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Abstract
This paper proposes a framework for software-im-

plemented, adaptive fault tolerance in a real-time
context. It extends previous work in two main ways:
by including features that explicitly address the real-
time constraints; and by a flexible and adaptable con-
trol strategy for managing redundancy within appli-
cation software modules. This redundancy-manage-
ment design is introduced as an intermediate level be-
tween the system design (which may itself consist of
multiple levels of design) and the low-level, non-re-
dundant application code. Application designers can
specify fault tolerance strategies independently for
the individual application modules, including adap-
tive strategies that take into account available re-
sources, deadlines and observed faults. They can use
appropriate design notations to notify the scheduling
mechanisms about the relative importance of tasks,
their timing requirements and both their worst-case
and actual usage of resources. Run-time efficiency
can thus be improved while preserving a high degree
of predictability of execution.

1. Introduction

This paper deals with the use of software-implemented
fault tolerance in those real-time, fault-tolerant systems
where a designer wishes to obtain more run-time flexibil-
ity than afforded by static redundancy and scheduling,
while retaining the ability to depend on some guaranteed
minimum level of performance. The reasons for this
preference may include a highly variable application envi-
ronment, the wish to provide an extensive and adaptable
range of fault tolerance capabilities, and a high cost of
computing resources. Examples of such applications may

1 Work done while J. Stankovic was on sabbatical
leave from the Computer Science Dept., Univ. of
Massachussets, Amherst, U.S.A.

be autonomous robots and weapon systems, or air traffic
control.

Software-implemented fault tolerance typically in-
volves substituting the execution of a software module
with that of multiple modules, approximately imple-
menting the same function, and executed on different pro-
cessors and/or at different times. The management of er-
ror detection and treatment complicates both the tasks of
writing the applications and of scheduling their execu-
tions. Therefore, systems with hard real-time require-
ments are often implemented with static redundancy
(multiple copies of the software, producing a single re-
sult through either voting or self-checking and arbitra-
tion) and static scheduling. However, this approach is
limiting for several reasons:
1. in systems for complex, highly variable environ-

ments, static scheduling may not be the best way of
using the limited resources available and may be too
inflexible for adequate performance;

2. this is the costliest form of fault tolerance in terms of
resource consumption during fault-free operation;
adaptive schemes, with conditional execution of re-
dundant modules upon detection of errors, are cheaper
[3, 7, 13];

3. especially if redundancy is meant to tolerate not just
physical faults but design faults as well, the style of
redundancy employed should be tailored to the indi-
vidual application functions. So, the application de-
signer should have some freedom in the composition
of modules into redundant assemblies [19].

Dynamic scheduling has the general advantage of a
more efficient multiplexing of the usage of resources by
the various tasks in a system, exploiting the fact that the
tasks in execution usually require less than their worst-
case resource allotment, and/or that it is admissible for
some tasks to operate in a degraded mode in case of con-
gestion. With adaptive fault tolerance, the difference be-
tween average and worst-case resource requirements in-
creases, increasing the advantages of dynamic scheduling.
On the other hand, the execution time cost of dynamic



scheduling is higher than for static scheduling so for
tasks with very tight deadlines it may be necessary to use
static scheduling.

This paper proposes a framework for adaptive fault
tolerance in a real-time context. It extends previous work
in two main ways: one, by including features that explic-
itly address the real-time constraints; and two, by a flexi-
ble and adaptable control strategy for managing redun-
dancy within application software modules. Application
designers can independently specify fault tolerance strate-
gies for the individual application modules, including
adaptive strategies that take into account available re-
sources, task importance, deadlines and observed faults.
They can use appropriate design notations to notify the
scheduling mechanisms (both off-line and on-line) about
the relative importance of tasks, their timing require-
ments and both their worst-case and actual usage of re-
sources. Run-time efficiency can thus be improved while
preserving predictability2: hence this approach is suitable
for highly dependable systems. In particular, the run-time
support can reclaim those resources that the fault toler-
ance strategy, by necessity, leaves unused in all but the
worst-case fault conditions. The issues of minimum
guaranteed performance and of robustness in extreme fault
situations are addressed by the scheduling strategies using
the notifications provided by the application designer.

In the rest of this paper, Section 2 describes our sce-
nario of system development and execution. Section 3 de-
tails the syntax and semantics of our fault-tolerant real-
time structure (FERT). Section 4 deals with scheduling,
and Section 5 contains our conclusions.

2. The three-level framework

The design process of a real-time application typically
starts with the specification of the physical inputs and
outputs from/to the external world, a first specification of
the important functional blocks in the system and the
flow of data among them, and a first definition of timing
requirements (periods and deadlines of tasks, response
times of event-response chains). This top-level functional
design ignores the issue of software redundancy.

