
0018-9162/97/$10.00 © 1997 IEEE December 1997 63

Th
em

e
Fe

at
ur

e Compilers for
Instruction-Level
Parallelism

I
nstruction-level parallelism allows a sequence of
instructions derived from a sequential program to
be parallelized for execution on multiple pipelined
functional units. If industry acceptance is a mea-
sure of importance, ILP has blossomed. It now

profoundly influences the design of almost all leading-
edge microprocessors and their compilers. Yet the
development of ILP is far from complete, as research
continues to find better ways to use more hardware
parallelism over a broader class of applications.

WHY ILP?
With ever-increasing clock speeds, leading-edge

microprocessors are approaching technological limits
to processor cycle time. Using ILP improves perfor-
mance and exploits the additional chip area provided
by rapidly increasing chip density.

ILP’s key advantage is that it exploits parallelism
without requiring the programmer to rewrite existing
applications. ILP’s success is due to its ability to over-
lap the execution of individual operations without
explicit synchronization. A wealth of opportunities to
parallelize programs exist at the fine-grained opera-
tion level.

ILP’s automatic nature is attractive because it works
with current software programs. Despite the rise of
novel computer architectures, such as multiprocessors,
today’s applications are still programmed sequentially,
and many will never be rewritten. Sequential perfor-
mance has enormous economic value, which has
broadly stimulated commercial interest in ILP.

In a hardware-centric implementation, ILP on a
superscalar processor executes a sequential instruction
stream. Hardware dynamically detects opportunities
for parallel execution and schedules operations to
exploit available resources. ILP in a software-centric
approach employs a very long instruction word
(VLIW) processor and relies on a compiler to statically
parallelize and schedule code. Such a partitioning sim-

plifies the hardware. (For a short discussion of hard-
ware architectures, see the “Architectures and ILP”
sidebar.)

As chip densities increase, ILP techniques that were
previously of use only on supercomputers and mini-
supercomputers are now broadly applicable to inex-
pensive and general-purpose computers. Yet exploiting
ILP across a diverse set of performance-critical appli-
cations will require renewed emphasis on the role of
the compiler.

CURRENT ROLE OF ILP COMPILERS
ILP compilers enhance performance by customizing

application code to a target processor. Compilers use
global knowledge of the application program not read-
ily available to a hardware interpreter as well as a
description of the target machine architecture to guide
the machine-specific optimizations. Compiler-per-
formed static optimization and scheduling eliminates
the complex processing needed to parallelize code,
which the hardware would otherwise perform during
execution.

ILP compilation is now increasingly important
across low- to high-end products as well as general-
and special-purpose applications. Compiler techniques
originally developed for more specialized products
such as minisupercomputers now find more broad use
in general-purpose workstations.1,2 Newly designed
embedded processors by Philips, Texas Instruments,
and others provide performance using ILP compiler
techniques. These uses show that ILP compiler
research has already had some commercial success.

ILP compilers originally targeted high performance
for loop-oriented scientific applications in which par-
allelism was abundant and easily recognized. These
compilers use trace scheduling or software pipelining
to accelerate a broad class of loops with greater effi-
ciency than earlier vector processors.3,4 For ILP com-
pilers to have a broad impact, however, they must

Discovering and exploiting instruction-level parallelism in code will be key
to future increases in microprocessor performance. What technical
challenges must compiler writers meet to better use ILP?

Michael
Schlansker
Hewlett-
Packard
Laboratories

Thomas M.
Conte
North Carolina
State University

James
Dehnert
Silicon Graphics

Kemal Ebcioglu
IBM T.J. Watson
Research Center

Jesse Z. Fang
Intel Corp.

Carol L.
Thompson
Hewlett-
Packard
Laboratories

.

.

64 Computer

accelerate the nonlooping scalar codes prevalent in
most applications. Although trace and superblock
scheduling have been successfully used to exploit par-
allelism in scalar programs,3,5 research in this area is
far from complete.

