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Abstract. The Differentiated Services architecture allows for the pro-
vision of scalable Quality of Service by means of aggregating flows to a
small number of traffic classes. Among these classes a Premium Service
is defined, for which end-to-end delay guarantees are of particular in-
terest. However, in aggregate scheduling networks the derivation of such
worst case delays is significantly complicated and the derived bounds are
weakened by the multiplexing of flows to aggregates.
A means to minimize the impacts of interfering flows is to shape incoming
traffic, so that bursts are smoothed. Doing so reduces the queuing delay
within the core of the domain, whereas an additional shaping delay at the
edge is introduced. In this paper we address the issue of traffic shaping
analytically. We derive a form that allows to quantify the impacts of
shaping and we show simulation results on the derivation of end-to-end
delay bounds under different shaping options.

1 Introduction

Differentiated Services (DS) [2] addresses the scalability problems of the former
Integrated Services approach by an aggregation of flows to a small number of
traffic classes. Packets are identified by simple markings that indicate the re-
spective class. In the core of the network, routers do not need to determine to
which flow a packet belongs, only which aggregate behavior has to be applied.
Edge routers mark packets and indicate whether they are within profile or, if
they are out of profile, in which case they might even be discarded at the edge
router. A particular marking on a packet indicates a so-called Per Hop Behav-
ior (PHB) that has to be applied for forwarding of the packet. The Expedited
Forwarding (EF) PHB [8] is intended for building a service that offers low loss
and low delay, namely a Premium Service. For this purpose delay bounds are
derived for a general topology and a defined load in [4]. However, these bounds
can be improved, when additional information concerning the current load and
the special topology of a certain DS domain is available.

In [12] a resource manager for DS domains called Bandwidth Broker (BB)
is conceptualized. The task of a BB in a DS domain is to perform a careful
admission control and to set up the appropriate configuration of the domain’s
edge routers. While doing so, the BB knows about all requests for resources of



certain Quality of Service (QoS) classes. Besides it can learn about the domain’s
topology by implementing a routing protocol listener. Thus, a BB can have
access to all information that is required, to base the admission control on delay
bounds that are derived for individual flows, for the current load, and for the
actual mapping of flows onto the topology of the administrated domain, applying
the mathematical methodology of Network Calculus [15].

In this paper we investigate the impacts of traffic shaping on end-to-end
delay bounds. The remainder of this paper is organized as follows: In section 2
the required background on Network Calculus is given. Section 3 addresses the
impacts of traffic shaping. Related simulation results are given in section 4.
Section 5 concludes the paper. Proofs are given in the appendix.

2 Network Calculus

Network Calculus is a theory of deterministic queuing systems based on the cal-
culus for network delay presented in [5, 6] and on Generalized Processor Sharing
in [13, 14]. Extensions, and a comprehensive overview on current Network Cal-
culus are given in [3, 11]. Here only a few concepts are covered briefly. In the
sequel upper indices j indicate links and lower indices i indicate flows.

Flows can be described by arrival functions F (t) that are given as the cumu-
lated number of bits seen in an interval [0, t]. Arrival curves α(t) are defined to
give an upper bound on the arrival functions with α(t2− t1) ≥ F (t2)−F (t1) for
all t2 ≥ t1 ≥ 0. In DS networks, a typical constraint for incoming flows can be
given by the affine arrival curve αr,b(t) = b+ r · t. Usually the ingress router of a
DS domain meters incoming flows against a leaky bucket algorithm, which allows
for bursts b and a rate r. Non-conforming traffic is either shaped or dropped.

The service that is offered by the scheduler on an outgoing link can be char-
acterized by a minimum service curve, denoted by β(t). A special characteristic
of a service curve is the rate-latency type that is given by βR,T (t) = R · [t−T ]+,
with a rate R and a latency T . The term [x]+ is equal to x, if x ≥ 0, and zero
otherwise. Service curves of the rate-latency type are implemented for example
by Priority Queuing (PQ) or Weighted Fair Queuing (WFQ).

Based on the above concepts, bounds for the backlog, the delay, and for the
output flow can be derived. If a flow i that is constrained by αj

i is input to a
link j that offers a service curve βj , the output arrival curve αj+1

i of flow i can
be given by (1).

