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Abstract
While the number of embedded systems in consumer
electronics is growing dramatically, several trends can
be observed which challenge traditional codesign prac-
tice: An increasing share of functionality of such systems
is implemented in software; flexibility or reconfigurabil-
ity is added to the list of non-functional requirements.
Moreover, networked embedded systems are equipped
with communication capabilities and can be controlled
over networks. In this paper, we present a suitable meth-
odology and a set of tools targeting these novel require-
ments. JACOP is a codesign environment based on Java
and supports specification, co-synthesis and prototyping
of networked embedded systems.

1. Introduction
The rapidly growing market for web-enabled consumer electronic
devices introduces a paradigm shift in embedded system design.
Traditionally, embedded systems have been designed to perform a
fixed set of previously specified functions within a well-known
operating environment. After shipment, the functionality of the
embedded system remains unchanged during product lifetime.
However, with shorter time-to-market windows and increasing
product functionality this design philosophy has exhibited its
shortcomings. Hardware/software codesign tools are increasingly
used to alleviate some of the problems in the design of complex
heterogeneous systems. But the key features of next-generation
embedded devices will be the capability to communicate over net-
works and to adapt to different operating environments. There is an
emerging class of systems which concurrently execute multiple
applications, such as processing audio streams, capturing video
data and web browsing. This systems need to be adaptive to chang-
ing operating conditions. For instance, in multimedia applications
the video frame rate has to be adjusted depending on network con-
gestion. Likewise, for audio streams different compression tech-
niques are applied depending on network load. Besides this class
of multi-function systems there are multi-mode systems, i.e. sys-
tems which know several alternative modes of operation, for exam-
ple a mobile phone which is able to switch between different
communication protocols or a transmitter which can toggle
between different encryption standards. This paradigm shift in
functional and non-functional requirements of embedded appli-
ances not only holds for consumer devices. In industrial automa-
tion there is a growing demand for sensor and actuator devices
which can be remotely controlled and maintained via Internet. 

Several system-level design languages and codesign framew
have been proposed by researchers and are gaining acceptan
industry. But there is a lack of methods and tools to investig
issues which are raised when designing runtime-reconfigura
hardware/software systems. Our goal is to develop a comp
design environment for embedded systems which include dyna
cally reconfigurable hardware components. JACOP (Java driven
codesign and prototyping environment) is based on Java which 
used for specification and initial profiling as well as for the fin
implementation of system software. In this paper, we give an ov
view of the implemented codesign flow, we present a tool for m
aging the interaction of hardware and software components 
briefly outline our integrated concept for component based reus

Existing work in the area of networked embedded systems conc
trates on analytical models for performance prediction. Kalava
et. al. developed a tool for early performance prediction of ad
tive systems [6]. With respect to the underlying hardware archit
ture for prototyping, an overview of related work can be found
[12]. Recently, also other researchers have proposed Java for s
ification of embedded systems [4][13]. In [11] extensions to Ja
for specification of systems with hard real-time constraints are p
sented. A case study on how to use Java for building circuit co
ponents on FPGAs has been published in [8]. Other rec
approaches propose Java for simulation and emulation of dig
VLSI circuits [1][7]. To the best of our knowledge, our paper is th
first to introduce a Java based design flow for networked recon
urable systems including rapid prototyping. In contrast to previo
approaches, we have developed and implemented mechanism
integrating reconfigurable hardware components into the Java 
tual machine. JACOP also provides means for managing differe
threads in hardware and a concept for reuse of implemented h
ware and software components. 

2. Java Based Codesign
Designing the digital hardware part of a system has beco
increasingly similar to software design. With widespread use
hardware description languages and synthesis tools, circuit de
has moved to higher levels of abstraction. For managing comp
ity of future designs, abstract specification and reuse of Intellec
Property (IP, previously developed HW & SW components) 
essential. Therefore, a specification language should provide c
fortable means for integrating reuse libraries (i.e. packages of 
viously developed IP components). Furthermore, object-orien
programming has proven to be a very efficient paradigm in 
design of complex software systems. Object orientation may in
performance loss, but its benefits weigh much higher: First, it p
vides a better means for managing complexity and for reus
existing modules. Secondly, it reduces problems and costs ass
ated with code maintenance. In embedded system design, 
major trend is to increasingly implement functionality in softwar
The dominant reasons for this are faster implementation, m
flexibility and easier upgradability. Consequently, the costs of so
ware maintenance are an issue of growing importance. For this 
sons, we chose Java as a specification language. It is a c
object-oriented, versatile language of moderate complexity. 
Java has built-in support for handling multiple threads; express
concurrency and managing different flows of control is well su
ported. 
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The JavaBeans specification [5] also provides a standard concept
for reuse of software components. With respect to networked
embedded system design, features like internet mobility and net-
work programming (e.g. function shipping for maintenance and
feature updates), security and synchronization are of great impor-
tance. However, Java has not been designed for specification of
real-time systems. Therefore, several researchers have proposed
extensions (and restrictions) to the language for specifying such
systems. The need for communicating with embedded systems
over the Internet pushes more designers towards Java, e.g. Person-
alJava has recently been adopted as the premier design platform
for implementing applications for set-top boxes. 