Optimization criteria
ILP compilation presents technical challenges not

addressed in traditional compilers.
Traditional compilers minimize the number of exe-

cuted operations in a program by eliminating redun-
dancy and selecting efficient sequences of operations.
On a sequential RISC processor, this effectively min-
imizes program runtime.

For ILP processors, decreasing the number of exe-
cuted operations isn’t necessarily the key to reducing
runtime. ILP compilers often use techniques that
increase performance but do not decrease operation
count. In fact, ILP compilers often employ techniques
that increase performance but require executing addi-
tional operations.

ILP compilers use a processor model to minimize
the number of cycles needed to execute an operation
sequence. The processor model allows static opti-
mization for hardware that has visibly exposed par-
allelism. This means that hardware parallelism is

exposed to the compiler so that it can evaluate the cost
and benefits of candidate ILP transformations. The
model must be similar enough to the target hardware
so that optimization for it produces high-quality code
for the target processor.

To produce high-quality code, machine models
reveal details of the actual processor implementation,
such as the number and types of functional units, func-
tional-unit latencies, and other parameters.

Statistical compilation
An important strategy employed by ILP compilers

is the use of statistical information to predict the out-
come of conditional branches and improve program
optimization and scheduling.

Traditional compilers optimize and schedule code
without making assumptions about likely control flow
paths. Instead, optimization is performed as if all
branches are equally likely and only one basic block
is scheduled at a time. However, typical programs pro-
vide only a small number of operations and a small
amount of parallelism within each basic block. Thus,
achieved levels of parallelism when blocks are sched-
uled one at a time are very disappointing.

ILP scheduling techniques use branch statistics to
enhance the performance of frequently taken paths or

Architectures and ILP
Researchers have discussed the use of ILP to accelerate perfor-

mance for more than 20 years.1 Early work addressed the problems
of compiling for scientific computers. Machines such as the Floating
Point Systems array processor, the Multiflow, and Cydrome all
offered substantial amounts of ILP. Each required compiler advances
to broadly use parallelism on existing applications.

Superscalar processors
The most visible ILP processors are general-purpose proces-

sors, for which superscalar technology is the current design of
choice. Several modern superscalar processors, which currently
issue about four operations per cycle,2-5 demonstrate the success
of this type of design.

The superscalar processor’s dynamic-scheduling capability is
especially important for operations with variable latency, such as
a load operation with potential cache miss. Superscalar processors
also provide object code compatibility, which allows existing
applications to run on new machines without recompiling. Object
code compatibility is critical to many users who upgrade hard-
ware running applications that are not easily recompiled.

VLIW processors
A key benefit of very large instruction word architectures is their

ability to support large amounts of hardware parallelism with rel-
atively simple control logic. While VLIW processors have been
built that issued as many as 28 operations per cycle,6 superscalars
have not yet demonstrated such high levels of parallelism. Yet
applications that require only modest parallelism may not justify
the cost of superscalar hardware, as in the embedded-computing
marketplace. In this arena, processors accelerate highly concur-
rent applications (such as digital signal processing) at low cost.
Thus several processors for embedded computing incorporate

VLIW technology. Examples of these are the Philips TriMedia,
Texas Instruments TMS320C62xx, and Chromatic MPACT.

Common problems
From the perspective of ILP compilers, the architectural debate

is irrelevant. Whether for a superscalar processor or VLIW proces-
sor, compilers can analyze the program to expose parallelism,
transform the program to enhance parallelism, and schedule the
program to exploit parallelism. No matter the architecture, per-
formance is greatly influenced by the quality of the compiler’s gen-
erated code. In compilers for any of these processors, the trend is
toward the use of a detailed target processor description to achieve
the best performance.

References
1. B.R. Rau and J.A. Fisher, “Instruction-Level Parallel Processing:

History, Overview and Perspective,” J. Supercomputing, Vol. 7,
No.1/2, 1993, pp. 9-50.

