
Data Mining and the Web: Past, Present and Future

Minos N. Garofalakis
Bell Laboratories

minos@bell-labs.com

Rajeev Rastogi
Bell Laboratories

rastogi@bell-labs.com

S. Seshadri
Bell Laboratories

seshadri@bell-labs.com

Kyuseok Shim
Bell Laboratories

shim@bell-labs.com

1 Introduction
The World Wide Web is rapidly emerging as an important medium
for transacting commerce as well as for the dissemination of
information related to a wide range of topics (e.g., business,
government, recreation). According to most predictions, the
majority of human information will be available on the Web in ten
years. These huge amounts of data raise a grand challenge, namely,
how to turn the Web into a more useful information utility.

Crawlers, search engines and Web directories like Yahoo!
constitute the state-of-the-art tools for information retrieval on the
Web today. Crawlers for the major search engines retrieve Web
pages on which full-text indexes are constructed. A user query is
simply a list of keywords (with some additional operators), and the
query response is a list of pages ranked based on their similarity to
the query.

Today’s search tools, however, are plagued by the following four
problems: (1) the abundance problem, that is, the phenomenon of
hundreds of irrelevant documents being returned in response to a
search query, (2) limited coverage of the Web, (3) a limited query
interface that is based on syntactic keyword-oriented search, and
(4) limited customization to individual users. These problems,
in turn, can be attributed to the following characteristics of the
Web. First and foremost, the Web is a huge, diverse and dynamic
collection of interlinked hypertext documents. There are about
300 million pages on the Web today with about 1 million being
added daily. Furthermore, it is widely believed that 99% of the
information on the Web is of no interest to 99% of the people.
Second, except for hyperlinks, the Web is largely unstructured.
Finally, most information on the Web is in the form of HTML
documents for which analysis and extraction of content is very
difficult. Furthermore, the contents of many internet sources are
hidden behind search interfaces and, thus, cannot be indexed –
HTML documents are dynamically generated by these sources, in
response to queries, using data stored in commercial DBMSs.

The question therefore is: how can we overcome these and
other challenges that impede the Web resource discovery process?
Fortunately, new and sophisticated techniques that have been

developed in the area of data mining (also known as knowledge
discovery), can aid in the extraction of useful information from
the web. Data mining algorithms have been shown to scale well
for large data sets and have been successfully applied to several
areas like medical diagnosis, weather prediction, credit approval,
customer segmentation, marketing and fraud detection.

In this paper, we begin by reviewing popular data mining
techniques like association rules, classification, clustering and
outlier detection. We provide a brief description of each technique
as well as efficient algorithms for implementing the technique.
We then discuss algorithms for discovering Web, hypertext and
hyperlink structure, that have been proposed by researchers in
recent years. The key difference between these algorithms and
earlier data mining algorithms is that the latter take hyperlink
information into account. Finally, we conclude by listing research
issues that still remain to be addressed in the area of Web Mining.

2 Data Mining Techniques
In this section, we briefly describe key data mining algorithms
that have been developed for large databases. A number of these
algorithms are also applicable in the Web context and can be used
to find related Web pages, as well as to cluster and categorize them.

2.1 Association Rules
Association rules, introduced in [1], provide a useful mechanism
for discovering correlations among items belonging to customer
transactions in a market basket database. An association rule has
the form

�����
, where

�
and
�

are sets of items or itemsets. Let
the support of an itemset

�
be the fraction of database transactions

that contain
�

. The support of a rule of the form
�����

is then
the same as the support of

�����
, while its confidence is the ratio

of the supports of
���	�

and
�

. The association rules problem
is that of computing all association rules that satisfy user-specified
minimum support and minimum confidence constraints.

The Apriori algorithm [2] is the most popular algorithm for
computing association rules. It first computes frequent itemsets
(that is, itemsets that satisfy the minimum support constraint), and
these are then used in a subsequent phase to compute rules that
satisfy the minimum confidence constraint. Frequent itemsets are
computed in passes - in the
��� pass, frequent itemsets of size
 ,���

, are computed.
���

is used to generate � ����� , the candidate
itemsets for whom support is counted in the
���� �� pass. The key
idea is that every subset of a frequent itemset must also be frequent,
and so an itemset can be pruned from � ����� if any of its
 -subsets
does not belong to

���
.