αj+1
i (t) = sup

s≥0
[αj

i (t + s)− βj(s)] (1)

Multiplexing of flows can simply be described by addition of the belonging
arrival functions, respective arrival curves. For aggregate scheduling networks
with FIFO service elements, families of per-flow service curves βj

θ(t) according
to (2), with an arbitrary parameter θ ≥ 0 are derived in [7, 11]. βj

θ(t) gives a
family of service curves for a flow 1 that is scheduled in an aggregate manner
with a flow, or a sub-aggregate 2 on a link j. The term 1t>θ is zero for t ≤ θ.

βj
θ(t) = [βj(t)− α2(t− θ)]+1t>θ (2)



3 Traffic Shaping

A means to reduce the impacts of interfering bursts on network performance is
to shape incoming traffic at the edge of a domain [12]. Queuing of the initial
bursts is in this case performed at the edge, with the aim to minimize the delay
within the core. Especially, if heterogeneous aggregates have to be scheduled,
shaping allows to reduce impacts of different types of flows on each other [15].
However, to our knowledge the work on shapers in [10] has not been extended
to aggregate scheduling networks and an analysis of the effects of shaping on the
derivation of end-to-end delay bounds is missing in current literature.

Theorem 1 (Bound for Output, General Case) Consider two flows 1, and
2 that are αj

1, respective αj
2 upper constrained. Assume these flows are served in

FIFO order and in an aggregate manner by a node j that is characterized by a
minimum service curve of the rate-latency type βj

R,T . Then, the output of flow
1 is αj+1

1 upper constrained according to (3), where θ is a function of t and has
to comply with (4).

αj+1
1 (t) = αj

1(t + θ) (3)

θ(t) =
supv>0[α

j
1(v + t + θ(t))− αj

1(t + θ(t)) + αj
2(v)−Rj · v]

Rj
+ T j (4)

Corollary 1 (Bound for Output, Single Leaky Bucket) In case of a leaky
bucket constrained flow 1, with rate r1 and burst size bj

1, (4) can be simplified
applying αj

1(v + t + θ(t))−αj
1(t + θ(t)) = r1 · v. As an immediate consequence, θ

becomes independent of t. With (3) we find that the output flow 1 is leaky bucket
constrained with r1 and bj+1

1 = α1(θ). Further on, if the flow or sub-aggregate 2
is leaky bucket constrained with rate r2 and burst size bj

2, the sup[. . . ] in (4) is
found for v → 0 resulting in θ = bj

2/Rj + T j and bj+1
1 = bj

1 + r1 · (T j + bj
2/Rj).

Definition 1 (Sustainable Rate Shaping) Assume a flow that is leaky buck-
et constrained with the parameters (r1, b1), where r1 is called the sustainable rate.
If this flow is input to a traffic shaper that consists of a bit-by-bit system with a
shaping rate r1, and a packetizer with a maximum packet size lmax, the output
flow is constrained by (r1, b1 = lmax) [10]. Further on, the shaper adds a worst-
case delay of b1/r1.

In [11] it is shown that shaping at the sustainable rate does not worsen the end-to-
end delay bounds in Integrated Services networks, if the reserved rate matches
the shaping rate, and in turn the rate of the flow. However, this assumption
does not hold true for DS domains. DS Premium resources are intended to
be reserved statically and PQ is a likely means of implementation. Thus, the
allocated Premium capacity usually exceeds the capacity that is requested by
Premium traffic sources. In this scenario shaping at the sustainable rate can
significantly worsen delay bounds, whereas Premium bursts that are not shaped
can result in unwanted interference and increase queuing delays in the core of
the domain. Hence, adaptivity when setting the shaping rates is required.
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Fig. 1. Two Leaky Bucket Constraint

Definition 2 (Two Leaky Bucket Constraint) Consider a two leaky bucket
configuration according to figure 1. Define (r1, b

j

1), and (r1, b
j
1) to be the param-

eters of the first, respective second leaky bucket, with r1 > r1 and b
j

1 > bj
1. The

resulting arrival curve is defined in (5). It allows for bursts of size bj
1, then it

ascends by r1 until t
j
1 = (b

j

1− bj
1)/(r1− r1), and finally it increases with rate r1.

αj
1(t) = min[bj

1 + r1 · t, b
j

1 + r1 · t] =

{
bj
1 + r1 · t , if t ≤ t

j
1 = b

j
1−bj

1
r1−r1

b
j

1 + r1 · t , else
(5)

An arrival curve of the type in (5) can be given, if a leaky bucket constrained
flow with the arrival curve αj

1(t) = b
j

1 + r1 · t traverses a combination of a bit-
by-bit traffic shaper with rate r1 and a packetizer with a maximum packet size
lmax [10]. Then, the output arrival curve is two leaky bucket constrained with the
parameters (r1, b

j

1) and (r1, lmax). The shaper adds a worst-case delay of b
j

1/r1.