2. D. Papworth, “Tuning the Pentium Pro Microarchitecture,” IEEE
Micro, Apr. 1996, pp. 8-15.

3. K.C. Yeager, “The Mips R10000 Superscalar Microprocessor,”
IEEE Micro, Apr. 1996, pp. 28-40.

4. M. Tremblay and J.M. O’Connor, “UltraSparc I: A Four-Issue
Processor Supporting Multimedia,” IEEE Micro, Apr. 1996, pp.
42-50.

5. D.A. Dunn and W.C. Hsu, “Instruction Scheduling for the HP PA-
8000,” Proc. 29th Ann. IEEE/ACM Int’l Symp. on Microarchi-
tecture, IEEE CS Press, Los Alamitos, Calif., 1996, pp. 298-307.

6. P.G. Lowney et al., “The Multiflow Trace Scheduling Compiler,”
J. Supercomputing, Vol. 7, No.1/2, 1993, pp. 51-142.

.

December 1997 65

traces through the program. Performance improves
despite the potential expense of longer execution times
for infrequent paths, as often happens with trace
scheduling. Branch profile information gathered from
sample runs assists in trace formation by providing
accurate information about the likely flow of control.

Traditional optimizers also made no assumptions
about the likelihood of program branches. An ILP
compiler can place higher priority on computations
with results that are likely to be used, while de-empha-
sizing those with results less likely to be used. Code
produced in this manner often executes fewer opera-
tions than that produced by classical optimization.

Statistical information about the location of
operands in cache, the probability of a memory alias,
or even the likelihood that an operand has a specific
value may all be important to future ILP compilers.

PROMISING AREAS OF RESEARCH
ILP compiler techniques are evolving from a scien-

tific-computing technology into a broadly useful scalar
technology. However, many obstacles inhibit the effi-
cient use of hardware parallelism in scalar applica-
tions, for which

• branches occur frequently and may not be easily
predicted,

• programs are often large and may not spend their
execution cycles in small local regions, and

• programs often use pointers to reference complex
data structures.

In addition, a compiler must exploit scalar parallelism
while addressing trade-offs that require complex
heuristics. Beneficial techniques can generate detri-
mental side effects such as unnecessary computation,
increased use of registers, and increased code size.
However, the rewards for proper use of ILP techniques
are substantial performance gains.

ILP represents a paradigm shift that redefines the
traditional field of compilation. The rate at which
novel technology flows into ILP compilers remains
disappointingly low, and several areas of research
deserve more attention.

Increasing hardware parallelism
The increasing density of very large scale integra-

tion has enabled processor designs that incorporate
more functional units. Current designs also attempt
to aggressively use more of these units to provide
increased hardware parallelism. Companies typically
introduce hardware parallelism in high-end products
first, then gradually introduce it into lower priced
products as chip costs decrease. Thus, technologies
once used only in supercomputers or minisupercom-
puters have become appropriate for workstations,

desktops, and finally even low-priced products for
embedded systems.

The trend toward increasing hardware parallelism
manifests itself in two forms. First, the number of
functional units increases as the chip area per func-
tional unit decreases. Second, as clock speeds increase,
there is a trend toward deeply pipelined functional
units. Most visible in memory reference units, this lat-
ter trend will soon lead to inexpensive computers that
have memory-access latencies similar to those of the
supercomputers of a few years ago. As the discrep-
ancy between processor clock speed and memory
access time increases, memory pipeline latencies are
increased to allow one or more memory ports to exe-
cute a single reference every cycle.

The number of operations “in flight” (those issued
but not yet completed) measures the amount of par-
allelism the compiler must provide to keep an ILP
processor busy. Using operations in flight as a mea-
sure accounts for both the number and latency of func-
tional units. Early RISC processors, for example, had
at most one or two operations in flight. The current
trend is toward processors that have 10 to 100 oper-
ations in flight. As we scale up the amount of hard-
ware parallelism, compilers take on increasingly
complex responsibilities to ensure efficient use of hard-
ware resources. Techniques that are inappropriate or
of little consequence for sequential or modestly par-
allel processors become critically important with
higher levels of hardware parallelism.