As already mentioned, our framework for specification and design
exploration of mixed hardware/software implementations is tar-
geted to reconfigurable embedded systems. In figure 1, two exam-
ples for application of runtime reconfiguration are given. The first
task graph shows an encryption system which is able to switch
between different operations modes, i.e. different encryption algo-
rithms. Typically, only one application at a time is active and
reconfiguration of the system is not time-critical. The second task
graph represents a part of a video communication system. In this
case, the task of processing a video stream is decomposed into a
series of subtasks which are executed on the same piece of silicon.
The chip is reconfigured periodically. In order to meet soft dead-
lines, hardware components which are rapidly reconfigurable are
needed. 

Our proposed design flow can be summarized as follows: Starting
from an initial Java specification, profiling data is gathered while
executing the program with typical input data. This profiling data
is then analyzed and animated to guide the designer in the parti-
tioning process. Partitioning is done at the method level of granu-
larity using a graphical user interface. Functions which are to be
implemented in hardware are synthesized using high-level and
logic synthesis tools. Previously designed hardware components
are integrated by using a database of parameterizable VHDL com-
ponents. More information on the individual synthesis steps and
the automatic generation of the hardware/software interface can be
found in [3]. After co-synthesis, Java bytecode for all methods of
the initial specification is stored in the pool of software methods.
For all methods, which are candidates for implementation in
reconfigurable hardware, the FPGA configuration data as well as
interface information is stored in the pool of hardware methods.
The target hardware platform consists of dynamically reconfig-
urable FPGAs (DPGAs). These new FPGA architectures may be
partially reconfigured at run-time, i.e. a portion of the chip can be
reprogrammed while other sections are operating without interrup-
tion. The target software platform for system prototyping is cur-
rently a Linux Pentium PC.

3. Runtime Management
The interactions between the hardware and software parts of
system, as well as the reconfiguration process is managed by
runtime environment (figure 2). The run-time manager schedu
methods for execution either as software on the Java virt
machine of the host processor or as hardware on the reconfigur
DPGA hardware. The scheduling depends on the dynamic beh
ior of the application and on the current partitioning table chos
by the designer. In contrast to traditional FPGA based prototyp
systems, execution on this platform is a highly dynamic proce
The execution flow of the hardware/software system is domina
by the software part. Software methods are executed on the 
virtual machine. Whenever the control flow reaches a hardw
method, the run-time system determines whether the appropr
configuration file has already been downloaded. If not, then 
manager chooses an available DPGA and starts configuration
there is already a DPGA configured with the desired functional
or if only partial reconfiguration is necessary, the address a
parameters of the communication channel to the target DPGA
loaded. 

A virtual machine has been developed where a Java class 
native methods are used for interfacing with the hardware par
the system. The main focus is on implementing all necessary fu
tionality for hardware interfacing and reconfiguration in Jav
Therefore, the platform specific API of the reconfigurable ha
ware board can be kept very small. In this case the board API b
cally consists of native functions to write a value to and read
value from a certain address of the board. These functions 
implemented via the Java Native Interface (JNI). That means, all
methods for managing the reconfiguration process and execu
are implemented in Java and all communication to the hardw
board is based on the native implementations of the read and w
functions. For communicating with the external board via the P
bus, a dedicated Linux device driver has been implemented. 

The benefits of this approach are clear. The Java VM does not h
to be modified and the hardware interface is clearly defined wit
the Java language. This means the designer has complete co
over all methods for accessing and managing the reconfigura
hardware. The drawback is that the applications source code h
be modified. The interface class DPGA_circuit  has to be
included in the application source and designer has to call 
appropriate functions for using the DPGA. However, this metho
ology can be used with any virtual machine. Therefore, it is re
tively simple to integrate and test different commerci
implementations of the JVM. To support a more comfortable int
face for the user of the JACOP system, a special class (HW_base)
for managing hardware designs and for controlling the reconfi
ration process has been implemented as shown in figure 3. 
class encapsulates all functionality which is specific to the und
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Data encryption subsystem:

Figure 1. Reconfigurable systems: set-top box
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lying hardware resource and also hides the details of the hard-
ware/software interfaces from the designer. Communication to the
DPGA board is done by method invocations of the board API
(DPGA_circuit ) class. For exploiting the dynamic reconfigura-
tion capabilities of the hardware, it is desirable to implement sev-
eral individual hardware designs on the chip. Each of these designs
is accessed by a corresponding Java thread. With the JaCoP native
implementation, a mechanism is provided that multiple threads can
make concurrent use of the external hardware resource. Therefore
the class HW_job has been developed. An object of this type
(figure 3) represents a thread which makes use of hardware meth-
ods. Again, these objects use a single instance of type HW_base
when accessing the DPGA. In order to avoid racing conditions or
invalid hardware configuration, the operations which access the
DPGA are defined as critical sections. That means, that methods
for reconfiguration and for register reads and writes are synchro-
nized. The currently active HW_job cannot be preempted by other
threads while executing such critical sections. In our applications,
threads are used in two different scenarios: One typical example is
that a system task operates on certain blocks of data, which con-
sumes a significant amount of time. After processing this data, the
thread terminates. The second case is, that a task is periodically
activated. In order to save the costs of repeated reconfiguration, the
corresponding hardware design is kept on the FPGA. Whenever
data is available for processing, the corresponding thread becomes
active and returns to a wait state afterwards. To some extent this
way of using a reconfigurable hardware resource can be compared
to the swapping of processes in a multi-tasking operating system.

3.1 Reuse of Hardware Beans 
Well established techniques from software engineering are increas-
ingly used to leverage the concurrent design of hardware and soft-
ware of embedded systems based on a single system-level
description. When designing a set of systems within a certain
application domain (e.g. set-top boxes), reuse of standard compo-
nents (modulators, video/audio processing tasks, ciphering algo-
rithms, data compression, error control) is especially attractive. In
order to reduce development costs and time-to-market, we are cur-
rently integrating a tool and a methodology for reuse into JACOP.
The methodology is based on the JavaBeans mechanism [5] for
reusing software components. Therefore, the concept had to be
extended to also allow for hardware components (hardware beans).
Because of space limitations, only a short discussion of the main
aspects of beans and how they are related to the special require-
ments for hardware components is given. 

Introspection and Serialization: Typically, beans are used for
composing applications by help of a visual builder tool. In this
design environment, the different parameters of a component are
exhibited (introspection) and interactively customized. After cus-
tomization, the chosen configuration has to be saved (serialization)

for use within the run-time environment. This mechanisms are a
used for hardware designs. For example when composing a sy
in the JACOP environment, the weights of a FIR-filter bean can 
chosen by the system designer without the need for an additio
synthesis step. 

Properties and Events: The implemented functionality of a
hardware/software basic component is reflected by the method
a bean. Events are used for inter-component communication 
ing run-time. Properties are basically named attributes of a com
nent, which can be accessed at design-time and at run-t
According to the strict naming convention, property X can 
accessed by so-called getX and setX methods. With respec
hardware components, properties and events are both used
transferring data between components. For example by settin
property of a decoder bean, a block of input data can be transfe
to the decoder. After processing of the data block, an event is fi
and the result can be obtained by retrieving the corresponding b
property. As previously mentioned, multiple threads can acc
both hardware and software beans at run-time. Therefore, asp
of synchronization need to be taken into account when develop
a bean. 

Reuse methodologies typically require additional efforts during t
design of a specific component. These costs easily pay off w
implementing a variety of systems within a certain applicati
domain. One of the benefits of Java is that it encourages design
reuse by providing the JavaBeans mechanism and also by pro
ing a built-in concept and a tool for hypertext documentation 
Java classes. 

4. Experiments
The JACOP design flow has been implemented and tested o
given prototyping platform. The performance of alternativ
approaches for run-time management has been analyzed. 
respect to our target DPGA architecture, efficient optimizations
the hardware/software interface have been developed.

4.1 Target Platform
The target architecture of our system consists of a standard mi
processor tightly interfaced with a dynamically reconfigurab
FPGA. Both are also connected to static random access mem
This card is a prototype of a single chip solution of a reconfi
urable system. Such systems will be available in the near fut
e.g. the Siemens Tricore [2] or the National Napa1000 Recon
urable Processor [9]. The Napa1000 is a single-chip implemen
tion for signal processing which provides both fixed logic (a 32 
RISC core) and a reconfigurable logic part (a 50k gate Adap
Logic Processor). For developing our co-design methodology a
the corresponding co-synthesis flow, we used a Linux PC as de
opment platform and host processor and the XC6200DS board 
reconfigurable hardware resource. The main components of 
board are a PCI interface and a reconfigurable processing 
XC6216. Furthermore, there are two banks of memory includ
which can be accessed from both the DPGA and the PCI bus. F
more detailed discussion of this hardware extension see [10]. 
most prominent feature of this DPGA is its microprocessor int
face. To every logic cell or register on the chip direct write a
read operations over an address and data bus are supported
provides a comfortable mechanism for transferring data betw
hardware and software components of a design, because the 
ware wrapper can read from and write to every register of the ha
ware design at run-time. 