Theorem 2 (Bound for Output, Two Leaky Bucket) Consider two flows
1 and 2 that are αj

1, respective αj
2 upper constrained. Assume that these flows

are served in FIFO order and in an aggregate manner by a node j that is
characterized by a minimum service curve of the rate-latency type βj

Rj ,T j . If

the input flow 1 is constrained by two leaky buckets with (r1, b
j

1), (r1, b
j
1), and

t
j
1 = (b

j

1 − bj
1)/(r1 − r1), the output flow is two leaky bucket constrained with

(r1, b
j+1

1 ), and (r1, b
j+1
1 ), where bj+1

1 = αj
1(θ(0)) and b

j+1

1 = b
j

1 + r1 · θ(t
j
1).

Definition 3 (Minimum Interference Shaping) We define minimum inter-
ference shaping to be a configuration, where all flows i with (ri, b

j

i ) of the set of
flows I that form an aggregate are shaped with a rate ri, so that

∑
i=Ij

ri ≤ Rj

holds on all links j of the set of links J of the domain, where Ij is the set of flows
i that traverse a link j. Thus, flows are constrained by (ri, bi) and (ri, bi = lmax).



For the settings given in definition 3 the sup[. . . ] in (4) is found on all links j ∈ J
for any t ≥ 0 with v → 0, whereby θ is constant over time with θ = bj

2/Rj + T j .
Hence, the impact of interfering flows is reduced to the impact of their effective
burst size after shaping. The output constraint of the flow of interest 1 that is
scheduled in an aggregate manner with a flow, or a sub-aggregate 2 on a link j

is given by the parameters (r1, b
j+1
1 = bj

1 + r1 · (bj
2/Rj + T j)), and (r1, b

j+1

1 =
b
j

1 +r1 · (bj
2/Rj +T j)), with t

j+1
1 = (b

j

1−bj
1)/(r1−r1)− (bj

2/Rj +T j). If t
j+1
1 ≤ 0,

the output constraint is reduced to a single leaky bucket constraint.
For over-provisioned links minimum interference shaping allows for a variety

of settings of the per-flow shaping rates ri. However, the use of high priority
traffic classes, such as a PQ-based Premium class, can lead to starvation of other
services including the Best-Effort (BE) Service. Thus, it is reasonable to limit
the Premium burst size by shaping and to restrict the overall Premium rate, as is
supported by various router implementations. Here, we define a parameter dq to
give an upper bound on the allowed queuing delay of Premium traffic within the
core of the network, from which an upper bound of the Premium burst size can be
derived. To set up corresponding shaping rates ri, we apply a two step approach.
The maximum allowed shaping delay dsi

is computed as dsi
= dri

−(dti
+dq) with

dri
denoting the requested maximum delay for flow i, and dti

giving the end-to-
end propagation delay on the corresponding path. If dsi > 0, the corresponding
shaping rate follows as ri = max[ri, bi/dsi ], otherwise the target delay cannot
be guaranteed. Then, if still all of the conditions in definition 3 hold, and, if the
queuing delay within the core can be derived by Network Calculus to be smaller
than dq for all flows i ∈ I, a solution is found. Note that the configuration of the
shapers does not have to be updated during the lifetime of the corresponding
flows, since all shaping rates ri are set to account for queuing delay of at most
dq. Thus, the approach scales similar to sustainable rate shaping. If the rate of
the Premium traffic shall be restricted in addition, the conditions in definition 3
have to be replaced by stricter ones.

4 Evaluation Results

We implemented an admission control for an application within the framework
of a Bandwidth Broker [15]. The admission control currently knows about the
topology of the domain statically, whereas a routing protocol listener can be
added. Requests for Premium capacity are signalled in a Remote Procedure
Call (RPC) style. The requests consist of a Committed Information Rate (CIR),
a Committed Burst Size (CBS), and a target maximum delay. Whenever the
admission control receives a new request, it computes the end-to-end delay for
all requests that are active concurrently. If none of the target maximum per-flow
delays is violated, the new request is accepted, which otherwise is rejected. Note
that requests are usually made for aggregated traffic flows that use the same
path from the ingress to the egress router to allow for scalability.