Dynamic compilation
Traditional ILP focuses on static compilation, which

targets a specific processor architecture. Static com-
pilers often tune code to a single implementation of
that architecture or even a specific configuration of
system memory. Obtaining optimum performance
thus requires compiling applications for each specific
system configuration. This complicates sales, support,
and networked distribution of software.

Dynamic compilation transparently customizes an
executable file during execution. It can use informa-
tion collected from the application data set, the sys-
tem software configuration, target processor details,
or any other information not known when the soft-
ware was distributed. Dynamic compilation can opti-
mize an executable file for distinct implementations
of a single architecture or translate it to run on an
entirely new architecture.

Popular programming languages and their environ-
ments are also evolving. One key trend is toward object-
oriented programming and the use of virtual method
calls, which makes it more difficult for a static compiler
to exploit parallelism. The increased use of dynamically
linked libraries preclude inlining or other techniques
that statically and jointly optimize user and library

The number
of operations
“in flight”
(those issued
but not yet
completed)
measure the
amount of
parallelism
the compiler
must provide
to keep an
ILP processor
busy.

.

.

66 Computer

code. Dynamic compilation can use information
acquired during execution to overcome these obstacles.

Research in dynamic compilation represents a spec-
trum in which one extreme performs compilation
when the program is loaded. The other extreme per-
forms compilation just before execution of a small
region of a program. Dynamic compilation is in its
infancy, and researchers are still addressing basic ques-
tions about how to best use the technique and its
potential capabilities.

Program analysis
Program analysis, especially memory reference

analysis, is vital to the performance of code generated
by ILP compilers. Improved memory reference analy-
sis provides several key benefits.

• Eliminating unnecessary dependences among
memory references exposes more parallelism in
the program graph and improves program sched-
ules.

• The ability to recognize references to a common
memory location enables optimizations such as load
and store elimination, improving code quality.

• The ability to differentiate large and small data
structures enables code generation techniques that
better manage the use of the cache hierarchy.

These and other memory optimizations are especially
critical because of the long memory latencies and lim-
ited memory bandwidth inherent in modern ILP
processors.

Consider the problem of accurately determining
dependences among memory reference operations.
When memory locations are referenced using pointers,
ILP compilers often conservatively assume that point-
ers might alias or point to the same location when, in
fact, they cannot. The compiler inserts dependences
between memory references to ensure correctness. On
ILP processors, this sequentialization of memory ref-
erences often degrades the quality of program sched-
ules by a factor of two or more and greatly reduces
performance. Analysis techniques that delivered sat-
isfactory results on earlier sequential processors may
produce poor results on ILP processors.

We need improved techniques to enhance both the
accuracy and the efficiency of memory reference analy-
sis. This problem is especially difficult in languages
like C that allow pointers to be passed as parameters
to procedures. In this case, inspecting only a single
procedure cannot identify relationships among point-
ers within a procedure. Analysis techniques must ana-
lyze more than one procedure or possibly even an
entire application. Performing analysis jointly over
large amounts of code can be unacceptably slow and
consume too much memory. Compiler writers must

then limit the scope of the analysis and make conser-
vative assumptions to limit compile time and the com-
plexity of the analysis. Analysis accuracy and
application performance often suffer as a result.

Program transformation
Traditional optimizations minimize total operation

count, which, for sequential processors, optimizes pro-
gram performance. Optimizing for ILP processors is
not so easy. ILP compilers use a program graph (to rep-
resent application parallelism) and a machine model
(to represent hardware parallelism) to find fine-grained
parallelism. This is an explicit representation of pro-
gram and hardware parallelism. It allows the com-
piler to transform and schedule the program to
achieve a minimum number of execution cycles on
the machine model.

Researchers have developed many nontraditional
transformations that support ILP. These include
expression reassociation, loop unrolling, tail duplica-
tion, register renaming, and procedure inlining. These
transformations are examples of techniques that pre-
viously received little attention because they provide
no substantial benefit in traditional optimization for
sequential execution. Further research could improve
these transformations as well as identify other trans-
formations to support ILP.

