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This paper discusses the use of frequency}domain criteria for "nite element (FE) model
correlation and updating. The criteria, which can be local or global, are either shape or
amplitude based. The former are sensitive to mode shape di!erences but not to relative
scales, and the latter depend on the actual response amplitudes. The updating objective
function is formulated in such a way that two global correlation criteria are satis"ed
simultaneously. A sensitivity-based updating problem is expressed as a set of linear equa-
tions where the coe$cient matrix contains the partial derivatives of the correlation functions
with respect to the chosen design variables. The formulation has the advantage of being able
to deal with incomplete measurements and there is no critical selection of updating
frequency points. The correlation criteria were used successfully to quantify the initial
closeness between 4 increasingly detailed FE models of an automotive oil pan. The updating
of the second most detailed model, using simulated response functions from the most
detailed model, exhibited quick convergence properties and yielded a very good match
between the target and updated frequency response functions. However, the initial FE model
was corrected in a curve-"tting/minimisation sense since actual modelling de"ciencies were
compensated by adjusting a small number of pre-selected design parameters.

( 2001 Academic Press
1. INTRODUCTION

Several review articles on "nite element (FE) model updating reveal a wealth of updating
algorithms but success seems to remain case dependent and applicability is bounded by the
skill of the analyst in choosing a correct updating procedure [1}3]. In any case, two somewhat
related approaches are now accepted as state-of-the-art tools: the inverse eigensensitivity
method [4] and the response function method [5, 6]. A review of the case studies using these
methods unveils a fundamental problem: a particular solution is usually non-unique and
a generated solution does not necessarily represent a true physical meaning [7]. A detailed
account of the state-of-the-art in "nite element model updating and several numerical
techniques are presented in a recent authoritative textbook by Friswell & Mottershead [8].

There are several issues that need to be resolved before a reliable and universally
applicable updating method can be developed: the minimum required experimental accu-
racy (Ziaei-Rad and Imregun, 1996), the selection of optimum measurement locations [9],
the treatment of discretization errors [10], the numerical aspects of the inverse problem
[11, 12], error localisation vs global correction and the derivation of novel elements for
updating [13].

The current work will attempt to consider one such fundamental question: the determina-
tion of minimum required initial closeness between two given models so that eventual
updating, by whichever method, becomes possible? Although a large number of model
correlation techniques exist, there are no concise guidelines for an objective and
8}3270/01/010139#17 $35.00/0 ( 2001 Academic Press
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quantitative assessment of the amount of agreement between two models. For instance, an
overlay of response functions from two di!erent models is a very useful measure of the
overall qualitative agreement but it can not provide an adequate indication of whether
updating will be possible in this particular case. Similarly, the model assurance criterion
[14] can give a numerical description of the modal correlation between two given models
but it lacks the precision to indicate if updating will be possible. For instance, it is not
sensitive to relatively small*but sometimes crucial*changes in the mode shape, especially
for large-order systems. When building an FE model, the analyst may create a number of
interim versions with increasing detail, until he/she is satis"ed that there is enough correla-
tion with experimental data. Although it is often the case that the more detailed model will
correlate better, there are no techniques to rank these various models with some numerical
precision. From the above discussion, it must be clear that one needs to develop a set of
precise numerical tools for comparing two models, which can be of theoretical or experi-
mental origin. It is further desirable to use these rules during the updating process so that
the success (or otherwise) of the updating procedure can also be numerically quanti"ed.
Accordingly, the aim of this paper is three-fold:

(i) to develop new criteria to quantify the closeness between two given models,
(ii) to be able to distinguish between frequency regions of good and poor correlation, and
(iii) to use the developed correlation criteria as the basis of the updating objective function

and to show that the procedure is applicable to practical cases where the size of the FE
model is large and the number of measurement points is relatively small.