To manage redundancy, we introduce an intermediate
level of design decomposition inside the functional
blocks, and above the application code. Redundancy is
added inside the individual functional blocks, using a
general scheme called FERT (Fault tolerant Entity for

2 Predictability is a complex term. See [18]. A simple
definition usable in this paper is the ability to
reliably determine whether an activity or set of
activities will meet their requirements, in particular,
deadlines.

Real Time). This effectively hides from the designer
(both when doing the top-level algorithmic design and
when designing the application code) the problem of
managing redundancy. A FERT includes application
modules (both the "functional" ones, which typically
implement the black-box function of the FERT if the
possibility of faults is not considered, and the adjudica-
tion modules, like voters) and a control part, which spec-
ifies the interactions of the application modules among
themselves and with the scheduling support.

The finished design includes three levels of functional
decomposition (which must be consistent):
1.  at the bottom, the code of the Application Modules

(AMs). The AMs are the actual schedulable sequential
tasks, seen by the run-time support; they execute in
separate address spaces, both for protection and be-
cause they are often required to run on separate pro-
cessors;

2. at an intermediate level, the descriptions of the
FERTs, each including a set of AMs and a Control
Part;

3. the top, system-level design, specifying:

a) the FERTs with their interactions: the indications
of which message each FERT execution instance
may send to each other FERT execution instance;
these represent the "functional" design of the ap-
plication and are used by the compiler to build the
executable code and the appropriate dynamic bind-
ing information for message exchange; they also
indicate some desired timing properties (e.g., a
FERT producing a message should be scheduled
before the FERT consuming it);

b) indication of which FERTs are 'critical' in that
their execution must be guaranteed off-line;

c) basic timing requirements: the periods of execu-
tion for periodic FERTs, the triggering events and
minimum interval between executions for sporadic
ones, and the deadlines of each execution;

d) a specification of mode changes, where each mode
is described by a different combination of informa-
tion in a) and b) above.

In proposing design notations, we do not mean that an
entirely new programming language is needed.  The con-
cepts and notations we propose are somewhat independent
of the programming and design description language used
and we see no reason why they should not be imple-
mented using an existing (programming or system de-
sign) language, with the application designer using either
directly [a subset of] the language, or a macro language
resembling our notation.   In choosing such languages
(and of course the in-the-small programming language
could be used for system description as well) it is of
course necessary to ensure consistency: for instance,



mappings must be defined between the constructs
through which the programmer of an AM specifies
communication with the rest of the system, the con-
structs through which the FERT control notation speci-
fies such interactions, and the inter-FERT communica-
tion primitives seen in the design description language.
So, whenever possible we do not make any hypothesis
about the language details (inter-process communication
semantics, or structuring principles like objects, pro-
cesses or data flow).  In the next section, to show in
more detail how FERTs can be realised, we assume mes-
sage-based communication, but it will be apparent that
the FERT concept could be used with different languages
and design styles.

Using the design and a description of the hardware, a
static tool creates a reserved (but flexible) schedule that
guarantees the minimum level of performance required
under worst-case assumptions on the AM execution
times and the fault conditions (within the fault assump-
tions specified by the designer, e.g. maximum number of
processor failures per time frame). If this step fails, the
designer has to change the specifications or add hardware
resources.

At run time, a multi-level scheduling approach is
used, that includes guaranteed on-time dispatching of re-
served minimum performance, a planner that can arrange
for execution of dynamic executions beyond the mini-
mum reserved, and a resource reclaiming algorithm to
reuse as much as possible of the time not used by re-
served tasks (this "slack" time is produced either by (i)
AMs finishing earlier than their worst case execution
time, (ii) FERTs terminating with success without need-
ing all the redundant executions planned for in the worst-
case fault hypotheses, or (iii) slack time already existing
in the static minimum-performance schedule.

Each FERT typically allows more than one strategy,
with different execution costs (e.g., triple vs. quadruple
redundancy, or normal execution vs. execution of a min-
imal exception handler), to account for possible lack of
resources at run-time. To decide between alternative pos-
sible schedules, the off-line and on-line algorithms at-
tempt to maximise a utility function for the schedules
they build. To this goal, the application designer has to
specify an importance value for each FERT execution.
We shall see later how this is inherited by the individual
AM executions and how it can be modified under pro-
gram control.