4.2 Optimization and Results
In this section, the first alternative implementation for the run-tim
system (as presented in [3]) will be referred to as the ‘JACOP inter-
preter’ and the second implementation (as discussed above) a
‘JACOP native interface’. For evaluating the performance of t
system, our initial experiments with the JaCoP interpreter w
focussed on the costs of DPGA reconfiguration and commun
tion between hardware and software. First measurements i

Application

Class DPGA_circuit

Java virtual machine Native 

Device Linux operating system

functions

driver

Figure 3. Thread access to hardware
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cated, that complete reconfiguration of the chip would be too slow
for dynamic applications with soft deadlines. Typical times for
standard reconfiguration ranged between 30ms and 400ms depend-
ing on the size of the circuit. In order to reduce this overhead for
reconfiguration, a mechanism for compression and improved trans-
mission of the DPGA configuration files has been developed. Basi-
cally, all redundant address/data pairs are omitted and the
necessary configuration data is transmitted in a binary format.
With this optimization, reconfiguration time is reduced to about
4ms to 31ms. Besides reconfiguration, the second important factor
which introduces overhead is the hardware/software communica-
tion. An efficient implementation of the hardware/software inter-
face is the most important factor for overall performance of the
combined system. In our target architecture communication is
done by writing and reading internal registers on the DPGA. For
the XC6216, a single write or read operation can only access one
specific column of logic cells. In order to minimize communica-
tion costs, a layout optimization is introduced such that individual
registers are placed in individual columns whenever possible. Fur-
thermore, for the used DPGA, a so-called map register has to be
configured before accessing an individual register to mask out the
corresponding rows of logic cells. Profiling shows that this is a
very time consuming process, therefore we introduced a second
optimization for the layout of our hardware designs. Whenever
possible, all I/O registers of a design have to be placed in corre-
sponding rows. With this layout constraint, configuration of the
map register before read or write accesses can be avoided. Conse-
quently, register access is improved drastically from about 70 µs
down to 8µs. 

With this optimizations, we conducted some further experiments to
investigate how the total overhead for integrating external hard-
ware can be attributed to the different components involved in the
DPGA execution process. We found that about 78% of the total
time for hardware integration is spent in the virtual machine and
the device driver. For executing the DPGA design and transfer of
data over the PCI bus 22% of the time is spent. For this reason,
speedup of a mixed hardware/software implementation can only be
obtained when implementing a method of significant complexity in
hardware. Moving only simple operations like additions or multi-
plications to DPGA hardware can not deliver speedup because of
the overhead involved. Therefore, we implemented more complex
examples, such as an algorithm for error detection and correction.
Hamming codes are typically used in conjunction with other codes
for detection and correction of single bit faults. Both the Hamming
coder and decoder have been implemented on the DPGA. As this
application includes more complex bitlevel operations, we conse-
quently experienced significant speedup of the hardware/software
implementation in comparison to the execution of the software
prototype on the host CPU. The performance figures for the coding
and decoding examples are illustrated in figure 4. The first column
shows the execution time for an encoding and a decoding applica-

tion with the JACOP interpreter. The second column uses the sa
Java virtual machine, but the JACOP native interface. The main
advantage of the native interface is that it can be used with 
Java VM; therefore we could use an optimized JVM2, which
only available in binary form. In all three cases, significa
speedup can be obtained by integrating the reconfigurable h
ware platform. If an application has computational complex co
ponents which are executed on the DPGA board, hardw
accelerated execution is possible despite of the necessary over
for reconfiguration and communication. The results also show t
the implementation via native functions has a small performan
drawback when compared to modifying the virtual machine. O
the other hand, this implementation is especially attractive wh
using commercial JVMs. In any case, the hardware/software in
face has to be designed and optimized with great care.

5. Conclusion
A new codesign environment for Java based design of recon
urable networked embedded systems, called JACOP, has been pre-
sented. This framework includes tools which aid in specificati
and hardware/software partitioning, profiling, co-synthesis a
prototype execution. We have developed two alternative meth
for efficiently combining the Java execution mechanism and
reconfigurable hardware resource. This approach has b
extended to provide means for implementation of hardware/s
ware threads, i.e. multiple threads can concurrently exploit the f
tures of the reconfigurable DPGA architecture. Based on 
JavaBeans specification, a suitable methodology for design re
has been integrated. The proposed design flow has been im
mented and tested on a PC connected to a reconfigurable hard
board where performance figures with sample designs have b
obtained. 
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