possible
priority) for any hard real-time message,

PHRT
.!9

the maximum priority value (lowest possible
priority) for any hard real-time message,

P
S
(*¸) the priority value for a soft real-time message

with the current laxity *¸,
PSRT
.*/

the minimum priority value (highest possible
priority) for any soft real-time message,

PSRT
.!9

the maximum priority value (lowest possible
priority) for any soft real-time message,

PNRT
.*/

the minimum priority value (highest possible
priority) for any non real-time message,

PNRT
.!9

the maximum priority value (lowest possible
priority) for any non real-time message,

*t
p

the priority slot: the portion of time, where
a dynamic priority remains unchanged,

*H the time horizon: the amount of future
time, which is visible to an EDF or LLF
scheduler.

3. CAN arbitration mechanism

The key to understanding the CAN-Bus is the fact that
all nodes scan the value of every bit while it is being
transmitted. Hence, all correct nodes have a consistent
view of every bit. CAN controllers are commonly con-
nected by a wired AND circuit, i.e. whenever di!erent bit
values are sent by di!erent nodes simultaneously, the
logical AND function of the bit values is observed by all
nodes (including the senders).

This consistent global view is exploited for a priority-
based arbitration mechanism. According to this mecha-
nism, as soon as the bus is idle, each node competing for
the bus begins to send the arbitration "eld of its message,
which mainly consists of an 11- or 29-bit identi"er
(depending on the `standarda or `extendeda format
* Fig. 1). If at this time a node sends a &1' and senses a &0',
it becomes aware of a collision, stops transmitting, and
switches to the receiver mode. At the end of the arbitra-
tion "eld, only the node which is sending the message
with the lowest arbitration "eld value, will be trans-
mitting.

Due to this arbitration technique, the identi"er of
a CAN-message serves as its priority, and the bus acts as
a priority-based dispatcher.

The priority-based arbitration mechanism requires
that di!erent CAN nodes never simultaneously send
messages with equal identi"ers. This requirement must
be satis"ed by the communication software.

4. The system model

The authors assume a number of di!erent micro-
controllers with di!erent performance attributes ranging
from 8- to 32-bit architectures. All micro-controllers are
equipped with a CAN}Bus interface. The model exploits
the inexpensive availability of 8-bit micro-controllers to
structure the overall task of the system into small pack-
ages, i.e. objects with a well-de"ned message interface to
other objects. Of course, it is possible to locate several
tightly related objects in one node.

Higher control instances are available to control
groups of objects or eventually to control the entire
system using more powerful micro-processors. Thus, the
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higher control instances have a well-de"ned instrumenta-
tion interface composed of objects, each encapsulating
a certain functionality.

4.1. Object groups

In conventional object-oriented programming, an in-
vocation is directed at a single object blocking the client
like a procedure call. It is usually not possible to express
a request to a group of objects. However, in a real-time
control system it is bene"cial to provide groups of objects
and to use multicasts to invoke these groups. Group
invocation enables simple solution of problems like ob-
ject replication to achieve fault-tolerance, or the coord-
ination of synchronous distributed activities.

In this system model, an object participating in group
communication does not necessarily have any knowledge
about the number and location of the other group mem-
bers. Therefore, the sender of a multicast usually does not
know whether it has to send the message locally or
remotely. This simpli"es the design and implementation
of the objects, and minimizes the con"guration e!ort
when adding or removing an object.

But consequently, there must be an object in the sys-
tem that knows the con"guration. The con"guration is
given by multicast receiver groups, where a group con-
tains one or more objects. This con"guration informa-
tion is maintained by distributed multicast agents, one
residing on every computing node. Every object wishing
to send a multicast message requests its local multicast
agent to deliver the message to the group members. The
multicast agent is described in more details in Kaiser and
Livani (1998).