It is thus possible for the application designer to spec-
ify general directives for scheduling, rather than individ-
ual decision rules for the huge number of decisions in-
volved in scheduling. The system (both off-line tools and
run-time support) is then responsible for attempting op-
timisation. The word "attempting" is necessary because

actual optimisation may be too complex even for an off-
line algorithm, and the possibility of recomputing sched-
ules at run-time is of course even more limited.
However, for this design approach to make sense for de-
pendable real-time computing, a requirement must be sat-
isfied that the run-time scheduler behaves "no worse"
than the off-line one. This requirement can be satisfied
for instance by encoding the off-line minimum schedule
into a table where a dynamic scheduler guarantees the
minimum schedule and attempts to maximise use of the
time slots that are not allocated a priori.

When considering real-time and dependability issues, it
is impossible to avoid assumptions on the computing
platform used. However, a practical design notation
should not be restricted to any specific run-time platform
(hardware and kernel). Our scenario assumes a run-time
platform able to guarantee some basic run-time pre-
dictability and protection: it must be able to 'stipulate'
and 'honour' 'contracts' for timely execution. Global sys-
tem-wide management and optimisation are performed
obeying the hints given by the application designer, and
limited to the capabilities of the individual platform.
Within these constraints, different platforms can be used,
leading to different levels of performance for a given ap-
plication, but all guaranteeing predictable execution. The
platform should also generally guarantee a clean failure
semantics for the run-time support in the presence of
hardware faults, including a global time base and inter-
process communication, and watchdog timers guarantee-
ing that tasks do not exceed their allotted execution time.

3. FERT specification language

3 . 1 . Control plus application modules
The structure of a FERT is depicted in Figure 1. The

Control component, interacting with the real-time kernel,
specifies the interactions between the Application
Modules (AMs) and between the FERT and its environ-
ment. Typically, the control part would describe a fault
tolerance strategy employing the AMs, e.g. multiple ver-
sion programming, recovery blocks, SCOP [3] or other
more ad hoc designs needed for a specific FERT. This
novel approach allows the designer to specify several
alternative fault tolerance policies, taking into account
the run-time state of the system and the availability of
resources, including time.

The FERT designer considers Application Modules as
basic components with procedure-like interfaces. The
FERT's interfaces with the rest of the system through
unidirectional (input or output) ports. These may be of
different types which account for the types of the data ex-
changed, size of associated queues, failure semantics and



message ordering disciplines. Port types and routines for
communication management are defined in libraries
available to the FERT designer. Ports may also carry
control information. Control output ports are used
to signal self-estimates on the service provided by the
FERT, or to propagate control information to other
FERTs. Control input ports contain the actual
'control' parameters which constrain individual executions
of FERTs. They help the designer express decisions on
how to use the resources available at any given instant.
Two control input ports are defined for all FERTs, carry-
ing the deadline and importance of the required service; a
designer may decide to have additional control informa-
tion passed to the FERT through user-specified input
ports.

AM1

CONTROL

Interfaces

AMn

portportportport

.  .  .  .  .  .  .   .  .  .

Figure 1. Figure 1. Structure of a FERT.

The input ports for the deadline and importance param-
eters have special semantics: if no control parameters are
supplied through them, the deadline and importance asso-
ciated to a FERT at execution time default to those speci-
fied in the design phase, and input primitives return these
default values. So, control information is always avail-
able at control input interfaces, and the designer does not
need to distinguish whether default values, or those pro-
vided by some other FERT, are used in a given execu-
tion. Constraints are also enforced on the values which
can be sent through these control ports, to limit the run-
time authority of FERTs on the control parameters of
other FERTs, in accordance with global policies. The
importance of a task for the system is expressed with two
items of information, the 'gain' (VALUE) obtained
through a correct execution and the 'loss' (PENALTY)
incurred by missing this correct execution. Both VALUE
and PENALTY appear at the FERT control interface,
while, inside the FERT, the control uses just one value:
positive, representing a gain, or negative, representing a
loss for the system.

The designer of the FERT sees the Control component
as an algorithm, which manages the available redundancy

by interacting with the underlying machine for real-time
management. It specifies a set of possible alternative
strategies. At run time, it asks the real-time kernel which
strategies can be supported. If the kernel issues a
'guarantee' for a certain strategy, it means that it is able
to schedule the AMs involved in that strategy, so that
they finish before its deadline. Then the control chooses
one among the supported strategies, and controls the exe-
cution of the AMs necessary for that strategy, taking ap-
propriate decisions on the basis of the observed errors. In
practice we do not plan to have this algorithm compiled
as executable application code; rather, it is compiled to a
table used at run time by the real-time kernel supporting
the FERT's execution.