2. DEVELOPMENT OF FREQUENCY DOMAIN CRITERIA

From the outset, it was decided to focus on frequency}domain correlation criteria since
such an approach was considered to have several advantages. First, errors due to the modal
analysis of measured data are automatically circumvented, a big bene"t when studying with
structures that have high modal density and high damping. Second, it is relatively straight-
forward to deal with complex modes and non-linear e!ects during the updating stage,
provided such features can also be incorporated into the theoretical analysis. Finally, there
is no need to "nd correlated mode pairs, a task that can be a surprisingly di$cult for
industrial applications.

A number of frequency}domain correlation tools already exist in the literature. For
instance, the frequency response assurance criterion (FRAC) for the jth degree of freedom
can be de"ned as [15, 16]:
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measured FRF vector. The FRAC, which returns a real value between zero and unity to
indicate zero/total correlation, is somewhat analogous to the COMAC [17] since it
contains information about a speci"c measurement point for a given excitation point. Using
the same notation as before, another COMAC-type frequency}domain correlation func-
tion, frequency amplitude assurance criterion (FAAC), can be de"ned as:
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A MAC-type correlation indicator, the frequency domain assurance criterion (FDAC), was
de"ned by Pascual et al. [18] as:
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where MH
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)N is a vector of predicted responses at "xed frequency u
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a vector of measured responses at "xed frequency u
X
, each individual element being

associated with a di!erent degree of freedom. The FDAC, which also returns a real value
between zero and unity, is analogous to the MAC since it considers the correlation between
two operating shape vectors which are measured/computed at a given frequency pair.
A more advanced version, that can also correlate the phase di!erence between two complex
vectors, was de"ned by Heylen and Avitabile [16]. Using a slightly di!erent format, the
modi"ed FDAC can be written as:

FDAC (u
a
, u

x
)"SS

DMH
X
(u

X
)NHMH

A
(u

A
)NDH DMH

X
(u

X
)NHMH

A
(u

A
)ND

(MH
X
(u

X
)NH MH

X
(u

X
)N) (MH A

(u
A
)NHMH

A
(u

A
)N)( 2 b

)

where S"sign (Re(MH
X
(u

X
)NHMH

A
(u

A
)N). The FDAC criterion varies between !1 and 1,

the absolute value indicating the amount of correlation and the sign indicating the relative
phase between the FRFs that are being correlated. For instance, an FDAC value of !1
indicates 100% correlation with opposite phase.

Summarising, we can see that the FRAC and FAAC provide amplitude-based informa-
tion in the spatial domain while the FDAC provides shape-based information in the
frequency domain. In the former case, the output is degree of freedom (dof ) based and, in the
latter case, it is frequency based. Ideally, we need criteria that can combine, over all
available dofs, the amplitude and shape information as a function of frequency. Although
such data are inherently present in a typical overlay of the measured and predicted FRFs,
there are no numerical means of quantifying the agreement.

Consider the two functions below, global shape criterion (GSC) and global amplitude
criterion (GAC), which satisfy the requirements above [19]:
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Here, MH
A
(u)Nand MH

X
(u)N are vectors of spatial responses at a series of dofs i, which are

predicted or measured at frequency u for a "xed excitation position j. Subscripts s and
a refer to shape and amplitude, respectively. As will be seen later, these last two correlation
functions are perhaps the most useful ones because they can quantify the overall agreement
between two models as a function of frequency, thus highlighting frequency regions of good
and poor correlation immediately. Once such global criteria are formulated, it is possible to
obtain the corresponding local criteria by replacing the response vectors MH

A
(u)N and

MH
X
(u)N by individual scalar response data. Using equation (3), a local correlation function,

the local amplitude criterion (LAC), can be de"ned as:

s
aij

(u)"
2 DH*

Xij
(u)H

Aij
(u)D

(H*
Xij

(u)H
Xij

(u))#(H*
Aij

(u)H
Aij

(u))
(4)



142 C. ZANG E¹ A¸.
where i and j are the response and excitation co-ordinates, H
Aij

(u) is the predicted FRF
value and H

Xij
(u) is the corresponding measured FRF value, both at frequency u, * denot-

ing complex conjugate. Clearly, the LAC can be computed at each frequency of interest in
order to obtain a numerical value of the shape correlation as a function of frequency
throughout the measurement range. Although a similar treatment can also be applied to the
global shape criterion, the outcome is unlikely to be useful since, as can be seen from
equation (3), the local shape criterion will have a constant value of unity throughout the
frequency range.