1

Several optimizations to the Apriori algorithm have been pro-
posed in the literature [19, 22, 25]. In [19], the authors present an
optimization in which when support for candidate itemsets in � �
is counted, the
�� � itemsets are hashed into buckets and a count
of the number of itemsets that are hashed into each bucket is main-
tained. Later, when the candidate set � ����� is generated in the next
pass, if the hash bucket corresponding to a
�� � -itemset does not
have minimum support, then that itemset is pruned.

In [22], the authors propose a scheme in which the database is
partitioned and frequent itemsets are computed for each partition.
The rationale is that for an itemset to be frequent over the entire
database, it must be frequent in at least one of the partitions.
Consequently, once frequent itemsets for every partition have been
computed, in a final pass, support for only these frequent itemsets
needs to be computed using the entire database.

A sampling-based scheme for computing frequent itemsets is
proposed in [25]. The idea is to first compute frequent itemsets
using a random sample of the database. For the frequent itemsets
computed

�
, the negative border is defined to be the itemsets that

are not contained in
�

, but all of whose subsets are in
�

. A pass
is made over the entire database to count support for itemsets in�

and it’s negative border. If any of the itemsets in the negative
border turns out to be frequent, then a subsequent pass is made
over the database and support for itemsets that could potentially be
frequent is computed.

Recently, in [17], the authors proposed algorithms for mining
frequent itemsets in the presence of anti-monotone and succinct
constraints. A constraint � is said to be anti-monotone if for
every itemset that satisfies � , every one of its subsets also satisfies
� . Examples of anti-monotone constraints are ���������
	��� or���������
	��� , where � is an itemset. The authors note that
during each pass of the Apriori algorithm, itemsets that do not
satisfy anti-monotone constraints can be safely pruned. The authors
also propose algorithms for counting support in the presence of
succinct constraints, which are constraints that can be expressed
as � � � ��� ������� for itemsets ��� .

In [6], the authors consider the problem of mining frequent
sequences from a database of sequences in the presence of
regular expression constraints. Since regular expression constraints
are not anti-monotone, the authors show that there exists a
trade-off between the pruning due to the regular expression
constraint and support-based pruning. Specifically, the authors
show that as the regular expression constraint is used to prune
more candidates, fewer candidates get pruned due to the minimum
support constraint.

Algorithms for mining frequent itemsets and sequences are use-
ful for discovering Web structure and interesting access patterns.
For instance, by teating each Web page as a transaction and the
URLs it refers to as items, frequent itemsets result in groups of re-
lated URLs that are frequently referenced together. Similarly, fre-
quent sequences in user Web log data yield information about user
access patterns (that is, the sequence of URLs frequently traversed)
that is of immense value to advertizers, Web site designers etc.

2.2 Classification
Classification is an important problem in data mining. It has
been studied extensively by the machine learning community as
a possible solution to the knowledge acquisition or knowledge
extraction problem. The input to a classifier is a training set of
records, each of which is tagged with a class label. A set of

attribute values defines each record. The goal is to induce a model
or description for each class in terms of the attributes. The model
is then used to classify future records whose classes are unknown.
Classifiers are useful in the Web context to build taxonomies and
topic hierarchies on Web pages, and subsequently perform context-
based searches for Web pages relating to a specific topic.

Decision trees classifiers are popular since they are easily
interpreted by humans and are efficient to build. Most decision
tree algorithms have two phases: a building phase followed by
a pruning phase. In the building phase, the training data set is
recursively partitioned until all the records in a partition have the
same class. For every partition, a new node is added to the decision
tree and it is labeled with the attribute and value (referred to as
the split value) that was used to partition the set of tuples. In the
pruning phase, nodes are iteratively pruned to prevent “overfitting”
and to obtain a tree with higher accuracy. An important class
of pruning algorithms are those based on the Minimum Decision
Length (MDL) principle [15]. A subtree � is pruned if the cost
of directly encoding the records in � is no more than the cost of
encoding � plus the cost of the records in each leaf of � .