3 . 2 . Control language
Our FERT control notation uses four special primi-

tives (POSSIBLE, EXEC, UNUSED, OUTPUT). The
control algorithm has the structure of an Alternative
Guarded command (in CSP style [6]). Each guarded
command corresponds to one of several alternative
strategies devised by the designer, and exactly one
strategy must be selected and executed at FERT activa-
tion. Each strategy has its own control parameters (value
and deadline), assigned by the designer to represent the
service quality obtainable by using that strategy; if exe-
cuted, all its AMs have to terminate execution by the
same deadline, and the gain or loss for the system is de-
fined for the entire strategy. The value and deadline for a
strategy may be specified as functions of the FERT's
VALUE, PENALTY and deadline. Obvious constraints
are: i) the deadline cannot be later than the deadline of the
whole FERT; ii) the value cannot be greater than the
VALUE associated to the whole FERT, nor lower than
the PENALTY. A negative value means that the execu-
tion of that strategy represents a loss for the system. The
values and deadlines of the strategies allow the real-time
kernel to make trade-offs between the request of different
FERTs, trying to optimise the total value of a schedule.

Guards are based on a schedulability condition of the
AMs necessary for the corresponding strategy, expressed
by the primitive POSSIBLE:
[ POSSIBLE (s1p, ATs1, s1b, ATs1, s2, ATs2)

with Highvalue by Deadline --> Strategy 1

[] POSSIBLE (s1p, ATs1, s1b, ATs1) with

Mediumvalue by Deadline --> Strategy 2

[] POSSIBLE (s1p, ATs1, s2, ATs2) with

Lowvalue by Deadline --> Strategy 3

[] POSSIBLE (..) with Lowestvalue by Deadline

--> Strategy 4 ]

The parameters of the function POSSIBLE may spec-
ify precedence constraints: (AM1, AM2)  specifies sequen-
tial ordering, while (AM1 || AM2)  does not impose any



order between AM1 and AM2. By calling POSSIBLE,
the Control asks the planner part of the real-time kernel
to accommodate for the complete execution of the listed
AMs before the specified deadline. Subject to the prece-
dence constraints specified by the separators, plus those
implied by the code of the AMs, the planner tries to
build such a schedule, considering both the value associ-
ated to each strategy of the FERT and the fact that it
must accommodate one of the strategies of the FERT. If
this attempt is successful the function POSSIBLE re-
turns TRUE. The POSSIBLE function with the empty
parameter list, in the last line of the example, always
evaluates to TRUE: the corresponding strategy must be
limited to sending a failure message, if the time neces-
sary can be accounted for in the dispatching of the FERT,
and it naturally has the lowest value among all the
strategies.

In the specification of a strategy, the designer uses:
- EXEC (List of AMs (actual parameters)) to request

the execution of the listed AMs, and provide the ac-
tual parameters for the execution of each AM. Each
actual parameter may be: i) a data item from an input
port of the FERT; ii) a reference to an input port; iii)
an output from the execution of another AM; or iv) a
constant. The outputs of an AM can be used as input
parameters for other AMs, or output of the whole
FERT. EXEC(s1p (Datain), ATs1 (s1p.O)),

e.g., first requests the execution of the AM s1p  with
the actual parameter taken from the input data port
Datain , and then the execution of the acceptance test
ATs1 on s1p.O .

- UNUSED (List of AMs) to notify the resource-re-
claiming part of the real-time kernel that the control
has decided not to execute some AMs whose execu-
tion had previously been planned. This notification
should be performed as soon as the control decides not
to execute some scheduled AM. Take, as an example,
strategy 1 in Figure 3. If, after EXEC(s1p (Datain),

ATs1 (s1p.O)) , the acceptance test ATs1 shows that
the execution of the primary s1p has been correct,
the control decides that the strategy has been success-
ful and the backup s1b and the acceptance test ATs1

do not need to be executed. This is specified by
UNUSED (s1b, ATs1) . Depending on the kind of
real-time kernel, this information can be useful or
completely ignored. Still, our notation allows the de-
signer to signal to the real-time kernel that it can re-
claim resources (processors etc.), conservatively allo-
cated to components that then end up not being exe-
cuted, and give these resources to other components,
thus improving the overall performance of the sys-
tem. The resources seen by the control designer are
simply the AMs of the FERT, rather than the actual

run-time resources (processor, locks, files, etc.)
needed by the AMs. The underlying kernel takes care
of reclaiming these resources.

- OUTPUT ({Value, Port}) to commit the execution of
a strategy, and hence of the FERT, writing the FERT
results to the output ports. Values can be constants,
decided by the control itself, or the results available
from any AM executed. In OUTPUT (< s1p.O,

Result>,<Success, Control_O>)  the control is
writing the output O of s1p to the FERT output port
Result and the constant Success to the port
Control_O .

