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Abstract—The level-crossing rates (LCRs) and average fade
durations (AFDs) of a fading channel find diverse applications
in the evaluation and design of wireless communication systems.
Analytical expressions for these quantities are available in the
literature for certain diversity reception techniques, but are gen-
erally limited to the Rayleigh fading channel, with few exceptions.
Moreover, the methods employed are usually specific to a certain
channel/diversity pair, and thus cannot be applied to all cases
of interest. Using a unified methodology, we derive analytical
expressions for the LCRs and AFDs for three diversity reception
techniques and a general Nakagami fading channel. We provide
novel analytical expressions for selection combining (SC) and
equal-gain combining (EGC), and rederive in a more general
manner the case of maximal-ratio combining (MRC). It is shown
that our general results reduce to some specific cases previously
published. These results are used to examine the effects of the
diversity technique, the number of receiving branches and severity
of the fading on the concerned quantities. It is observed that as
the Nakagami -parameter and the diversity order increase,
the behavior of the combined received envelope for EGC follows
closely the one for MRC, and distances itself from SC.

Index Terms—Average fade durations, diversity, level crossing
rates, Nakagami fading channels.

I. INTRODUCTION

T HE level crossing rates (LCRs) and the average fade du-
rations (AFDs) are two quantities which statistically char-

acterize a fading communication channel. The LCR is defined
as the number of times per unit duration that the envelope of a
fading channel crosses a given value in the negative direction
[1]. The AFD corresponds to the average length of time the en-
velope remains under this value once it crosses it in the neg-
ative direction. These quantities reflect the correlation proper-
ties, and thus the second-order statistics, of a fading channel.
They provide a dynamic representation of the channel. They
complement the probability density function (PDF) and cumula-
tive distribution function (CDF), which are first-order statistics,
and can only be used to obtain static metrics associated with the
channel, such as the bit error rate (BER). The LCR and the AFD
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have found a variety of applications in the modeling and de-
sign of wireless communication systems, such as the finite-state
Markov modeling of fading channels [2], the analysis of handoff
algorithms [3], and the estimation of packet error rates [4]. Pi-
oneering work on the subject was done by Rice [5], which ex-
amined non-line-of-sight (Rician) channels. Much later, some
expressions for the LCR and AFD of the combined envelope of
diversity Rayleigh channels were published. For example, Lee
[6] derived these quantities for equal-gain combining (EGC).
Adachi et al. [7] provided general expressions in the case of
dual correlated channels with selection combining (SC), max-
imal-ratio combining (MRC), and EGC diversity; these expres-
sions could be put in closed form for independent channels. Ya-
coubet al. [8] also presented expressions in the case of EGC
and MRC with an arbitrary number of independent channels.

While the Rayleigh and Rice distributions can indeed be used
to model the envelope of fading channels in many cases of in-
terest, it has been found experimentally [9] that the Nakagami
distribution offers a better fit for a wider range of fading condi-
tions. The Nakagami distribution was proposed in the early for-
ties for characterizing urban and suburban fading channels, and
was originally deduced from a series of experiments. It was later
shown that it constitutes an approximation to the PDF of the am-
plitude of a sum of phasors with random moduli and phases [9],
[10]. Contrary to the Rice PDF, it does not assume a line-of-sight
(LOS) condition. Hence, while the Rice distribution can only
describe better-than-Rayleigh fading conditions, the Nakagami
PDF with parameter models worse-than-Rayleigh con-
ditions. Moreover, for , the Nakagami PDF reduces to the
Rayleigh PDF, and can thus be seen as a generalization of the
latter. It was verified in several other independent experimental
researches that the Nakagami-PDF could indeed accurately
represent the wide range of commonly encountered fading con-
ditions [11]–[13]. As a result, it has been adopted in some soft-
ware and hardware fading channel simulators for third gener-
ation (3G) cellular networks [14], [15]. It is also increasingly
used in the analysis and modeling of wide-band channels, in par-
ticular for CDMA systems in frequency-selective fading [16];
this is also encouraged by the fact that its analytical form is more
amenable to manipulations, compared to the Rice PDF (which
contains a modified Bessel function of the first kind).