4.2. Group communication protocol

In order to support real-time object groups with con-
sistent information, the group communication protocol
must deliver real-time messages to all members of
a group in a timely and consistent order. Section 5 de-
scribes how to guarantee timely multicast transmission in
CAN. Given the guarantee of timely message transmis-
sion, (Livani & Kaiser, 1999) have shown that atomic
multicast can be achieved by consistent ordering of mess-
ages based on application-de"ned delivery deadlines.

4.3. The global schedule with diwerent urgency classes

In a complex real-time system, such as an attack heli-
copter, di!erent distributed computations with hard and
soft deadlines have to be performed. There are periodic
control tasks which are necessary for the aircraft to
continue #ying, and sporadic pilot commands, which
must also be considered as having hard deadlines. For
such tasks, adequate resources must be reserved in order

to guarantee their timely completion. In contrast, func-
tions like target tracking may cause an arbitrarily high
load on the computing system depending on the environ-
mental conditions. Although timely execution of these
activities is generally important for the system, it is not
possible to reasonably guarantee hard deadlines for
them.

Another application area with a mixed load of hard
and soft real-time activities, is drive-by-wire. Periodic
hard real-time activities like motor management and
by-wire steering must be performed periodically, and
critical sporadic activities like anti-lock brake control or
electronic stabilization programs (ESP) have to be
guaranteed at their highest occurrence rates. But activ-
ities like gear changes are less critical, and may be de-
layed under certain circumstances, e.g. when the
electronic stabilization program is activated.

Thus there are distributed computations which, how-
ever important, must be performed as best as possible
without guarantee, and their deadlines are considered
soft. These computations must use non-reserved re-
sources. If sporadic service requests with hard deadlines
do not occur at their highest anticipated frequency, then
some reserved resources remain idle, and can also be used
for soft real-time computation. If fewer errors occur than
anticipated by the system's design, then probably some
redundant reserved resources for hard real-time activities
remain unused, and may also be used for soft real-time
activities. To optimally utilize the system resources for
soft real-time distributed computations while guarantee-
ing hard deadlines, a hybrid scheduling mechanism must
be applied, which features resource reservation as well as
dynamic deadline scheduling.

Beside real-time activities, there may also be non-real-
time activities, which may only use resources that are not
requested by real-time activities.

The global scheduling in a distributed system requires
consensus between all participants about the use of
shared system resources. The global schedule has to be
enforced by all components, based on their local in-
formation. In a completely static system, a periodic glo-
bal calendar is available and each component has its
relevant entries referring to its activities in a global time
scale. A global activity may only be started according to
this schedule (Kopetz & Merker, 1985; Kopetz & GruK n-
steidl, 1994). In a more dynamic system where hard
real-time, soft real-time, and non-real-time tasks coexist,
things are more complicated. If a computing resource
is free, a less critical (soft or non-real-time) task may
start computation and request resources. In this case, it
must not lead to the timing failure of a hard real-time
activity.

The scheduling of the network is a central part of the
global resource scheduling problem. In the next section,
a hybrid global scheduling approach for the CAN bus is
described, which is appropriate for application systems
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with hard and soft real-time distributed activities. The
hybrid scheduling mechanism is mainly based on a dy-
namic priority scheme, and resource reservation.

5. The hybrid scheduling mechanism

5.1. The dynamic priority scheme

The dynamic priority scheme of the hybrid bus sched-
uling algorithm implements the least-laxity-"rst scheme.
In order to realize LLF in a CAN network, the mapping
of the transmission laxity into the message priority has to
be de"ned, so that a message with a shorter transmission
laxity wins the bus arbitration against a message with
a longer laxity. In CAN the entire identi"er is used as
a priority "eld. However, the whole identi"er cannot be
used as a deadline-driven dynamic priority because of
following reasons: Firstly, a subject-related message
name should be encoded into the identi"er in order to
support subject-based addressing and exploit the mess-
age "ltering features of the CAN controller hardware.
Secondly, the sender node identi"er must be included
into the identi"er "eld of CAN messages, to ensure that
competing messages always have di!erent identi"ers.
Note that this uniqueness cannot be achieved by sub-
ject-related unique naming of messages in a system with
replicated objects. Fig. 2 illustrates how the CAN identi-
"er is partitioned in order to ful"ll all requirements
mentioned above.