3.3. Example FERT
We now show an example of a FERT meant to

demonstrate (1) adaptability, (2) flexibility, (3) how the
strategies are a function of real-time constraints, and (4)
time-constrained run-time behaviour. In this example, the
computation is divided into two parts, following the im-
precise computation model. The first sub computation re-
leases an approximate result and the second, starting from
the approximate result, improves its precision.
Moreover, to improve reliability, a primary and a backup
variants, s1p  and s1b , have been defined for the first
stage, together with acceptance tests for the two stages,
ATs1 and ATs2. The example is shown in Figures 2 and
3.

As seen in Fig. 3, the first strategy is the most com-
plete one, exploiting all the redundancy available. If the
system is not able to support it, the choice is between
the second strategy, which is more conservative, produc-
ing only an approximate result but with a higher proba-
bility than the third, and the third strategy which possi-
bly produces a precise result but may also lead more eas-
ily to complete failure. If the system can not support any
execution, the fourth strategy simply signals the failure
of the FERT. Given the set of AMs in the FERT, many
strategies can be designed. It is the designer's business to
select meaningful ones according to the fault semantics
he chooses for his FERTs.

4. Support for Scheduling

It is necessary to integrate the off-line scheduling deci-
sions with the dynamic operation of the system in a
manner such that the off-line guarantees are not violated
at run time, and such that the system maximises its ef-
fectiveness beyond the minimum guaranteed part.



FERT IC_RB
Data input: Datain: Type1; Data output: Result: Type2;
Control input: Deadline: time, Value: integer, Penalty: integer;
Control output: Control_O: {Success, Failure, Exception1};
AM s1p (input : I: Type1, output: O: Type2); MaxExT = 10, Resources=......., Prec =....;

<s1p body>; (* the first stage primary *)
AM s1b (input : I: Type1, output: O: Type2); MaxExT = 12, Resources=......., Prec =....;

<s1b body>; (* the first stage backup *)
AM ATs1 (input: Altres: Type2, output: Judgement: {Success, Failure});

MaxExT = 3, Resources=......., Prec =....;  <ATs1 body>; (* the first stage AT *)
AM s2 (input : I: Type2, output: O: Type2); MaxExT = 10, Resources=......., Prec =....;
 <s2 body>; (* the second stage *)
AM ATs2 (input: Altres: Type2, output: Judgement: {Success, Failure});

MaxExT = 3, Resources=......., Prec =....;  <ATs2 body>; (* the second stage AT *)

Figure 2. FERT  header.

Control:
[ POSSIBLE (s1p, ATs1, s1b, ATs1, s2, ATs2) with Highvalue by Deadline --> Strategy1
[] POSSIBLE (s1p, ATs1, s1b, ATs1) with Mediumvalue by Deadline  --> Strategy2
[] POSSIBLE (s1p, ATs1, s2, ATs2) with Lowvalue by Deadline   --> Strategy3
[] POSSIBLE (..) with Lowestvalue by Deadline --> Strategy 4 ]
Strategy 1:
Begin
EXEC(s1p(Datain), ATs1(s1p.O)); If ATs1.Judgement = Success

then Begin UNUSED (s1b, ATs1)
EXEC(s2(s1p.O), ATs2(s2.O))
If ATs2.Judgement = Success  then OUTPUT (<s2.O, Result>, <ATs2.Judgement, Control_O>);

else OUTPUT (<s1p.O, Result>, <Exception1, Control_O>);
end

else begin EXEC(s1b(Datain), ATs1(s1b.O)); If ATs1.Judgement = Success
then Begin EXEC(s2(s1b.O),ATs2(s2.O))
   If ATs2.Judgement = Success  then OUTPUT (<s2.O, Result>, <ATs2.Judgement, Control_O>);
   else  OUTPUT (<s1b.O, Result>, <Exception1, Control_O>);
    end
else  Begin OUTPUT (<Failure, Control_O>); UNUSED ( s2, ATs2); End
end

end
Strategy 2:
Begin
EXEC(s1p(Datain), ATs1(s1p.O)); If ATs1.Judgement = Success

then Begin UNUSED (s1b, ATs1) OUTPUT (<s1p.O, Result>, <Exception1, Control_O>); end
else begin EXEC(s1b(Datain), ATs1(s1b.O));

If ATs1.Judgement = Success then  OUTPUT (<s1b.O, Result>, <Exception1, Control_O>);
else  OUTPUT (<Failure, Control_O>);

end
end
Strategy 3:
Begin
EXEC(s1p(Datain), ATs1(s1p.O)); If ATs1.Judgement = Success

then Begin
EXEC(s2(s1p.O), ATs2(s2.O))
If ATs2.Judgement = Success then OUTPUT (<s2.O, Result>, <ATs2.Judgement, Control_O>);

else OUTPUT (<s1p.O, Result>, <Exception1, Control_O>);
end

else Begin OUTPUT (<Failure, Control_O>); UNUSED ( s2, ATs2); end
end
Strategy 4:
Begin  OUTPUT (<Failure, Control_O>); end

Figure 3. FERT: specification of strategies.