Critical paths thread through both data and control
(branch) dependences within a program. The length
of a critical path through the program graph limits
achievable performance. For these reasons, a scalar
application may not initially provide enough paral-
lelism to fully use an ILP processor. However, tech-
niques are being developed that enhance the amount
of available scalar parallelism.6

Interprocedural transformations are important
because procedure-call boundaries present critical bot-
tlenecks to ILP performance. Transformations such
as procedure inlining produce complex trade-offs
because they both improve the program’s schedule but
also increase code size. When and how to best imple-
ment procedure inlining in general is not well under-
stood, and exciting opportunities exist for partial
inlining and interprocedural optimization. These tech-
niques do not inline entire procedures but instead
inline the code segments from a procedure that pro-
vide the greatest performance improvement.

ILP scheduling
To achieve high performance, ILP compilers must

jointly schedule multiple basic blocks. Schedulers typ-
ically operate either on entire procedures or on pro-
gram regions excerpted from a procedure. Regions
may also include code taken from multiple procedures
due to inlining or other interprocedural code trans-
formations. Common types of region include the

Dynamic
compilation
is in its
infancy, and
researchers
are still
addressing
basic
questions
about how
to best
use the
technique
and its
potential
capabilities.

.

.

December 1997 67

trace, superblock, and innermost loop. Each type
favors some control flow paths through the program
at the expense of others.

The formation of scheduling regions and schedul-
ing are best performed using control flow statistics.
While control flow in looping codes is relatively easy
to predict, control flow in scalar programs often is not.
Branch profile information provides an important tool
for predicting control flow for scalar programs.7 The
use of trace or superblock scheduling is most applica-
ble when branch profile data is available, profiles are
stable from one data set to another, and frequent
branches are biased—often either repeatedly taken or
repeatedly not taken. This allows a branch to be stat-
ically predicted as either taken or not taken. When pro-
file statistics are unavailable or branches are balanced
(taken at about the same frequency as not taken), inac-
curate static branch prediction can lead to premature
exit from scheduling regions and poor performance.

Branch profiles are gathered using sample input
data to execute instrumented program runs. We can
eliminate this unpopular step by using compile time
analysis to predict branch profiles. Compile time pre-
diction alone can be improved but may never match
the accuracy of sample runs.

An alternate solution might be to develop larger and
more general types of regions. It is possible to gener-
alize the linear control flow required by traces and
superblocks to support scheduling of nonlinear pro-
gram regions. Global schedulers, for instance, move
code over larger components of a program such as
entire procedures.8 Since such schedulers are not lim-
ited to any specific type of region, they may provide
more performance when confronted with difficult-to-
predict control flow. However, global schedulers must
carefully balance execution performance and compi-
lation speed. Algorithmic efficiency is critical when
schedulers process large amounts of code with arbi-
trary program structure. Global schedulers are also at
risk of speculatively executing too many operations
from paths that are, in fact, never executed.

ILP schedulers address complex trade-offs using
heuristics based on approximations needed to achieve
acceptable compilation speed. Because these approx-
imations simplify complex problems, they sometimes
yield inefficient results. For instance, schedulers may
speculate too aggressively, introducing excessive and
redundant computation. Scheduling and register allo-
cation interact in a complex manner that can intro-
duce too much register spill code. Code size can also
be exaggerated when code is prepared for scheduling
using loop unrolling, tail duplication, or procedure
inlining. The scheduler may also directly add too
much code in the form of compensation code, which
glues together adjacent regions. We need techniques
to better balance these complex trade-offs.

Although superscalar architectures use hardware to
schedule operations dynamically, their performance
often depends on the compiler-specified, static opera-
tion schedule. Such schedules are sometimes difficult to
identify and may not effectively account for the com-
plex interaction between compile time and runtime
scheduling. The interaction between the two is not well
understood for complex superscalar architectures.