One of the first truly scaleable algorithms for classification
was SPRINT [23]. In order to classify large datasets, SPRINT
maintains separate attribute lists for each attribute and sorts the
attribute lists for numeric attributes. The Rainforest algorithm
proposed in [8] employs the notion of AVC-sets that maintain a
count of tuples for distinct attribute value, class label pairs. These
AVC-sets are used to determine how to partition sets of tuples
without having to maintain separate attribute lists. The PUBLIC
algorithm proposed in [20] integrates the building and pruning
phases of decision tree construction in order to avoid expending
effort on building portions of the tree that are any way going to be
pruned. Finally, in BOAT [7], the authors use samples to construct�

bootstrap decision trees which are used to compute confidence
intervals for various split values for numeric attributes. A single
pass is then performed over the database to determine the exact
split value.

2.3 Clustering and Outlier Detection
Clustering, in data mining, is a useful technique for discovering
interesting data distributions and patterns in the underlying data.
The problem of clustering can be defined as follows: given � data
points in a -dimensional metric space, partition the data points
into
 clusters such that the data points within a cluster are more
similar to each other than data points in different clusters.

Existing clustering algorithms can be broadly classified into
partitional and hierarchical [11]. Partitional clustering algorithms
attempt to determine
 partitions that optimize a certain criterion
function. In contrast, a hierarchical clustering is a sequence of
partitions in which each partition is nested into the next partition
in the sequence. An agglomerative algorithm for hierarchical
clustering starts with the disjoint set of clusters, which places each
input data point in an individual cluster. Pairs of items or clusters
are then successively merged until the number of clusters reduces
to
 . At each step, the pair of clusters merged are the ones between
which the distance is the minimum.

In [18], the authors propose a partitional clustering method for
large databases which is based on randomized search. Each cluster
is represented by its medoid, the most centrally located point in the
cluster, and the objective is to find the
 best medoids that optimize
the criterion function. The authors reduce this problem to that of

2

graph search by representing each set of
 medoids as a node in
the graph, two nodes being adjacent if they have
 � � medoids in
common. Initially, an arbitrary node is set to be the current node
and a fixed number of iterations are performed. In each iteration, a
random neighbor of the current node is set to be the current node if
it results in better clustering.

In [26], the authors present a clustering method named BIRCH
whose I/O complexity is a little more than one scan of the data.
BIRCH first pre-clusters the data into the maximum possible and
finest possible subclusters that can fit in main-memory. For the
pre-clustering phase, BIRCH employs a CF-tree to store cluster
summaries, which is a balanced tree structure similar to an

�
-

tree [21]. For each point, the CF-tree is traversed to find the
closest cluster. If the cluster is within epsilon distance, the point is
absorbed into the cluster. Otherwise, the point starts a new cluster.

A density-based algorithm called DBSCAN was proposed in [5].
DBSCAN requires the user to specify two parameters that are used
to define the minimum density for clustering – the radius Eps of the
neighborhood of a point and the minimum number of points MinPts
in the neighborhood. Clusters are then found by starting from
an arbitrary point and if its neighborhood satisfies the minimum
density, including the points in its neighborhood into the cluster.
The process is then repeated for the newly added points.

The CURE algorithm [10] chooses a random sample of the data,
partitions it and partially clusters each partition. The partial clusters
are then used to generate the final clusters in a subsequent pass.
CURE employs a hierarchical clustering algorithm, but represents
each cluster by a set of representative points distributed around the
centroid. In [9], the authors propose ROCK, a clustering algorithm
for categorical attributes. A pair of points whose similarity exceeds
a certain threshold are referred to as neighbors. Robust clustering
is then ensured by using the number of common neighbors between
a pair of points as a measure of the distance between the points.