4 . 1 Off-line Guarantee Algorithm
Off-line support is necessary to create a priori guaran-

tees that the minimum performance and reliability of the
system are achieved. This may be accomplished in a
number of ways. Here we briefly discuss one way to ac-
complish this task using a form of reservation of flexible
time slots.

The off-line algorithm works with the following as-
sumptions:
-  a specification language describes the timing and

fault behaviour of modules on an individual basis as
well as other module requirements such as precedence
constraints and general resource requirements;

- a system-level specification details the minimum
level of guaranteed performance and reliability re-
quired;

- the workload requirements are specified, and
- some knowledge of the runtime algorithms and envi-

ronment is utilised.
The environment information includes the hardware re-

sources available and a distributed, real-time, fault toler-
ant system kernel that has (i) a global time base, (ii) run-
time data structures that contain the flexibility and adapt-
ability requirements of the application, (iii) predictable
primitives, (iv) run time scheduling support, and (v) a
basic guarantee paradigm which uses on-line planning.

The off-line guarantee algorithm takes as input all the
information listed above and attempts to find a feasible
allocation and schedule for the modules that are part of
the minimum guaranteed requirements, as well as ac-
counting for other requirements in order to obtain good
performance beyond the minimum. In particular, the in-
teraction between the FERT specifications and the off-
line algorithm is as follows. FERTs are typed as being
critical or non-critical. All critical FERTs are guaranteed
by the off-line scheduling algorithm. In many cases the
critical FERTs will have a single strategy defined and
therefore this is what must be guaranteed.  If more than
one strategy is defined for a critical FERT, then the min-
imum strategy is a priori guaranteed by the off-line algo-
rithm, and at run time, if it is possible, a more compre-
hensive and valuable strategy may be dynamically guar-
anteed each time the FERT executes.  Non-critical
FERTs are dynamically guaranteed using the options
specified in the FERT, but some overall time and re-
source availability  may be guaranteed for all non-critical
FERTs.

Since this algorithm executes off-line and for the criti-
cal tasks, significant compute time can and should be de-
voted to this problem. If the heuristic is having difficulty
in producing feasible allocations and schedules, the de-
signer can choose to add resources to the system or mod-

ify requirements and re-run the algorithm. The output is a
flexible time table with earliest and latest scheduled start
times, and finish times for all the critical tasks and their
minimum redundant copies and/or voters, and idle inter-
vals. This table is used in a flexible way by the 3 on-line
algorithms described in the next subsection.

Various heuristics for static allocation and scheduling
exist in the literature [8, 15, 21]. We base the discussion
of what is required in a new heuristic on a set of
extensions to the heuristic found in [15]. That heuristic
is able to schedule complex periodic tasks in distributed
systems. It handles periodic time constraints, worst case
execution time, general resource needs, precedence
constraints, communicating tasks, and replication
requirements. The communicating tasks, when allocated
across nodes of the distributed system, are scheduled in
conjunction with a time-slotted subnet. The algorithm as
it now exists has been implemented and evaluated by
simulation. Further, extensions to the algorithm have
been developed which attempt to balance load and spread
out (in time) scheduled tasks to avoid clustered computa-
tion time which could cause long latency. In other words,
some results have been developed which account for the
dynamic operation of the system when performing the
static allocation and scheduling off-line.

For our purposes, the current algorithm must be en-
hanced in the following ways:
- considering aperiodic tasks with minimum guaran-

tees,
- enhancing the fault semantics to include those sup-

ported by FERTs,
- accounting for the dynamics in a more sophisticated

manner including creating a window for each stati-
cally guaranteed task composed of an earliest start
time, latest start time and deadline,

- addressing tasks of different importance, and
- addressing mode changes.

All of these changes can be made to the current algo-
rithm. The algorithm should be part of an interactive tool
that aids the designer in the off-line design and analysis.

4 . 2 On-line Scheduling Support
The on-line scheduling support includes dispatching,

resource reclaiming, and planning, all cooperating to
provide adaptability, robustness, and predictability, where
predictability includes meeting performance and fault
handling requirements. Here we show that predictable
dispatching and resource reclaiming have largely been
solved, but that significant problems still exist with
planning.