Software pipelining is an effective scheduling tech-
nique for accelerating loops, but it can have costly lim-
itations in important situations. For instance, having
too many conditionals within a loop may either pre-
clude the use of software pipelining or yield inefficient
code. In addition, software pipelines traditionally
complete iterations at a rate independent of the path
taken through the loop, which unduly penalizes short
paths. Advanced software pipelining techniques may
alleviate these deficiencies.

Architectural support
The evaluation of real-application performance is

far more difficult than evaluating segments or kernels,
for which handcoding machine instructions might suf-
fice. That is why compilers are the only way to evalu-
ate an architecture’s performance on real applications.

Novel architectures. To assess new architectures,
compilers must incorporate proposed architectural
features. Speculation, for example, has long been used
to enhance ILP performance by allowing compile time
movement of code across basic-block boundaries.
Using speculation or other forms of code motion in
the presence of exception processing and debugging
presents difficult compiler challenges. Exception pro-
cessing and debugging often reveal the effects of code
transformations that should have transparently accel-
erated code. Processing an exception or returning
control to the debugger exposes results inconsistent
with the sequential view of the program.

To alleviate this problem, new ILP architectures
provide hardware support for speculative execu-
tion.9,10 Such hardware support mechanisms tag data
to differentiate legitimate and erroneous data. The
hardware allows the speculative movement of code at
compile time while presenting the illusion of sequen-
tial program execution. Compilers may need to gen-
erate complex recovery code to preserve this illusion.

Predicated execution has been introduced to ILP
architectures to enhance performance of difficult-to-
predict branches.4,9,11 Predication can also be used to
accelerate code containing sequences of dependent
branches.6 Although a few RISC architectures now
partially support predication, predicated-execution
research is far from complete.

Exploiting a high degree of parallelism also requires
highly concurrent register access, yet it is difficult to
provide fast, parallel, and global access to a single reg-

To achieve
high
performance,
ILP
compilers
must jointly
schedule
multiple
basic blocks.

.

.

68 Computer

ister file. So some processor architectures may incor-
porate distributed register files that restrict access to
provide more parallel register access with simpler
hardware. This requires additional compiler capabil-
ities to distribute operands across multiple register
files. Although the Multiflow processor and compiler
use distributed register files for a limited class of appli-
cations,3 further research is needed to facilitate the
broad use of distributed register files.

Compilers will also help evaluate advanced super-
scalar architectures that seek to implement higher lev-
els of parallelism while retaining the benefits of
dynamic scheduling in hardware.

Advanced memory architectures. Memory refer-
ences present especially important challenges for ILP
because of the severe penalties associated with mem-
ory latencies and cache misses. These effects are very
costly in applications that manipulate large data sets.
Innovation in both compilers and memory architec-
tures could alleviate these effects.

Memory load operations may have either short
latencies to access small data sets (those that fit into the
cache) or put up with longer latencies when they
access large data sets. For static scheduling, a com-
piler needs to differentiate these loads. Prefetch is one
technique to assist an ILP processor in overlapping
long-latency memory references that miss in the cache.
This technique decomposes a long-latency load oper-
ation into a long-latency cache-line prefetch followed
by a short-latency load operation.

Another approach improves the program’s ability
to control the data flow through the cache hierarchy
by targeting memory references to specific cache lev-
els.9 Compilers must now analyze data references to
anticipate the flow of operands through the cache hier-
archy and generate code that more efficiently uses the
available cache.

Data speculation uses additional hardware to
improve the amount of ILP in the presence of poten-
tially aliasing pointers.9,12 When an alias is possible but
unlikely, data speculation allows a load and subsequent
uses of its result to move upward across a previous
store, which improves the operation schedule. The load
operation may now yield an incorrect result because
of its adjusted position in the schedule. Hardware
detects when an alias occurs, and a correct result is cal-
culated after completion of any stores that might alias.

Existing architectures. Architectures that weren’t
designed for ILP can still incorporate some ILP tech-
niques. For example, a compiler can schedule an oper-
ation speculatively on an existing architecture if it can
preclude the introduction of an exception. We can
adapt several ILP techniques to provide utility on
existing processor architectures.