While the Nakagami PDF has many attractive features, there is
still no widely accepted general and efficient way of simulating
a correlated Nakagami fading channel. This is partly due to the
fact that no temporal autocorrelation function was specified
for the Nakagami PDF when it was proposed, and that, to our
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knowledge, no analytical expression for it has been proposed yet
on a physical basis. Hence, while methods are available to obtain
the exact PDF of the envelope [17], most simulators need to make
particular assumptions in order to model the temporal correlation
of the channel [18], [19]. Despite the lack of a physically justified
model for the correlation ofaNakagami channel, someanalytical
workhasbeencarriedoutwith respect to the latter’ssecond-order
statistics. In [20], using results from [21], the authors derived the
LCR and AFD for Nakagami channels without diversity, and for
a special case of MRC diversity. They also presented an approxi-
mate result for EGC, relying on [9, eqs. (81)-(83)]. The LCR and
AFD of non-diversity Nakagami channels with isotropic scat-
tering were also later obtained in [22] using a different approach,
which relied on the decomposition of the distribution. Field trials
were carried out in [24] and [25] for the non-diversity case, and
good agreements were reported between the experimental LCR
and the analytical expressions. Novel analytical expressions
and plots of the LCR for SC and dual-branch EGC in the case
of independent identically distributed (i.i.d.) Nakagami fading
channels were given in [23], in which the expressions were
used to construct a Nakagami channel simulator which had the
desired LCR and envelope distribution.

In this paper, we present a very general approach which can
be used to analytically evaluate the LCR and AFD for Nakagami
channels with diversity reception. Our methodology is the fol-
lowing: we straightforwardly rearrange the expression for the
LCR, such that it can be expressed as the product of the PDF
of the received signal and an integral involving the conditional
PDF of the derivative of this signal. Depending on the cases, the
first term either can be found in the literature or has to be de-
rived. The conditional PDF in the second term is found by ex-
amining the expression for the derivative of the received signal.
It should be noted that the proposed methodology does not have
limitations nor makes any simplifying assumptions. However,
we shall only present in this paper the cases where a simple an-
alytical closed-form solution for the LCR and AFD is possible,
which generally requires the diversity channels to fade indepen-
dently. It will also be shown that our general analytical expres-
sions for Nakagami fading reduce to previously known results.
In contrast to this work, earlier derivations of the LCR and AFD
for channels with diversity reception were usually specific to
a particular channel/diversity pair, and cannot always be used
in obtaining the same quantities for different situations. For ex-
ample, in [20] the LCR were obtained by finding a closed-form
expression for the joint PDF of the received signal and its deriva-
tive for the case of Nakagami fading, which is not always pos-
sible; whereas in [7] and [8], the analytical derivations were con-
ducted for specific situations only (dual diversity for the former)
or under certain assumptions (identical channels for both).

The organization of the paper is as follows. After this intro-
duction, our analytical approach and the steps needed to apply
it to Nakagami channels (using the physical insights of [22]) are
presented in Section II-A. These results are used to obtain the
LCR and AFD for Nakagami channels with SC, MRC, and EGC
diversity reception in the following sections. The analytical ex-
pressions obtained are evaluated numerically and discussed in
Section III. The last section summarizes the contributions of this
paper and cites some applications.

II. LCRS AND AFDS FORDIVERSITY NAKAGAMI CHANNELS

A. General

Let be the sampled value of thediversity combinedenvelope
of a fading channel. The LCR and AFD are

defined as a function of by

(1)

(2)

where denotes the derivation operator with respect to time,
is the CDF of the fading channel, and

is the corresponding PDF. The LCR can be rewritten in
terms of and the conditional distribution as

(3)

This generic expression for will be the basis for all later
derivations. It is indeed applicable to all forms of diversity, and
can be used in conjunction with any fading distribution. It re-
duces directly to, for example, [6, eq. (6)], [20, eq. (15)], and
[22, eq. (16)] for the special cases treated in these papers.

The output sampled envelope of an-branch diversity com-
biner can be expressed in the generic form of

(4)

where , with is the envelope of theth diversity
channel seen by the receiver, and is a function which de-
pends on the diversity technique used. In the case of Nakagami
fading, the PDF of is mathematically expressed as

(5)

where and are the average power and the fading
figure of the th channel, respectively, with denoting
statistical expectation. is the gamma function [26, eq.
(8.310.1)]. The CDF of is given by

(6)

where is the incomplete gamma func-
tion of the first kind [26, eq. (8.350.1)].

By analogy with [22], when is an integer, the envelope
of the th diversity channel can be written as

with odd
with even

(7)

where , and the ’s and ’s are
Gaussian random variables with zero mean and variance

. The derivatives of the ’s can then be calculated
using

with odd

with even.
(8)

From [1], for isotropic scattering, the ’s are Gaussian-dis-
tributed with zero mean and variance Var

, where is the maximum Doppler
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shift for a vehicle speed and carrier wavelength . We
let to alleviate the notation. Since is a
sum of zero-mean Gaussian variables, it is also zero-mean
Gaussian, conditioned on. Using (8) and (7), its variance
is found to be Var , which is independent of

. As asserted in [22], and are thus independent, so that
.