In the priority "eld of a real-time message, the time
remaining until its latest transmission starts (let us call it
transmission laxity) is encoded. Choosing the LLF scheme
is justi"ed by the following facts: "rstly, the local schedul-
ing decision on each node can be simpli"ed by a queue of
outgoing messages sorted by the transmission laxity.
Secondly, a laxity can easily be transformed into a uni"ed
scale of priorities. Thirdly, the global priority-based
message dispatching is performed by the arbitration
mechanism of CAN at no cost. Due to the fact that the
lower binary values of the priority "eld represent higher
priorities, a shorter (lower) laxity is mapped to a lower
value in the priority "eld.

Having a "xed value range MP
.*/

2P
.!9

N for the pri-
ority "eld, a transmission laxity value *¸ is mapped to
a priority value P, where P"x*¸/*t

p
y#P

.*/
for

*¸((P
.!9

!P
.*/

)*t
p

and P"P
.!9

for
*¸5(P

.!9
!P

.*/
)*t

p
. The modi"cation of the dynamic

priorities can be performed by periodically decreasing
P once per *t

p
.

Fig. 2. Partitioning of a CAN-message identi"er.

The period *t
p

is called the priority slot. Since all
laxity values *¸5(P

.!9
!P

.*/
)*t

p
are mapped to the

same priority, the priority-based dispatcher (i.e. the CAN
arbitration mechanism) cannot distinguish di!erent lax-
ity values which are greater or equal (P

.!9
!P

.*/
)*t

p
.

Hence (P
.!9

!P
.*/

)*t
p

is the time horizon of the pro-
posed LLF-scheduler. The term time horizon denotes the
amount of time in the future that can be correctly ana-
lyzed and planned by a time-based decision-maker, like
an EDF or LLF scheduler.

The required time horizon of a scheduling mechanism
depends on the timing requirements of the real-time
application. In the following discussion, a CAN bus is
assumed, where in worst case N transmitters attempt to
send messages with equal laxity, and another one has
a message with a larger laxity. If all laxity values are
larger than the time horizon of the LLF scheduler, then
they will be transformed into the same priority P

.!9
.

Then if the message with the larger laxity wins the arbi-
tration, and the remaining time is too short to schedule
the other N messages after it, then the scheduler will fail
because of too short a time horizon. In order to avoid
a scheduling failure in this case, the time horizon should
not be shorter than the time required for the transmission
of an arbitrary set of N messages.

Assuming a maximum transmission time of *¹
.!9

, an
inter-frame spacing of 3 bits, a maximum transmission
failure rate of j

.!9
, and a maximum time loss of *¹

&!*-
per transmission failure, the time horizon *H must sat-
isfy the condition: *H5N(*¹

.!9
#3)#v*Hj

.!9
w*¹

&!*-
.

Thus, for the proposed LLF scheduler, a su$cient time
horizon for correct LLF scheduling of messages is:

*H5

N(*¹
.!9

#3)

1!j
.!9

*¹
&!*-

#*¹
&!*-

.

Note that the above criterion is only a recommenda-
tion for the optimal LLF scheduling of soft real-
time messages, the timely transmission of hard real-time
messages is ensured by the dynamic TDMA scheme, as
described below.

5.2. The dynamic TDMA scheme

In order to guarantee the timely transmission of
hard real-time messages even in overload situations,
all their occurrences have to be predicted and the respect-
ive transmission times have to be scheduled in advance
in a calendar. Due to the highly critical nature of
hard real-time messages, the scheduled transmission
times must include worst-case error handling delays
and retransmission times under anticipated fault condi-
tions. A study of the worst-case delay times under di!er-
ent fault conditions is given in Ru"no and Verissimo
(1995).
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Fig. 3. The minimum gap between reserved time-slots due to clock inaccuracy.