For performance evaluation a simulator that generates such Premium re-
source requests is used. Sources and sinks are chosen uniformly from a predefined



set. Start and end times are modelled as negative exponentially distributed with
a mean inter-arrival time 1/λ and a mean service time 1/µ. Thus, ρ = λ/µ can
be defined as the network load, that is the mean number of concurrently active
requests. The target delay, CIR, and CBS are either used as parameters or as
uniformly distributed random variables for the following simulations.

Different topologies have been used [9], whereby the results that are included
in this paper have been obtained for the G-WiN topology of the German research
network (DFN) [1]. The level one nodes of this topology are core nodes. End
systems are connected to the level two nodes that are edge nodes. Links are
either Synchronous Transfer Mode (STM) 4, STM 16, or STM 64 connections.
The link propagation delay is assumed to be 2 ms. Shortest Path First (SPF)
routing is applied to minimize the number of hops along the paths. Further on,
Turn Prohibition (TP) is used to ensure the feed-forward property of the network
that is required for a direct application of Network Calculus [16]. For the G-WiN
topology the combination of SPF and TP increases the length of only one path
by one hop compared to SPF routing. Simulation results of a Guaranteed Rate
Service, which only considers capacity constraints, have shown that the impacts
of TP on SPF routing are comparably small [9]. Further on, the TP algorithm
can be configured to prohibit turns that include links with a comparably low
capacity with priority [16].

The emulated Premium Service is assumed to be based on PQ. Thus, service
curves are of the rate-latency type. The latency is set to the time it takes to
transmit 4 Maximum Transmission Units (MTU) of 9.6 kB, to account for non-
preemptive scheduling, packetization, and a router internal buffer for 2 MTU.

Simulation results that compare the different shaping options are shown in
figure 2. The performance measure that we apply is the ratio of accepted requests
divided by the overall number of requests. Simulations have been run, until the
0.95 confidence interval of the acceptance ratio was smaller than 0.01. Requests
for Premium capacity are generated by the simulator with random parameters.
The CIR is chosen uniformly from 10 Mb/s to 80 Mb/s, the CBS from 1 Mb to
8 Mb, and the target worst case delay from 40 ms to 80 ms. The CIR and CBS
are comparably large to model service requests for aggregated traffic trunks. In
case of sustainable rate shaping, we find that the acceptance ratio drops to less
than 0.2, independent of the actual load ρ with 0 ≤ ρ ≤ 400. This is due to
the static shaping configuration, which can result in comparably large shaping
delays, independent of the requested delay bound. We address this shortcoming
by minimum interference shaping, where shaping rates are adaptive. An end-
to-end queuing delay of dq = 4 ms respective dq = 8 ms has been applied, to
quantify the influence of the setting of dq. However, we find only minor impacts of
dq in the investigated scenario. Minimum interference shaping allows to increase
the acceptance ratio significantly compared to the option without shaping as
well as compared to sustainable rate shaping, as can be seen from figure 2.

For illustrative purposes the cumulative density functions of the respective
delay bounds are shown in figure 3 for a load of ρ = 50. The requested delay
bounds are set to infinity to achieve an acceptance ratio of 1.0 for all of the
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investigated shaping options, to allow for comparison. Here we find the reason
for the bad performance of sustainable rate shaping. The delays that are intro-
duced by shaping frequently exceed the range of 40 to 80 ms that is applied for
figure 2. For a delay bound of infinity, minimum interference shaping applies the
smallest possible shaping rate and becomes the same as sustainable rate shap-
ing. Therefore, results are added for minimum interference shaping for a target
delay of 40 ms. Figure 3 clearly shows the impacts of the parameter dq. In case
of dq = 4 ms at most 4 ms of queuing delay are allowed to occur in the core
of the network. Thus, shapers are configured so that the propagation delay and
the shaping delay sum up to 36 ms for a target delay bound of 40 ms. In case of
dq = 8 ms, the propagation delay and shaping delay sum up to 32 ms, leaving
room for up to 8 ms of queuing delay in the core of the network which, however,
are not required for a load of ρ = 50.