Using the above, the analytical LCR and AFD for the diver-
sity methods of concern will be derived in the next sections.

B. Selection Combining

In [7], the authors present an expression for the LCR for dual
SC in Rayleigh fading. It is generalized in [27] for an arbitrary
number of i.i.d channels. Below, using (3), we derive an expres-
sion for the LCR of SC for independent but not necessarily
identical channels. We then apply it to the case of Nakagami
fading. The channel envelope at the output of a SC diversity
system is well known to be given by

(9)

Its derivative is

(10)

is thus a Gaussian random variable when conditioned on the
’s, with zero mean and variance

if (11)

is thus a discrete random variable with PDF

(12)

From (3), the LCR, conditional on , are given by

(13)

(13) is averaged over the PDF for, i.e., (12), to obtain

(14)

By taking into account the independence assumption, the term
can be evaluated as

(15)

From (14) and (15), the LCR can be expressed as

(16)

Substituting (5) and (6) into (16), and using
leads to the LCR for a Nakagami fading channel with arbitrary
parameters and SC

(17)

For identical channel parameters,
, (17) reverts to the expression given in [23], and when

, to the one given in [27, eq. (45)], for Rayleigh fading

(18)

It can be verified (cf. Appendix A) that the approach taken in
[27] for obtaining the LCR, when extended to include arbitrary
parameters, also leads to (17) for Nakagami fading.

(17) gives the average number of times per second that the
output of a selection diversity combiner falls below a
specified value , given , and the channel parameters

. Hence, if the channel conditions can be
estimated and a maximum speed for the mobile is assumed,
based on (17), one can determine the number of diversity
branches needed so that the combined signal does
not fall below a threshold more than a specified maximum
number of times . This can be done by evaluating
for increasing values of , until .

The CDF for SC is given by

(19)

which reduces for independent Nakagami channels to

(20)

The AFD for arbitrary Nakagami channels with SC can then be
obtained straightforwardly by substituting (17) and (20) in (2)

(21)

Equation (21) gives the average time (in seconds) that the com-
bined signal stays below a specified level, once it has
crossed it in the downward direction, again given and
the channel parameters. Hence, one can again evaluate the re-
quired so that, on average, the combined signal does
not stay below a threshold more than a specified maximum
period of time . The quantity can correspond, for ex-
ample, to the average period of time a receiver can demodulate
a signal of amplitude , without going into outage or losing
synchronization. Similar insights can be obtained for the cases
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of maximal ratio and equal-gain diversity, thanks to the expres-
sions for the LCR and AFD derived in the following sections.

C. Maximal-Ratio Combining (MRC)

The output of a MRC diversity system is given by

(22)

and its derivative by

(23)

As in the SC case, is a Gaussian random variable when con-
ditioned on the ’s, with zero mean and variance

(24)

where the last equation was obtained using the independence
assumption between the branches. If the diversity channels are
identically distributed, , and (24)
reduces to

(25)

In that case, (3) can be solved to give

(26)

The PDF of (again for the special case of i.i.d. channels) is
known to be given by [9]

(27)

where , and the CDF by

(28)

Using (27) and (25) in (26) leads to the following result for
the LCR, which was also derived in [20] using the approach
mentioned in the introduction

(29)

Substituting (28) and (29) in (2) yields the AFD

(30)

For Rayleigh fading (29) reduces to the following
expression1 :

(31)

1It should be noted that it is similar to [8, eq. (13)], but the latter has possibly
a misprint in the exponential term.

D. Equal-Gain Combining (EGC)

The output of a EGC diversity system is given by

(32)

whereas its derivative by [6]

(33)

As opposed to the previous cases,is now a Gaussian random
variableindependentlyof the ’s, with zero mean and variance

(34)

where the last equation was obtained using the independence
assumption between the branches. Solving (3) leads to

(35)

It is similar to (26) in the previous section, however, for the
MRC case, this equation required the i.i.d. assumption in order
to be valid, while this is not the case for EGC. For i.i.d. chan-
nels, the CDF and PDF ofwere presented in [28] and [8], re-
spectively, in integral form, for an arbitrary. For independent
channels with arbitrary parameters, the PDF can be written as

(36)

For Rayleigh fading, a simple closed-form solution is available
only for , and is implicitly presented in [7]. For Nakagami
fading with identical parameters and , (36) reduces to

(37)

After substituting (5) in (37), and following the steps detailed in
Appendix B, we obtain the following closed-form solution for
the PDF of dual-diversity EGC:

(38)

where is the beta function and the con-
fluent hypergeometric function, given by [26, eqs. (8.380.1),
(9.210.1)], respectively. Substituting (37) and (34) in (35)
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yields the following expression for the LCR of dual-branch
EGC:

(39)

The derivation of the CDF is carried out in Appendix B and leads
to the following infinite series representation:

(40)

By substituting (40) and (39) in (2), we obtain the AFD

(41)

For , (39) can be simplified using [26, eqs. (9.212.2),
(9.212.4), (9.212.1), (9.236.1)] for , in that order, and
[26, eq. (8.384.1)] for . This reduces to the following
expression for the LCR of dual-branch EGC and i.i.d. Rayleigh
fading channels, which was also presented in [7]:

(42)

where . For independent but non-
identical Rayleigh fading channels, we make use of (36), (34),
and (35) to obtain a closed-form expression for the LCR of
dual-diversity EGC

(43)

with and
.

III. N UMERICAL RESULTS AND DISCUSSION

The LCR and AFD expressions presented above are plotted
in logarithmic scale against the normalized value of the com-
bined received envelope, in decibels. Fig. 1–3 com-
pare the LCR (normalized by ) for the diversity techniques
presented above with and the no-diversity (ND) case

, for three values of the parameter. cor-
responds to severe fading (worse than Rayleigh), to

Fig. 1. LCR with SC, MRC, and EGC dual diversity(L = 2) and without
diversity (ND,L = 1); m = 0:6. The LCR for SC and EGC are similar, but
differ from the LCR for MRC.

Fig. 2. LCR with SC, MRC, and EGC dual diversity(L = 2) and without
diversity (ND,L = 1); m = 1:3. The LCR for EGC are closer to those for
MRC, while the LCR for SC are further apart, compared to the casem = 0:6.

fading conditions slightly better than Rayleigh, and to
LOS conditions. For all the curves, it is observed that the LCR
for MRC are the lowest for low values of ’s, and the highest
for high values of ’s, while the opposite is true for the ND
case. Indeed, in the ND case, fades occur more frequently due
to the absence of diversity. As a consequence, the signal crosses
lower values of more often than when diversity is used (with
the lowest number of crossings occurring for the optimal diver-
sity scheme, i.e., MRC), whereas it crosses high values ofless
often. Also, from these curves, the output of an EGC receiver
fades less frequently than that of an SC receiver. However, the
differences in LCR between MRC, EGC and SC depend on the
Nakagami- parameter (and thus on the severity of the channel
in terms of fading), and are commented below.

For , the LCR curves for SC and EGC are nearly
identical, but differ from those of MRC, for which the combined
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Fig. 3. LCR with SC, MRC, and EGC dual diversity(L = 2) and without
diversity (ND,L = 1); m = 3:0. The LCR for EGC and MRC are similar, but
differ significantly from the LCR for SC, compared to the casesm = 0:6 and
m = 1:3.

Fig. 4. AFD with SC, MRC, and EGC dual diversity(L = 2) and without
diversity (ND,L = 1); m = 0:6. The AFD for SC and EGC are similar and
higher than those for MRC, but the difference gradually reduces for smaller
r ’s.

envelope exhibits less severe fading. Asis increased from 0.6
to 3.0, the LCR curve for EGC gets closer to that for MRC, and
further away from that for SC. For the LCR curves
for MRC and EGC nearly overlap. This reflects the fact that, as
the fading severity decreases (i.e., for higher values of), the
performance of EGC tends to approach that of MRC, while the
performance margin between the latter two and SC increases.
This could also be observed by comparing plots of the error
probabilities for these diversity techniques and different’s.

The results plotted in Fig. 4–6 present the AFD, normalized
by , for the same cases as before. From these curves, it is
seen that the AFD for all three diversity techniques remain very
close for values of less than about 5 dB. This means that
once the combined signal has faded below this value, it remains

Fig. 5. AFD with SC, MRC, and EGC dual-diversity(L = 2) and without
diversity (ND,L = 1); m = 1:3. The AFD for EGC are closer to those
for MRC, while the AFD for SC are further apart (especially for higherr ’s),
compared to the casem = 0:6.