Based on equation (4), the averaged LAC can be de"ned as:
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Since the averaging is over the actual response values at each frequency, one can
consider in turn each dof i of interest, the excitation position j remaining "xed during the
averaging process. Such a route is an alternative to assessing the dof correlation via
COMAC.

3. CASE STUDY FOR CORRELATION: AUTOMOTIVE OIL PAN

The use of the correlation criteria of Section 2 will now be demonstrated in the case of
a practical engineering structure, a mild steel automotive oil pan. As shown in Fig. 1, four
di!erent FE models of increasing complexity, the so-called Levels 1}4, were generated using
4-node quadrilateral shell elements only (Table 1).

The natural frequencies obtained from the four models, together with the relative
deviation from the Level 4 model, are listed in Table 2.

3.1. QUANTIFICATION OF THE INITIAL CLOSENESS

To quantify the closeness of the Level 1}3 models to the Level 4 (reference) model, 18
Z direction response functions, computed at each of the 18 common nodes between the four
models, were generated for each model. Typical point FRF comparisons are given in Fig. 2.
In this format, it is di$cult to quantify the amount of agreement, though it is seen that there
is considerable improvement with increasing modelling detail. Furthermore, the FRF
comparison of Level 3 and 4 models indicates a good dynamic behaviour match for the
500}570 Hz frequency range.

The corresponding point LACs are plotted in Fig. 3 for the same three cases. The
previous two features, i.e. the general improvement with modelling detail and the emergence
of the 500}570 Hz frequency range as the best agreement window, can now be observed by
means of an objective numerical indicator, the LAC function.

The same comparison was carried in the spatial domain by computing the FRAC,
FAAC and averaged LAC criteria for each of the 18 common points between the
four models. The results, shown in Fig. 4, indicate a similar trend, namely the
numerical quanti"cation of the improved correlation with increasing modelling detail.
Also plotted in Fig. 4 is the better known dof correlation criterion, COMAC. For
the particular structure under study, the COMAC criterion is seen to be less sensitive
than the other criteria, though the poor agreement around dof 14 is detected by all four
methods.

To complete the assessment of the initial closeness, the two global criteria, the GSC and
GAC, are plotted in Fig. 5 for the same three cases. This particular comparison format is
perhaps the most useful one since the correlation information, which is displayed as



Figure 1. FE models of four levels with increasing mesh re"nement.

TABLE 1

Summary of discretisation levels

No. of No. of No. of
Level elements nodes dofs

1 212 188 1128
2 705 507 3042
3 1448 1042 6252
4 2380 1855 11130
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a function of frequency, contains contributions from all 18 common dofs. As before, the
overall improvement with increasing modelling detail, and the frequency ranges of
good/poor agreement, can clearly be seen from the two global correlation functions.



TABLE 2

Natural frequencies (Hz) predicted by Level 1}4 models and relative error (%) with respect
to the Level 4 model

Rel error Rel error Rel error
Level Re: Level Re: Level Re: Level

Mode 1 Level 4 2 Level 4 3 Level 4 4

1 261.7 7.9 275.3 13.6 249.3 2.8 242.4
2 316.0 10.3 306.3 6.9 290.5 1.4 286.6
3 462.3 15.1 454.8 13.2 417.0 3.9 401.6
4 470.1 3.4 510.9 12.4 466.6 2.6 454.5
5 663.9 16.6 612.5 7.6 581.9 2.2 569.4
6 729.7 15.6 638.8 8.3 645.1 2.2 631.2
7 792.7 9.3 807.0 11.3 744.1 2.6 725.3
8 817.2 7.6 860.2 13.3 779.6 2.7 759.0
4 968.3 20.5 904.1 12.5 822.7 2.3 803.8