The introduction of multimedia operations into gen-
eral-purpose architectures creates important compiler

challenges. Many of today’s general-purpose proces-
sors incorporate multimedia extensions. Multimedia
operations support SIMD-like parallelism by packing
multiple narrow operands into a single, wide data
word. This wide word performs up to eight narrow
operations at once. If general-purpose programs are
to use these extensions, we must develop new compiler
technology that exploits multimedia operations when
general-purpose programs operate on narrow data.

Techniques to reduce compile time
Compiler complexity escalates with new hardware

features and more complex compiler strategies for
improving performance. This often results in long
compile times that are unattractive in the marketplace.
To alleviate this problem, an ILP compiler must pro-
vide a software architecture that partitions applica-
tions into regions of manageable size. It also must
incorporate a variety of analyses and optimization
modules that operate on these regions. Careful appli-
cation partitioning and better algorithms for analysis
and optimization of regions can speed compilation.13

Language evolution
Even when applications have sufficient parallelism,

the compiler is often unable to exploit it because of
obstacles imposed by the programming language.
Popular languages like C and C++, for instance, have
yet to evolve and assist in parallelization; they now
often inhibit ILP use. As ILP becomes increasingly
important, language support may improve, given the
effect of previous hardware advances on programming
languages. For example, the introduction of vector and
multiprocessor architectures has profoundly affected
scientific programming; Fortran evolved to better sup-
port both vectorization and parallel processing.

A variety of ILP-friendly enhancements to existing
languages and application development methodolo-
gies could improve the performance of future systems.
The use of branch profile data is one such enhance-
ment. Its acceptance in measuring performance with
SPEC benchmarks indicates a growing industry accep-
tance of ILP. Another enhancement, compiler direc-
tives, can substantially enhance ILP performance for
languages like C. In the future, applications may be
tuned for ILP execution using directives much like
those previously used in tuning C for supercomputers.

Exception-processing protocols define roles for sys-
tem and user-provided exception handlers. Such pro-
tocols can erect huge barriers to ILP performance,
almost requiring the sequential execution of all oper-
ations. Hopefully, the desire for additional perfor-
mance will stimulate system developers to adopt
exception-processing protocols that support ILP.

Almost all ILP research has studied performance for
Fortran and C. Such research has yet to consider newer

A variety of
ILP-friendly
enhancements
to existing
languages
and
application
development
methodologies
could
improve the
performance
of future
systems.

.

.

December 1997 69

languages such as C++ and Java. Future work needs
to define appropriate languages and environments for
ILP as well as quantify relationships between languages
and delivered performance. To be of practical value,
language enhancements must minimize any departure
from popular programming practice.

W e expect ILP to provide benefits to an increas-
ing number of products by using inexpensive
hardware parallelism to improve perfor-

mance. To do so, future processors will rely increas-
ingly on important ILP compiler work that addresses
complex issues not yet fully understood.

To advance, ILP compilers will require an enormous
research effort, much like the one that drove vector
compilers to today’s relatively mature status. Thus far,
however, ILP has yet to receive a similar investment,
even though it presents what may be even more com-
plex technical challenges.

ILP research also requires a substantial software
infrastructure—a prototype compiler, a processor sim-
ulator, and other tools. Although costly to develop, a
number of ILP compilers exist both in academia and
in industry, and we are just entering an era when
processors supporting ILP are generally available. ❖

References
1. R.L. Lee, A.Y. Kwok, and F.A. Briggs, “The Floating

Point Performance of a Superscalar SPARC Processor,”
Proc. Fourth Int’l Conf. Architectural Support for Pro-
gramming Languages and Operating Systems, ACM
Press, New York, 1991, pp. 28-37.

2. J. Ruttenberg et al., “Software Pipelining Showdown:
Optimal vs. Heuristic Methods in a Production Com-
piler,” Proc. Programming Language Design and Imple-
mentation, ACM Press, New York, 1996, pp. 1-11.