Fig. 4. Maximum length of priority slot *t
p
.

5.2.1. The global TDMA calendar
The reserved time slots are entered into a calendar,

which contains all resource reservations. The calendar is
contained in each node of the system. This enables the
system components to monitor each other's temporal
behavior. If a component claims reserved resources at the
wrong time, other components will agree on its failure,
and can initiate error recovery actions.

5.2.2. The impact of inaccurate global time
The scheduling approach for hard real-time commun-

ication requires access to a global time reference with
bounded inaccuracy. Once a time slot is reserved, the
respective action can be started locally. To guarantee
that it does not interfere with another time slot, the time
reference of all nodes must be synchronized. The lower
the clock accuracy, the larger the minimum gap between
two subsequent time slots in the global bus schedule
(Fig. 3). In order to provide a global time reference with
high accuracy, a clock synchronization mechanism has to
be applied, e.g. as described by Gergeleit and Streich
(1994).

5.2.3. Exclusive access right in the reserved time-slot
E$cient handling of time slot reservations is sup-

ported by de"ning the end of the reserved time slot of
a message m as its transmission deadline d

m
, and calculat-

ing its laxity as required by the underlying LLF scheme.
The sender of a hard real-time message enforces its ex-
clusive access rights during the reserved time-slot by
dynamically increasing the priority of the message ac-
cording to its laxity. Due to this scheme, a hard real-time

message gains the highest possible priority at its latest
transmission time. In order to guarantee that di!erent
hard real-time messages are always assigned di!erent
priorities in the right order, their deadlines must at least
di!er by the length *t

p
of the priority slot (Fig. 4).

Note that every message may be delayed by one other
message, which may have started before it. *¹

"-0#,
is

de"ned as the longest possible blocking time due to the
non-preemptive transmission of an arbitrary message.
Since the transmission of a hard real-time message
h (with a reserved time slot beginning at S

h
) must

start before S
h
, it must be ready until S

h
!*¹

"-0#,
(called

the latest ready time ¸R¹
h
), and after ¸R¹

h
it must

always win the arbitration process against all other mess-
ages.

From the previous discussion, following requirements
are derived for the correct scheduling of hard real-time
messages:
(R1) for each occurrence of a hard real-time message h,

an exclusive time-slot is reserved, which ends at its
deadline d

h
;

(R2) the length *R
h

of the reserved time-slot of a hard
real-time message h is greater or equal to the
worst-case transmission time of the message, in-
cluding all error handling delays and retransmis-
sion times under anticipated fault conditions;

(R3) every hard real-time message h is ready for trans-
mission until its latest ready time ¸R¹

h
"

S
h
!*¹

"-0#,
;

(R4) during its critical interval [¸R¹
h
2¸S¹

h
] (Fig. 5),

a hard real-time message h wins the bus arbitration
against every other message in the system.
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Fig. 5. The critical interval of a hard real-time message.

Claim 1. If the requirements R1}R4 are ful"lled
in a CAN bus, then every hard real-time message will
be transmitted timely under anticipated fault condi-
tions.

Proof. Assume that a hard real-time message h occurs
with the deadline d

h
. Due to R1 and R2 a time-slot

[d
h
!*R

h
2d

h
] is reserved for h. Due to R3, h is ready

for transmission until d
h
!*R

h
!*¹

"-0#,
. If h is not

successfully transmitted until ¸R¹
h
, then it participates

at least in a bus arbitration at t3[¸R¹
h
2S

h
], and due

to R4 h wins the arbitration at t. Due to R2 the time loss
caused by successive communication failures is not more
than *R

h
!*¹

h
. Hence at least one correct message

transmission is started in the interval [t2t#*R
h
!