In [13], the authors introduce the notion of distance-based
outliers. For a fraction � and a distance , a point � is considered
an outlier if � points lie at a greater distance than from the
point. The authors propose nested-loop and cell-based algorithms
for computing distance based outliers.

3 Web Mining Techniques
In this section, we describe recent algorithms that exploit hyperlink
information for discovering Web structure and Web communities.
We also discuss recent work on finding the structure of hypertext
documents and storing them.

3.1 Hubs and Authorities
In [12], to discover the underlying Web structure, the authors
develop a notion of hyperlinked communities on the WWW through
an analysis of the link topology. The key observation is that such
communities typically contain two distinct, but inter-related, types
of pages: authorities and hubs. Authorities are highly-referenced
pages on the topic, while hubs are pages that “point” to many of the
authorities, serving to cluster them together. Hubs and authorities
thus exhibit a strong mutually reinforcing relationship: a good hub
points to many good authorities; a good authority is pointed to by
many good hubs.

Discovering the community for a specific topic/query thus
involves computing the hubs and authorities for the topic, which
is achieved as follows.

1. First a set � of seed pages on the topic are collected. Typically,
these are the pages returned by a search engine on the query.
This is then expanded to a larger base set by adding in any
pages that point to, or are pointed to by, any page in � .

2. With each page � , a hub weight � � � 	 and an authority weight� � � 	 , all initialized to 1, are associated. Let � ���
denote

“page � has a hyperlink to page
�
”. The � ’s and � ’s for the

pages are iteratively updated as follows: � � � 	��
	
���� � � � 	 ,
� � � 	�� 	 ����� � � � 	 .

3. After a fixed number of iterations, the 10 pages with the highest� values along with the 10 pages with the highest � values are
considered to be the core of the community.

3.2 Building Web Knowledge Bases
The problem of creation of knowledge bases is addressed in [14]
by enumerating and organizing all web occurrences of chosen
subgraphs. Examples of subgraphs considered include cliques,
webrings (which are star-shaped graphs with bidirectional links on
the spokes) and bipartitie cores (which consists of two sets of nodes�

and
�

, such that every node in
�

links to every node in
�

). The
authors claim that a knowledge base of such structures constitutes
a good starting point for deeper analyses and mining than raw web
data, as well as for searching and navigation.

The authors propose an algorithm in the elimination/generation
paradigm for efficiently enumerating the subgraphs of interest.
For instance, consider the problem of enumerating cliques of size
4. In the elimination step, all nodes whose in-degree or out-
degree is less than 4 are pruned. In the generation step, a list of
nodes with in-degree or out-degree 3, along with their in- or out-
neighborhoods is constructed. Following this, it is verified that each
node in the neighborhood of a node points to all other nodes in its
neighborhood.

In [3], the authors present algorithms for categorizing hypertext
using hyperlinks. The authors show that a naive approach based on
using a text classifier to determine the class for a web document
using text from its neighbors performs badly. Instead, the authors
propose a scheme that uses a bayesian classifier and exploits the
knowledge of the classes of all the immediate neighbors of the
document to be classified.

3.3 Mining the Structure of Web Documents
Web pages are instances of semistructured data, and thus mining
their structure is critical to extracting information from them. The
problem of extracting/mining schema from semistructured data
is considered in [16]. The specific problem addressed is the
following: given a data set � , find a typing � and a data set � of
typing � such that the size of � is smaller than a certain threshold
and the distance between � and � is minimized. Thus, the goal
is to find a � that is small enough and such that � presents as few
defects as possible with respect to � . The authors first cast the
typing problem in terms of a monadic datalog program, and then
apply the greatest fixpoint semantics to the program to discover a
perfect typing. The perfect types are then clustered (after defining a
distance measure between pairs of types) using a greedy algorithm
to compute
 types such that the sum of the distances of each type to
the closest (among the
 types) is minimized. The greedy algorithm
gives an � ������� � 	 approximation of the optimal solution.