Apart from the measured performance increase, traffic shaping is of particular
interest, if a Guaranteed Rate Service and a Premium Service are implemented
based on the same PHB. In this case a traffic mix with significantly heterogeneous
traffic properties and service requirements results. For example Guaranteed Rate
Transmission Control Protocol (TCP) streams that can have a large burstiness
but no strict delay requirements can share the same PHB with extremely time
critical Premium voice or video traffic. In this scenario traffic shaping can be
applied to control the impacts of bursty Guaranteed Rate traffic on the Premium
Service [15].

As a further benefit, traffic shaping reduces the impacts of EF on the BE
class. The starvation of the BE class that can be due to priority scheduling of
EF traffic is bound by the maximum EF burst size at the respective outgoing
interface. Shaping EF bursts at the network’s ingress nodes, reduces this burst
size significantly, resulting in less impacts on the BE class. For the experiment
in figure 3 and a load of ρ = 50 we find that the aggregated Premium burst size
within the core of the network stays below 1 Mbit on all links, resulting in less
than 0.5 ms BE starvation on a 2.4 Gb/s STM 16 link.



5 Conclusions

In this paper we have addressed the impacts of traffic shaping in aggregate
scheduling networks. For this purpose the notation of two leaky bucket con-
strained arrival curves was introduced. A general per-flow-based service curve
has been derived for a FIFO aggregate scheduling rate-latency service element.
This form has been solved for the special case of a two leaky bucket constrained
flow of interest and a two leaky bucket output constraint has been obtained.

We found that the shaping rate has to be chosen carefully in aggregate
scheduling networks, wherefore we evolved an adaptive shaping scheme. Our
scheme allows to configure shaping rates individually for a wide variety of het-
erogenous flows. It minimizes the interference within an aggregate scheduling
domain, while it allows to support individual application-specific delay bounds.
Thus, it can be applied to adapt end-to-end delay bounds to support heteroge-
nous aggregates, while still allowing for scalability.
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Appendix

Proof 1 (Proof of Theorem 1) Substitution of (2) in (1) and application of
infθ≥0[. . . ] yields (6) for the output arrival curve αj+1

1 of flow 1.

αj+1
1 (t) = inf

θ≥0

[
sup
s≥0

[
αj

1(t + s)− [βj(s)− αj
2(s− θ)]+1s>θ

]]
(6)

With sup0≤s≤θ[α
j
1(t + s)− [βj(s)− αj

2(s− θ)]+1s>θ] = αj
1(t + θ), (7) follows.

αj+1
1 (t) = inf

θ≥0

[
sup

[
αj

1(t + θ), sup
s>θ

[αj
1(t + s)− [βj(s)− αj

2(s− θ)]+]
]]

(7)

Then, service curves of the rate-latency type βj
Rj ,T j = Rj · [t−T j ]+ are assumed.

The condition Rj · (s− T j)−αj
2(s− θ) ≥ 0 can be found to hold for θ ≥ θ′ with

θ′ = sups>0[α
j
2(s)−Rj · s]/Rj +T j [11], whereby θ′ ≥ T j . For θ ≥ θ′ (8) and (9)

follow.

αj+1
1 (t) = inf

θ≥θ′

[
sup

[
αj

1(t + θ), sup
s>θ

[αj
1(t + s)−Rj · (s− T j) + αj

2(s− θ)]
]]

(8)

αj+1
1 (t) = inf

θ≥θ′

[
sup

[
αj

1(t+θ), sup
v>0

[αj
1(t+v +θ)−Rj · (v +θ−T j)+αj

2(v)]
]]

(9)

For different settings of θ a θ∗ is defined as a function of (t + θ) in (10). With
θ∗ ≥ θ′ (11) can be given.

θ∗(t + θ) =
supv>0[α

j
1(t + v + θ)− αj

1(t + θ) + αj
2(v)−Rj · v]

Rj
+ T j (10)

sup
v>0

[αj
1(t+ v + θ)−αj

1(t+ θ)+α2(v)−Rj · v]−Rj · (θ−T j) Q 0, if θ R θ∗ (11)

With (10), and (11) the outer sup[. . . ] in (9) is solved in (12).

αj+1
1 (t) = inf

[
inf

θ>θ∗

[
αj

1(t + θ)
]
, inf
θ′≤θ≤θ∗

[
αj

1(t + θ)+

sup
v>0

[αj
1(t + v + θ)− αj

1(t + θ) + αj
2(v)−Rj · v]−Rj · (θ − T j)

]]
(12)

The inf[. . . ] in (12) is found for θ = θ∗, which proofs theorem 1. Here, θ < θ′ is
not investigated. Instead, it can be shown that the bound in theorem 1 is attained
in the same way as for the special case of a single leaky bucket constrained flow
1 in [11]. Thus, we cannot find a better form for θ < θ′. �

Proof 2 (Proof of Theorem 2) Based on (4), θ(t) is derived here for a two
leaky bucket constrained flow 1. For the flow 2 arrival curve sub-additivity is
assumed without loss of generality.