*¹
h
]-[¸R¹

h
2¸S¹

h
], and due to R4, h wins the bus

for this correct transmission, and "nishes until
t#*R

h
4D

h
. h

The requirements R1, and R2 are ensured by a calen-
dar-based global schedule, which is distributed to all
nodes, which also have access to synchronized clocks. In
order to reserve the right amount of time for a message in
the calendar, the time-slot length must be calculated
based on the message length and the fault hypothesis.
For a message h with b

h
bytes of data, the maximum

length of the message including header and bit-stu$ng is
¸
h
"75#xb

h
]9.6y . Under the assumption of f con-

secutive transmission failures due to bus/controller er-
rors, the required minimum time-slot length is:
*R

h
"(¸

h
#18) f#¸

h
#3 bit-times. The requirement,

R3 must be satis"ed by the synchronization of the local
task schedules with the global communication schedule.

To satisfy the requirement R4, the algorithm uses the
following rules to ensure that during the critical interval
between the latest ready time and the latest transmission
start time of a hard real-time message h (Fig. 5), all other
messages in the system have lower priorities than h.

(r1) The minimum priority "eld value for non-real-time
messages is higher than the maximum for the real-
time messages, i.e. PNRT

.*/
'max MPSRT

.!9
, PHRT

.!9
N. Thus,

real-time messages always have higher priorities
than non-real-time messages.

(r2) The minimum priority "eld value for soft real-time
messages is higher than the maximum of any hard
real-time message at the latest ready time, i.e.

PSRT
.*/

'PHRT
.*/

#

*R
.!9

#*¹
"-0#,

*t
p

.

Thus, after its latest ready time, a hard real-time
message has a higher priority than any soft real-
time message.

(r3) If the transmission of a hard real-time message is
not started until its latest transmission start time,
the transmission request is cancelled.

(r4) The priority slot *t
p

must not be longer than the
minimum distance between the ends of any two
consecutive reserved time-slots in the system,
minus *G

.*/
.

Rule r3 ensures that the transmission of a hard real-time
message is either terminated or cancelled until the begin-
ning of the reserved time-slot of the next scheduled
hard real-time message, so it does not occupy reserved
resources of the next hard real-time message. Rule r4
ensures that* within its critical interval* a hard real-
time message has a higher priority than the next sched-
uled hard real-time message. Thus, within a reserved
time-slot, there is no con#ict between di!erent hard real-
time messages.

5.2.4. Calculation of the dynamic priorities
According to rule r1, the total available priority range

must be split into two separate sub-ranges for real-time
and non-real-time communication. In the current design,
the priority "eld consists of 8 bits, resulting in a range
from zero to 255. The priority range M192}255N is as-
signed to the non-real-time communication, i.e.
PNRT
.*/

"192 and PNRT
.!9

"255.
The priority range M0}191N is fully used for the hard

real-time communication, i.e. PHRT
.*/

"0 and PHRT
.!9

"191.
Also, the largest priority value for soft real-time mess-
ages is set to PSRT

.!9
"191. The value PSRT

.*/
is calculated
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according to rule r2 as

PSRT
.*/

"PHRT
.*/

#

*R
.!9

#*¹
"-0#,

*t
p

#1

"

*R
.!9

#*¹
"-0#,

*t
p

#1.

For example, given a single fault tolerant system,
*R

.!9
5323]*bt is mandatory. Assuming a *t

p
"

200]*bt, and *¹
"-0#,

"154]*bt, the value of PSRT
.*/

will
be 3.

Non-real-time messages are assigned "xed priorities
P
N
3MPNRT

.*/
2PNRT

.!9
N. The priority of a hard real-time

message with the laxity *¸ is calculated as

P
H
(*¸)"min GPHRT

.*/
#

*¸

*t
p

, PHRT
.*/ H

"min G
*¸

*t
p

, 191H.
Soft real-time messages must compete against hard real-
time messages according to the LLF scheme, until their
priority becomes equal to PSRT

.*/
. After that, the priority of

a soft real-time message remains constant. Thus the pri-
ority of a soft real-time message with the laxity *¸ is
calculated as

P
S

(*¸)"max MPSRT
.*/

, P
H

(*¸)N.