3. P.G. Lowney et al., “The Multiflow Trace Scheduling
Compiler,” J. Supercomputing, Vol. 7, No. 1/2, 1993,
pp. 51-142.

4. J.C. Dehnert and R.A. Towle, “Compiling for the Cydra
5,” J. Supercomputing, Vol. 7, No. 1/2, 1993, pp. 181-227.

5. W.W. Hwu et al., “The Superblock: An Effective Technique
for VLIW and Superscalar Compilation,” J. Supercomput-
ing, Vol. 7, No. 1/2, 1993, pp. 229-248.

6. M. Schlansker and V. Kathail, “Critical Path Reduction
for Scalar Programs,” Proc. 28th Ann. Symp. Micro-
architecture, IEEE CS Press, Los Alamitos, Calif., 1995,
pp. 57-69.

7. J.A. Fisher and S.M. Freudenberger, “Predicting Conditional
Branches From Previous Runs of a Program,” Proc. Archi-
tectural Support for Programming Languages and Operat-
ing Systems, ACM Press, New York, 1992, pp. 85-95.

8. S.-M. Moon and K. Ebcioglu, “An Efficient Resource-
Constrained Global Scheduling Technique for Super-
scalar and VLIW Processors,” Proc. 25th Int’l Symp.

Microarchitecture, IEEE CS Press, Los Alamitos, Calif.,
1992, pp. 55-71.

9. V. Kathail, M.S. Schlansker, and B.R. Rau, HPL Play-
Doh Architecture Specification: Version 1.0, Tech.
Report HPL-93-80, Hewlett-Packard Laboratories, Palo
Alto, Calif., 1993.

10. G.M. Silberman and K. Ebcioglu, “An Architectural
Framework for Supporting Heterogeneous Instruction-
Set Architectures,” Computer, June 1993, pp. 39-56.

11. S.A. Mahlke et al., “Effective Compiler Support for Predi-
cated Execution Using the Hyperblock,” Proc. 25th Ann. Int’l
Symp. Microarchitecture, IEEE CS Press, Los Alamitos, Calif.,
1992, pp. 45-54.

12. D.M. Gallagher et al., “Dynamic Memory Disambigua-
tion Using the Memory Conflict Buffer,” Proc. Architec-
tural Support for Programming Languages and Operating
Systems, ACM Press, New York, 1994, pp. 183-193.

13. R.E. Hank, W.W. Hwu, and B.R. Rau, “Region-Based
Compilation: Introduction, Motivation, and Initial
Experience,” Int’l J. Parallel Programming, Vol. 25, No.
2, 1997, pp. 113-146.

Michael Schlansker is a department scientist at
Hewlett-Packard Laboratories. His research interests
include computer architecture, compilers, and embed-
ded systems design. Schlansker received a PhD from
the University of Michigan, Ann Arbor. He is a mem-
ber of the IEEE Computer Society and ACM.

Thomas M. Conte’s biography appears on p. 37.

Jim Dehnert is a principal engineer in compiler devel-
opment at Silicon Graphics Inc. His research interests
include code generation and scheduling, software
pipelining, register allocation, and optimization.
Dehnert has a PhD in applied mathematics from the
University of California at Berkeley.

Kemal Ebcioglu is manager of the High Performance
VLSI Architectures group at IBM T.J. Watson Research
Center. Ebcioglu received a PhD in computer science
from the State University of New York at Buffalo.

Jesse Z. Fang’s biography appears on p. 69.

Carol L. Thompson is an optimizer architect at
Hewlett-Packard’s Computer Language Operation.
Her interests include computer architecture as well as
optimization techniques for instruction level paral-
lelism. She received her masters degree in computer
science from the University of California at Berkeley.

Contact Michael Schlansker at Hewlett-Packard Lab-
oratories, Bldg. 3L-5, 1501 Page Mill Rd., Palo Alto,
CA 94304; schlansk@hplmss.hpl.hp.com.

.