Average
error * 11.8 * 11.0 * 2.5 *
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In summary, it is seen that the frequency}domain correlation functions provide a very
useful means of quantifying the initial closeness. Therefore, it can be speculated that they
can also be used for model-updating purposes by incorporating them into the objective
functions to be minimised. After some numerical experience, it should be possible to de"ne
general rules, giving minimum criteria values below which updating should not be attem-
pted. The fact that the same criteria are used for both correlation and updating should
facilitate such a route which should also yield better convergence properties. Such ideas will
be pursued in the next sections, though it is unlikely that general rules can be devised on the
strength of a single case study.

4. A CORRELATION-FUNCTION-BASED FORMULATION FOR MODEL UPDATING

4.1. DERIVATION OF THE OBJECTIVE FUNCTION

The correlation results of the previous section indicate that the global correlation
functions, GSC and GAC, are reliable indicators of model closeness. Therefore, it is now
proposed to formulate an updating algorithm that is based on these two functions. Both
functions depend on the structure's geometric and material properties, the so-called design
variables that will be denoted by u. The change in s

a
due to changes in the u parameters can

be written as:
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where u
k
is the frequency at which the GAC, s

a
, is de"ned. The aim is to modify the design

parameters u
i
in such a way that full correlation is obtained when:
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Figure 2. Comparison of measured and initially predicted point FRFs for various modelling levels.
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A similar expression can also be written for s
S
. Combining the equations for s

a
and s

S
, one

obtains a sensitivity-based updating formulation [19]
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Figure 3. Comparison of point LACs for various modelling levels 1 vs 4 (top), 2 vs 4 (middle) and 3 vs 4 (bottom).

146 C. ZANG E¹ A¸.
Equation (9) has a number of important features:

(i) Since the correlation functions can be formulated for any number of common dofs, the
size mismatch between the theoretical and experimental models is no longer a problem.

(ii) The size of the sensitivity matrix is the product of the number of correlation functions
(here 2) and the number of design parameters, p. To be able to solve for p independent
design parameters one must either de"ne more correlation functions, or write the
existing two functions at N

f
frequency points such that 2N

f
*p. The latter approach

will be adopted here by using several frequency points.
(iii) The simultaneous use of two such functions ensures numerical robustness. The "rst

criterion, s
S
, ensures a global compatibility between the mode shapes while the second

criterion, s
S
, re"nes the shape match by imposing an amplitude condition.

4.2. USE OF WEIGHTING MATRICES

In compact form, equation (9) can be written as

[S]M*uN"MeN, (10)



Figure 4. FRAC, FAAC, averaged LAC and COMAC computed for the 18 common points between the four
models.
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It is now possible to de"ne an objective function by using an extended weighted
least-squares approach:

J"M*uNT [=u][*uN#MENT[=f]MEN (11)

where MEN"MeN![S][*u], x=uy and x=fy being two diagonal weighting matrices.
A solution of equation (11) is given by Link [12]:
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Since the correlation functions are a measure of the closeness of the FE model and
measured data, they can also be used to de"ne the weighting matrix x=
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Figure 5. Global correlation functions GSC (upper plot) and GAC for various modelling levels.
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Such a de"nition will allow to allocate a higher weighting to those frequencies at which the
two models are better correlated. Perhaps more importantly, frequencies at which there is
little correlation are e!ectively removed because of the low s

a
and s

S
values. Following the
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approach by Link [12], the second weight matrix x=uy can be de"ned as:

[=u]"
E[=u]E

2
max(diag([wu])) C

C

[diag ([wu])

CD (14)

where

M=u]"[[S]T[=
f
][S]]~1.