Recently, there has been a great deal of interest in XML which
requires documents to store tags along with the data to convey

3

semantic information. In [4, 24], schemes for storing XML
documents in relational databases are proposed. The rationale is
that by storing XML documents in relational databases 1) space
costs associated with storing tags can be reduced, and 2) features of
an RDBMS can be exploited. The approach in [4] attempts to mine
the relational schema for a set of semistructured documents using a
mining algorithm that computes frequent tree patterns in the data.
The semistructured data model is then mapped to the relational
model using a declarative query language, STORED. Parts of the
semistructured data that do not fit the schema are stored in an
“overflow” graph. Given the complete STORED mapping, queries
and updates over the semistructured source are then rewritten into
queries and updates on the relational source. In [24], the authors
present several algorithms for constructing relational schemas from
DTDs. They also develop algorithms that convert XML documents
to relational tuples, translate semistructured queries over XML
documents to SQL queries over tables and convert the results to
XML.

4 Web Mining Research Issues
The approaches described in the previous section represent initial
attempts at mining hyperlink and hypertext structure. However, to
improve information retrieval and the quality of searches on the
Web, a number of research issues still need to be addressed, which
we list below.

Mining Web Structure. The work from [12, 14, 3], presented in
the previous section, represent some of the pioneering efforts in
mining Web structure. These approaches only take into account
hyperlink information and pay little or no attention to the content
of Web pages. It would be interesting to devise approaches that
take into account both hyperlink information as well as Web page
content.

Topic hierarchies like the one provided by Yahoo! give a
hierarchical classification of documents. Searches in the context of
a specific topic help to eliminate clutter by focusing the search to
only documents pertaining to the topic. Unfortunately, since these
hierarchies are manually generated, they cover only a small portion
of the Web. The challenge here is to automate the classification
and clustering of millions of dynamically changing Web documents
with diverse authorship.
Improving Customization. Customization involves learning
about an individual user’s preferences/interests based on access pat-
terns or alternately, based on explicit directives from the user. Thus,
customization aids in providing users with pages, sites and adver-
tizements that are of interest to them. It may also be possible for
sites to automatically optimize their design and organization based
on observed user patterns.

Extracting Information from Hypertext Documents. Informa-
tion extraction from web resources is complicated since HTML an-
notations provide very little semantic information. Furthermore,
a number of sources hide information behind search interfaces.
Thus, the majority of today’s information-extraction systems rely
on “hand coded” wrappers to access a fixed set of Web resources.
Obviously, such a manual approach cannot scale, and new tech-
niques for automating the extraction process from unfamiliar doc-
uments need to be devised. It is widely believed that HTML will
be replaced by XML, forcing documents to become self-describing
through the specification of tag sets (referred to as the Document

Type Definitions, or DTDs). Thus, the contents of each XML doc-
ument can be extracted by consulting the DTDs to which the docu-
ment conforms. Web sites will also be able to describe their query
capabilities through XML – thus enabling structured queries like
“find the cheapest airline ticket from New York to Chicago” or
“list all jobs with salary � 50K in the Boston area”. Thus, with
XML, it may be possible to transform the entire Web into one uni-
fied database.

More research, however, is still needed in the areas of storage
of XML documents, and integration and querying of XML doc-
uments originating from different sources. Other interesting re-
search problems include extracting DTD information given a set
of XML/semistructured documents, and merging DTD information
from several XML sources.

References
[1] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami.

Mining association rules between sets of items in large
databases. In Proc. of the ACM SIGMOD Conference on
Management of Data, pages 207–216, Washington, D.C.,
May 1993.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms
for mining association rules. In Proc. of the VLDB Confer-
ence, Santiago, Chile, September 1994.

[3] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext
categorization using hyperlinks. In Proc. of the ACM
SIGMOD Conference on Management of Data, June 1998.

[4] A. Deutsch, M. Fernandez, and D. Suciu. Storing semistruc-
tured data with stored. In Proc. of the ACM SIGMOD Con-
ference on Management of Data, June 1999.