Fig. 6. AFD with SC, MRC, and EGC dual diversity(L = 2) and without
diversity (ND,L = 1);m = 3:0. The AFD for EGC and MRC are very similar,
but differ significantly from the AFD for SC (for higherr ’s), compared to the
casesm = 0:6 andm = 1:3.

below for nearly the same amount of time for all of MRC, EGC,
or SC. However, from our previous examination of the LCR,
since a MRC signal crosses low values of less often than
EGC and SC signals, on average it will spend less time into deep
fades than the latter two. For higher values of, it is observed
that the AFD are lower for MRC than they are for EGC and SC.
For each , the combined signals obtained with EGC and SC
spend more time below this value than that obtained with MRC,
which reflects the fact that on average a stronger signal results
from the use of MRC. This agrees with the previous discussion
on LCR, in which it was pointed out that a MRC signal is more
often in the high end of the signal strength than EGC and
SC. As before, we observe that for severe fading ,
the behavior of EGC follows closely that of SC, while for mild
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Fig. 7. LCR for SC with different diversity orders(L) andm = 1:3. For low
r ’s, the LCR decrease dramatically with higherL’s.

Fig. 8. LCR for MRC with different diversity orders andm = 1:3. Compared
to the LCR for SC, asL increases, the LCR for MRC decrease faster for low
r ’s, and also increase faster for highr ’s.

fading , it compares to that of MRC. Thus, for a fixed
set of parameters, there is not a one-to-one correspondence be-
tween the behavior of the LCR and that of the AFD (similar ob-
servations were reported in [8], for the case of Rayleigh fading).
The LCR of MRC differed from that of SC (and EGC for low

’s) over the whole range of ’s, while the AFD are nearly
identical for low ’s. This is due to the term , which in-
tervenes in the relation (2) between the latter quantities.

Figs. 7 and 8 illustrate the LCR for SC and MRC, respec-
tively, for a variable number of diversity branches. In the
case of SC, as increases, the frequency at which the received
signal crosses high values (e.g., at approximately dB)
stays almost the same. Whereas in the case of MRC,
increases with for high values of . Moreover, for low
values of , the LCR decrease faster for MRC than for SC as
more diversity branches are added, e.g., for dB, the

decrease in the dB value of is more than sixfold for
MRC as goes from 2 to 4, while it is less than fivefold in
the case of SC. This parallels the observations made in [28],
according to which the advantage of MRC and EGC over SC
(i.e., the strength of the signal) gets more pronounced as the
number of diversity branches increases (with EGC following
the behavior of MRC).

In summary, the numerical results support the assertion that
the gain in performance made possible using MRC and EGC, as
compared to using SC, gets more important as the fading gets
less severe and the diversity order increases.

IV. CONCLUSION

In this paper, starting from a common representation for the
LCR, we derived generalizations of expressions for the LCR of
a diversity received signal in Rayleigh fading, in order to handle
the more general Nakagami fading distribution. Closed-form so-
lutions were presented for arbitrary in the case of SC and
MRC, and for in the case of EGC. The assumption of i.i.d.
channels was made throughout the paper (except for SC, where
nonidentical parameters were allowed) in order to obtain these
results in closed form, however, the methodology used is not
limited by this assumption. The correlated case can be dealt with
in the same manner, but will require numerical evaluations of the
LCR and AFD for most cases of interest. The material we pre-
sented can be used in designing finite-state channel simulators
[23], analyzing error-correcting schemes for burst error chan-
nels [4], determining the minimum duration outages in fading
channels [29], or determining the delay spread of frequency-se-
lective channels [30].2

APPENDIX A

The purpose of this appendix is to show that the analytical
approach given in [27], with some adjustments, also leads to
(17). For channels with nonidentical parameters, [27, eq. (44)]
can be modified as

(44)

The usual assumption is made that the phases associated with
the Nakagami signals are uniformly distributed over .

2It very recently came to our attention that, since the time our results were
submitted (and several months after many of them initially appeared in [23]),
other independent contributions dealing with the LCR and AFD of diversity
Nakagami channels have been published [31], [32]. The material presented in
this paper differs from that of [31] and [32] in the methodology used, and/or the
generality (nonidentically versus identically distributed) or the representation
(closed form versus integral form) of the original analytical results.
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Given that the phases, envelopes, andare mutually indepen-
dent, (44) can be rewritten as

(45)

where

(46)

For a diversity Nakagami channel with arbitrary parameters,
(45) reverts to (17).

APPENDIX B

We outline the steps taken to obtain (38) and (40). After sub-
stitution for the Nakagami PDF, (37) becomes

(47)

The variable transformation in (47) gives

(48)

Using [26, eq. (3.383.1)] then leads to the closed-form solution
(38).

The CDF is given by

(49)

Making the change of variable , using the infi-
nite series expansion

(50)

and the relation [26, eq.
(8.384.1)] in (49) results in

(51)

Applying [26, eq. (8.350.1)] to the integral above leads to the
desired representation (40).
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