4 . 2 . 1 Dispatching
It is possible to develop off-line scheduling analysis

and algorithms that produce a table where each guaranteed



task (a task is a dispatchable entity and may be part of a
FERT) has a window in which to execute (given by an
earliest and latest start time). The dispatcher is a simple
(execution time bounded) mechanism that knows how to
deal with such a time table. The computed execution
time for all tasks in the system includes dispatching and
resource reclaiming costs, so when a task completes there
is always time to see if resources can be reclaimed and to
dispatch the next task. The dispatcher may wait (or idle)
if no task is ready, e.g., because the next task is a peri-
odic task whose arrival time has not yet been achieved.
Dispatch lists are on a per processor basis so that there is
no locking overhead if N processors attempt to dispatch
simultaneously. In summary, what is required is a pre-
dictable dispatching for multiprocessors where resource
reclaiming is possible. Such a dispatching mechanism
exists in the Spring kernel [17] and only requires simple
updates to handle flexible starting times.

4 . 2 . 2 Resource Reclaiming
To support both predictability and flexibility, on-line

dynamic planning is used. When plans are dynamically
created the schedules are constructed using worst case ex-
ecution times and shared data and resource requirements.
The purpose of resource reclaiming is to collect previ-
ously reserved time (in all resources) that is no longer
needed for various reasons such as: a task has completed
before its worst case execution time, redundant copies of
a computation are no longer needed, a mode change
deleted the need for certain tasks, etc. The time collected
appears as idle time in the table and can be used by the
dispatcher in moving computations forward (some care is
needed here, to avoid various anomalies [16]), or by the
planner in either (1) scheduling newly arriving work, or
(2) reinstating additional redundancy that possibly could
not be utilised prior to this point in time. For a given
system, not all these options need to be exercised, e.g.,
in many systems point (2) may not be practical for
implementation.

The basic resource reclaiming required for adaptive
fault tolerance has already been developed, implemented,
and evaluated [16], again in the Spring kernel. The
implementation achieves good performance with low and
bounded implementation costs with a key property being
that anomalies are prevented when reclaiming resources
(time).

4 . 2 . 3 Planning
The planning algorithm runs in parallel with applica-

tion processes. It uses the a priori generated flexible time
table (that accounts for all resources, not just the CPU)
to insert newly invoked work (above the minimum re-
served). If newly invoked work can be placed in the table,
then the work is dynamically guaranteed, else various ac-
tions are taken based on the current policy. The planner

also uses the on-line descriptions of the fault behaviour
of the active FERTs, compiled from their control com-
ponents. For example, suppose a certain FERT is in-
voked, and the planner identifies the preferred strategy as
requiring a primary and 2 backups to be scheduled prior
to the deadline, all on different nodes. If the planner can
find open intervals for this requirement, in time, then
that strategy is dynamically guaranteed. If not, the plan-
ner applies the designer-specified action, e.g., the infor-
mation associated with this FERT might indicate just to
abort the FERT, or alternatively it might indicate that a
strategy consisting of a simple error handler with no re-
dundancy should be scheduled. The planner for a given
system must be sufficiently powerful to support the level
of adaptability of fault semantics specified by the de-
signer, and, in general, planners on different nodes must
cooperate to find feasible task assignments to time slots,
including subnet time slots. A key problem is making
the planner fast enough (and bounded) to be usable in
many systems. For example, the cost of distributed plan-
ning may be reduced by using a scheduling chip [4] and
replicated global memory based on ScramNet such as in
the SpringNet system. These architectural features should
expand the application domain of applicability of
adaptive fault tolerance.

5. Discussion

Many real-time applications require a high degree of
fault tolerance. Software-implemented fault tolerance of-
fers advantages in terms of flexibility of error treatment
and effectiveness against design faults. However, it is
surprising that very few papers explicitly address real-
time scheduling to meet timing and fault tolerance re-
quirements. These include [2, 9, 10]. These papers are
valuable for highly static, embedded computer systems
where fault tolerance is extremely important and deadlines
are very tight. In such cases, guaranteeing primary and
contingency schedules as in [9, 10] is paramount.
Integrating solutions such as these into environments
where more flexible responses might be required is a key
research problem. For example, the static schedules found
in these solutions can only handle preconceived types of
failures and may catastrophically fail under some
unexpected failure, overloads, or correlated failures. In
dynamic environments, the solutions should if possible
adapt to current system conditions and gracefully degrade
under unexpected events. It is also important to note that
these referenced papers assume that the entire task
completes, in effect, producing a correct value at the end
of the computation. This may often be too restrictive.