[5] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei
Xu. A density-based algorithm for discovering clusters in
large spatial database with noise. In Int’l Conference on
Knowledge Discovery in Databases and Data Mining (KDD-
96), Montreal, Canada, August 1996.

[6] M. Garofalakis, R. Rastogi, and K. Shim. Spirit:sequential
pattern mining with regular expression constraints. In Proc. of
the VLDB Conference, Edinburgh, Scotland, September 1999.

[7] J. Gehrke, V. Ganti, R. Ramakrishnan, and W. Loh. Boat–
optimistic decision tree construction. In Proc. of the ACM
SIGMOD Conference on Management of Data, June 1999.

[8] Johannes Gehrke, Raghu Ramakrishnan, and Venkatesh
Ganti. Rainforest - a framework for fast decision tree con-
struction of large datasets. In Proc. of the Int’l Conf. on Very
Large Data Bases, New York, 1998.

[9] S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering
algorithm for categorical attributes. In Int’l Conference on
Data Engineering, Sydney, Australia, 1999.

[10] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. “CURE:
An Efficient Clustering Algorithm for Large Databases”.
In Proceedings of the 1998 ACM SIGMOD International
Conference on Management of Data, Seattle, Washington,
June 1998.

[11] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering
Data. Prentice Hall, Englewood Cliffs, New Jersey, 1988.

4

[12] J. Kleinberg. Authoritative sources in s hyperlinked environ-
ment. In Proc. of ACM-SIAM Symposium on Discrete Algo-
rithms, 1998.

[13] E. Knorr and R. Ng. Algorithms for mining distance-based
outliers in large datasets. In Proc. of the VLDB Conference,
pages 392–403, New York, USA, September 1994.

[14] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins.
Extracting large-scale knowledge bases from the web. In
Proc. of the Int’l Conf. on Very Large Data Bases, Edinburgh,
Scotland, 1999.

[15] Manish Mehta, Jorma Rissanen, and Rakesh Agrawal. MDL-
based decision tree pruning. In Int’l Conference on Knowl-
edge Discovery in Databases and Data Mining (KDD-95),
Montreal, Canada, August 1995.

[16] S. Nestorov, S. Abiteboul, and R. Motwani. Extracting
schema from semistructured data. In Proc. of the ACM
SIGMOD Conference on Management of Data, June 1998.

[17] R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Ex-
ploratory mining and pruning optimizations of constrained as-
sociation queries. In Proc. of the ACM SIGMOD Conference
on Management of Data, June 1998.

[18] Raymond T. Ng and Jiawei Han. Efficient and effective
clustering methods for spatial data mining. In Proc. of the
VLDB Conference, Santiago, Chile, September 1994.

[19] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An
effective hash based algorithm for mining association rules.
In Proc. of the ACM-SIGMOD Conference on Management
of Data, San Jose, California, May 1995.

[20] Rajeev Rastogi and Kyuseok Shim. Public: A decision tree
classifier that integrates building and pruning. In Proc. of the
Int’l Conf. on Very Large Data Bases, New York, 1998.

[21] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, 1989.

[22] A. Savasere, E. Omiecinski, and S. Navathe. An efficient
algorithm for mining association rules in large databases.
In Proc. of the VLDB Conference, Zurich, Switzerland,
September 1995.

[23] John Shafer, Rakesh Agrawal, and Manish Mehta. SPRINT:
A scalable parallel classifier for data mining. In Proc. of the
VLDB Conference, Bombay, India, September 1996.

[24] J. Shanmugasundaram, G. He, K. Tufte, C. Zhang, D. DeWitt,
and J. Naughton. Relational databases for querying xml
documents: Limitations and opportunities. In Proc. of the
Int’l Conf. on Very Large Data Bases, Edinburgh, Scotland,
1999.

[25] Hannu Toivonen. Sampling large databases for association
rules. In Proc. of the VLDB Conference, Bombay, India,
September 1996.

[26] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch:
An efficient data clustering method for very large databases.
In Proceedings of the ACM SIGMOD Conference on Manage-
ment of Data, pages 103–114, Montreal, Canada, June 1996.

5