The assignment of the dynamic priorities is e$ciently
implemented as follows. The hard and soft real-time
messages are inserted into two separate queues, each
sorted by deadline. Each time that a new message moves
to the head of a queue, its priority is calculated based on
its current laxity. Once the priority of a message is as-
signed, it is updated by periodic decrementation at each
*t

p
.

5.3. Schedulability of hard real-time messages

Since the dynamic TDMA scheme guarantees the
timely transmission of every hard real-time message by
reserving a time-slot, the number of the schedulable hard
real-time messages depends on the length of the time-
slots and the length of the gaps between time-slots.

In a system tolerating f consecutive transmission fail-
ures, the required length of the reserved time-slot of
a hard real-time message h can be calculated as

*R
h
"*¹

h
#3#f*¹

&!*-
.

As an example, in a single-fault tolerant system, a time-
slot of 323]*bt is required for arbitrary messages. The
minimum gap between consecutive time-slots depends on
the accuracy of the clock synchronization mechanism in
the system. In a CAN bus system, a maximum clock
inaccuracy of $20 ls can be achieved, e.g. by the algo-

rithm given in Gergeleit and Streich (1994). Assuming
a maximum clock inaccuracy of $20 ls, the minimum
gap *G

.*/
between two consecutive time-slots must be

40 ls. Under these assumptions, a time-slot can be plan-
ned each 363 ls. In this case, up to 2754 hard real-time
messages per second could be guaranteed.

A su$cient condition for the scheduling of hard real-
time messages is that for each message an appropriate
time-slot can be inserted into the calendar schedule with
the required frequency, with enough of a gap between
each pair of consecutive time-slots. This, of course, de-
pends on the application parameters, e.g. individual
message periods, etc.

5.4. Computing overhead

The main additional overhead of the hybrid bus sched-
uling algorithm is a result of the necessary periodic modi-
"cation of the dynamic priority of the ready-to-send
message. Measurements have shown that this task takes
about 13 ls when it is implemented as timer interrupt
handler on a C167 micro-controller with 20 MHz. Since
this is a periodic task that is triggered at each priority slot
*t

p
, the processor overhead is Overhead "13 ls/*t

p
.

As mentioned in Section 5, the priority slot *t
p

for the
hard real-time messages must not be larger than the
minimum distance between the ends of any two consecut-
ive reserved time-slots in the system, minus *G

.*/
. Using

the above parameters, *t
p

may be as large as 323 bit-
times. This results in a processing overhead of approxim-
ately 4% at the highest bus rate of 1 Mbit/s, and lower
overheads at lower bus rates.

6. Conclusion and future research

In order to guarantee timely delivery of hard real-time
messages in a CAN network, the authors have introduc-
ed a calendar-based scheduling mechanism, which co-
exists with the EDF scheduling used for soft real-time
messages. In contrast to pure EDF scheduling, where
resource con#icts may occur due to con#icting deadlines,
the presented approach coordinates the deadlines of hard
real-time communication by reserving resources in a glo-
bal calendar. Thus, the timeliness of hard real-time com-
munication is achieved, despite overload failures, by
guaranteeing exclusive access rights to the network dur-
ing the reserved time-slots. This approach guarantees
timeliness in presence of communication errors by ap-
plying time redundancy. However, in case of non-faulty
message transfers, the unused redundant resources are
utilized for low-priority communication. This is possible
because a hard real-time message releases the network
resources after its successful transmission. Thus, optimal
resource utilization in fault-free situations as well as in
presence of faults is achieved.
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The low-level communication protocol presented in
this paper will serve as a basis for a high-level atomic
multicast protocol with bounded termination time. The
concept of the high-level atomic multicast protocol is
reported in Livani and Kaiser (1999).
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