The topic of flexible and adaptive fault tolerance has
been addressed by a few authors. The need to allow per-



module specification of software redundancy has been
recognised often (for instance, in the Delta-4 system [14]:
extensions to include design diversity are discussed in
[5]). [19] argues the usefulness of flexible schemes of
software fault tolerance, besides the straightforward N-
version programming and recovery block schemes;
instances of such schemes have begun to appear in the
literature (e.g., [20]). A notation for structuring software
with different forms of software fault tolerance is
proposed in [13]: this is less general than ours in that the
"control" part has to be chosen among a few permitted
kinds. In [1], the application programmer is supposed to
provide the diverse software modules used for software
fault tolerance, and directives to static tools which create
a "recovery meta-program": the latter manages module
execution, including state savings and rollback, through
appropriate kernel calls. This scheme allows the pro-
grammer to employ software fault tolerance without
strong restrictions on the structure of the application
program. However, real-time issues are not considered.
Adaptive schemes that allow run-time decisions about the
degree and form of redundancy are in [11, 12] and [3]. In
the latter, the designer can control the execution time by
setting the maximum allowable number of execution
"rounds", but no mechanism is provided for the
translation between rounds of computation and execution
time.

No one has previously studied the combination of: i)
different redundant schemes in different run-time modules;
ii) adaptivity of redundancy management to the available
resources, and iii) interaction between strategies local to
each module and system-level optimisation, so as to al-
low a departure from completely static design, which
may be too inflexible and too costly for demanding ap-
plication environments.

This paper has presented a general framework and a
specific notation, called FERT, for real-time, adaptive,
software fault tolerance. Its novelty consists in addressing
jointly the three requirements above, by including a flex-
ible control strategy for error handling and explicit fea-
tures addressing the real-time constraints. The designers
of the FERTs have great freedom in specifying redundant
execution strategies. By specifying alternative strategies,
and using the POSSIBLE, EXEC, UNUSED, and
OUTPUT primitives, they can interact with the on-line
and off-line scheduling policies to select strategies, and
control their execution, adapting to the actual load and
fault situations. The scheduler may thus manage the
available resources, seeking an optimal usage subject to
the requirements of the application designers.

The application designers can use the flexible nota-
tions for masking most errors inside the FERTs.  The re-
quirements on the run-time support are meant to ensure a

consistent, simple semantics of the notation used in de-
signing a FERT.  All types of hardware faults to be tol-
erated are visible at the FERT level as consistent (non-
"Byzantine") value, timing or omission errors of the
AMs, as are software faults inside the AMs themselves.
So, the designers can use the FERTs as fault contain-
ment units, masking hardware faults via the distribution
of the AMs, and application software faults via a strategy
appropriate for the semantics of the AMs.  At a higher
level in the design, FERTs can therefore be treated as be-
ing fault-free or having clean failure semantics.  Last,
fault treatment via reconfiguration (for long mission
times with delayed repair) can be attained using mode
changes.

In this paper, we have restricted ourselves to the non-
recursive use of FERTs. Although technical problems
have to be solved, we have shown the feasibility of the
approach.  Alternatively one could use an expanded, re-
cursively composable FERT notation as the only design
language for whole complex systems.  This seems an at-
tractive way of structuring large, complex systems allow-
ing the designer at each level of decomposition to address
both "functional" and "redundancy management" aspects
of the design.  However, such a fully recursive approach
integrated with predictable and flexible real-time schedul-
ing is far from being achievable at the current state of the
art. Two major problems would have to be faced and
solved. The first is the need for a dynamic planner with
the ability to perform planning with bounded delay and a
short actual absolute run time. The second problem is a
matter of convenience. Since guarantees imply
pessimism, even having such a bounded-delay planner,
the schedules produced would often be useless.  The
pessimistic estimates would be propagated through the
recursive composition tree and the schedule would include
all the worst-case resource requirements.  Therefore in
many situations no schedule would be found, and in the
others the utilisation of reserved resources would be
unaffordably low.

We have argued the practicality of these design con-
cepts by showing that the scheduling mechanisms that
are needed to exploit their potential are feasible through
extensions to existing methods and algorithms. It is still
necessary to fully develop the extensions and to demon-
strate their cost-effectiveness for real applications.  To
demonstrate effectiveness we need to consider many is-
sues including co-ordinated scheduling across nodes in a
distributed system, integration with proper hardware sup-
port, and a possible relaxation of the notion of guarantee
(when acceptable) in order to improve overall perfor-
mance.  Developing good metrics that adequately repre-
sent the flexible and adaptable properties of the system is
also required.
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