4.3. CALCULATION OF CORRELATION COEFFICIENT SENSITIVITIES

We now need to calculate the partial derivatives of the two correlation functions with
respect to the design parameters. Using equation (3) one obtains:

Ls
s
(u)

Lu
"

LDMH
X
(u)NHMH

A
(u)ND2

Lu

MH
X
(u)NH MH

X
(u)NMH

A
(u)NHMH

A
(u)N

(MH
X
(u)NHMH

X
(u)N)2 (MH

A
(u)NHMH

A
(u)N)2

]
L(MH

X
(u)NHMH

X
(u)NMH

A
(u)NHMH

A
(u)N)

Lu
DMH

X
(u)NHMH

A
(u)ND2

(MH
X
(u)NHMH

X
(u)N)2 (MH

A
(u)NHMH

A
(u)N)2

(15a)

Ls
a
(u)

Lu
"2

LDMH
X
(u)NH MH

A
(u)ND

Lu

(MH
X
(u)NH MH

X
(u)N)#(MH

A
(u)NH MH

A
(u)N)

(MH
X
(u)NH MH

X
(u)N)#(MH

A
(u)NH MH

A
(u)N)

!2
L (MH

A
(u)NHMH

A
(u)N)

Lu

DMH
X
(u)NHMH

A
(u)ND2

(MH
X
(u)NHMH

X
(u)N)#(MH

A
(u)NHMH

A
(u)N)

. (15b)

Considering the real and imaginary parts of the response separately, equations (15) can be
written as:
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The partial derivatives of the global correlation functions have now been expressed in terms
of the partial derivatives of predicted frequency response functions. Two methods are
available for their evaluation:

Method 1. Starting from the identity [H
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where [Z
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A
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] is the dynamic sti!ness matrix.

In the case of simple "nite elements such as uniform beams, the derivatives of the
elemental mass and sti!ness matrices, [Me] and [Ke], can be obtained analytically.

For more advanced elements, the derivatives must be computed numerically by giving
the design parameter u a small increment h:
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The derivatives of the global mass and sti!ness matrices, [M
A
] and [K

A
], can then be

computed from those given in equation (18).

Method 2. If equation (9) needs to be evaluated at a small number of frequencies, Method 1
will be more e$cient in terms of computing time. On the other hand, if a large number of
frequency points are used, it is probably better to compute two eigensolutions for each
design parameter, one for the nominal value u, and the other at a value u#h. The
theoretical response function matrices [H

A
(u)] and [H

A
(u#h)] can then be computed via

modal summation. As before, the partial derivative with respect to u is then given by
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Numerical experience suggests that h must be chosen between 0.1 and 1%.
Irrespective of the method used, the partial derivatives L[H

A
]/Lu, L[M

A
]/Lu, L[K

A
]/Lu

must be re-computed at each iteration since the nominal value of the design parameter will
change at each iteration.
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5. UPDATING CASE STUDY

The example of Section 3 will again be used here to assess the performance of the
correlation criteria based updating algorithm. The ¸evel 3 model will be used as the initial
FE model and the simulated experimental data will be obtained from the ¸evel 4 model.
Because of the di!erent discretisation levels, there is no one-to-one correspondence between
the two models and no known errors are introduced to the initial FE model. The objective is
to correct a given FE model (here ¸evel 3 model) using a given set of vibration test data
(here obtained from the ¸evel 4 model) by assuming su$cient initial closeness between the
two models. The correlation between the two models has already been discussed in Section 3.
The 18 dofs that were used in the correlation computations will also be used in the updating
computations.

Here the choice of the design parameters is not obvious because the discrepancies
between the two models are not due to speci"c arti"cial errors that were deliberately placed
in the initial FE model. The updating frequency range, 200}2000 Hz, includes the "rst
9 modes of the structure. After some deliberation, the oil pan was subdivided into nine
regions, the element thicknesses of which were de"ned as the design parameters. The use of
one design parameter per vibration mode is a conservative &rule of thumb', the derivation of
which was guided by previous numerical experience. All available frequency data, here 601
spectral points per FRF, were used. The order of the sensitivity matrix is thus (2]601) by 9,
and the expected rank is 9. The algorithm was applied in an iterative fashion by solving
equation (9) several times by using the last computed values of the design parameters.
Convergence was obtained after 13 iterations and the variation of the nine design para-
meters with the iteration number is shown in Fig. 6. As can be seen from Fig. 6, there is
signi"cant variation during the initial iterations, though the parameters appear to have
converged to stable values after the 11th iteration. Also, the requested thickness changes are
observed to be within 8% of the nominal values.

The initially predicted, updated and target FRFs are plotted in Fig. 7. It is clearly seen
that the updated model is a distinct improvement over the initial one and the same
information is also conveyed in Table 3 where a natural frequency comparison is given. The
average relative error is reduced to 0.4% from 2.5%.

The values of the local amplitude criterion (LAC), computed before and after updating,
are plotted in Fig. 8. Similarly the global shape and amplitude criteria, GSC and GAC, are
plotted in Fig. 9. As expected, the quanti"cation of the model improvement by all three
Figure 6. Variation of design parameters with iteration number.



Figure 7. Initially predicted (darkest), updated (lightest) and target (** ) FRFs.

TABLE 3

Updated and measured natural frequencies (Hz) of the oil pan

Rel error Updated Rel error
Mode Target Level 3 (%) Level 3 (%)

1 242.4 249.3 2.8 240.0 !1.0
2 286.6 290.5 1.4 288.7 0.8
3 401.6 417.0 3.9 403.2 0.4
4 454.5 466.6 2.6 455.5 0.2
5 569.4 581.9 2.2 570.6 0.2
6 631.2 645.1 2.2 629.1 !0.3
7 725.3 744.1 2.6 725.4 0.0
8 759.0 779.6 2.7 759.9 0.1
9 803.8 822.7 2.3 806.1 0.3

Average error * * 2.5 * 0.4
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criteria is satisfactory. However, it can be observed that the global correlation functions,
especially GAC, exhibit a number of sudden drops around resonances. It is believed that the
inclusion of damping in the FE model and its selection as a design parameter is likely to
yield better results because it will then be possible to control and match the resonant
amplitudes.

6. CONCLUDING REMARKS

(i) Based on shape and amplitude matching, local and global frequency}domain model
correlation functions have been de"ned and used to quantify the initial model closeness.
The results show that all four criteria, FAAC, LSC, GSC and GAC, are reliable numerical
indicators of model correlation as a function of frequency, a feature which should help the



Figure 8. Local amplitude criterion (LAC) for 18 FRFs before and after updating; , before updating; , after
updating.

Figure 9. Global shape and amplitude criteria, GSC (upper plot) and GAC, before and after updating.
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analyst to make decisions about the usability/updatability of the model for a speci"c
frequency range.

(ii) The shape-based criteria are sensitive to mode shape di!erences but not to relative
scales while the amplitude-based criteria attempt to match actual response amplitudes and
hence they are sensitive to damping.

(iii) An updating algorithm has been devised using the sensitivity of the global correla-
tion functions with respect to the selected design parameters. Since the functions can be
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de"ned for any number of FRFs, the size incompatibility between the theoretical and
experimental models is no longer an obstacle. The shape- and amplitude-based functions
interact with each other during the updating procedure, a feature that is somewhat
analogous to predictor-corrector methods. Such a scheme has been found to be numerically
robust.

(iv) Further studies, not reported here, indicate that the updating algorithm is relatively
insensitive to noise. This is probably due to the fact that the updating equations can be
made signi"cantly over-determined by including all frequency-point information.

(v) Although the updating procedure is based on physically realisable design parameters
such as Young's modulus, density, element thickness, cross-section area, etc., updating
can only be done in a global sense by tuning these parameters since, in the general case,
there is no one-to-one correspondence between the theoretical and experimental models.
In other words, actual modelling de"ciencies are compensated by adjusting the selected
design parameters, rather than identifying and eliminating such errors. Indeed, the use of
physical design parameters vs non-dimensional multiplicative factors for FE model updat-
ing has been the subject of many debates. The results here seem to indicate that there is
probably not much di!erence between the two approaches since successful updating was
achieved by an arti"cial thickness adjustment, somewhat analogous to using a multiplica-
tive factor.
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