Case 1 (t = 0) With αj+1
1 (t) = αj

1(t + θ(t)) according to (3) we find the output
burst size bj+1

1 = αj
1(θ(0)). Equation (4) is applied at t = 0 to find θ(0).



Case 2 (0 < t < t
j
1 − v(t) − θ(t)) For this case (13) can be derived from (4),

where v(t) is the v for which the supv[. . . ] in (4) is found.

θ =
sup0<v≤t

j
1−t−θ[r1 · v + αj

2(v)−Rj · v]

Rj
+ T j (13)

Thus, θ is independent of t for 0 < t < t
j
1 − v − θ. With αj+1

1 (t) = αj
1(t + θ)

according to (3) the output arrival curve of flow 1 increases with r1.
Case 3 (tj1 − v(t)− θ(t) ≤ t < t

j
1 − θ(t)) Equation (4) yields (14) for this case.

Note that bj
1 + r1 · t

j
1 = b

j

1 + r1 · t
j
1.

θ(t) =
(r1 − r1) · (t

j
1 − t− θ) + supv≥t

j
1−t−θ[r1 · v + αj

2(v)−Rj · v]

Rj
+ T j (14)

=
(r1 − r1) · (t

j
1 − t) + supv≥t

j
1−t−θ[r1 · v + αj

2(v)−Rj · v] + T j ·Rj

Rj + r1 − r1
(15)

For t > t
j
1 − v(t) − θ(t) it can be immediately seen from (15) that any increase

of t results in a corresponding decrease of θ by (r1 − r1)/(Rj + r1 − r1). With
αj+1

1 (t) = αj
1(t + θ) according to (3) the output arrival curve of flow 1 increases

with less than r1. Applying the leaky bucket parameters (r1, b
j+1
1 ) in theorem 2

overestimates the output arrival curve, which is allowed, since arrival curves are
defined to give an upper bound on the respective arrival functions. However, as
long as an increase of t results in a comparably smaller decrease of θ, smaller
values v that fulfill t ≥ t

j
1−v(t)−θ(t) can be applied in (15). As a consequence, if

the sup[. . . ] in (15) is found for t = t
j
1−v(t)−θ(t), it can occur that t = t

j
1−v(t)−

θ(t) also holds if t is increased by an infinitesimal ∆t, resulting in a dependance of
the sup[. . . ] in (15) on t. For sub-additive flow 2 arrival curves, it can be shown
that if t is increased, θ decreases slower than t increases. Here, for simplicity
differentiable flow 2 arrival curves are assumed. Then, ∂α2(t)/∂t ≥ Rj − r1 at
t = t

j
1− v(t)− θ(t) holds, because otherwise case 2 would apply. By substitution

of this condition in (15) it follows that θ decreases, if t increases. Further on,
∂α2(t)/∂t ≤ Rj − r1 at t = t

j
1 − v(t) − θ(t) holds, wherefrom it can be found

that θ decreases slower than t increases. Following the same argumentation as
above, the leaky bucket parameters (r1, b

j+1
1 ) are applied.

Case 4 (t ≥ t
j
1 − θ(t)) In this case, (16) can immediately be derived from (4).

θ =
supv>0[r1 · v + αj

2(v)−Rj · v]
Rj

+ T j (16)

Note that θ(t) according to (16) is constant for t ≥ t
j
1 − θ(t). With (3), the

output arrival curve of flow 1 is given as αj+1
1 (t) = αj

1(t + θ(t)). The conditions
t + θ(t) ≥ t

j
1, and thus αj

1(t + θ(t)) = b
j

1 + r1 · (t + θ(t)) hold for t ≥ t
j
1 − θ(t).

Resulting, the output arrival curve of flow 1 increases with rate r1 for t ≥ t
j
1−θ(t).

The output burst size can be derived as b
j+1

i = αj
1(t+θ(t))−r1 · t = b

j

1 +r1 ·θ(t)
for any t ≥ t

j
1 − θ(t), so that b

j+1

i = b
j

1 + r1 · θ(t
j
1) holds. �


