
A Unified Codesign Run-time Environment for

the UltraSONIC Reconfigurable Computer

Theerayod Wiangtong1, Peter Y. K. Cheung1, and Wayne Luk2

1 Department of Electrical & Electronic Engineering,
Imperial College, London, UK

{tw1, p.cheung}@imperial.ac.uk
2 Department of Computing,Imperial College, London, UK

wl@imperial.ac.uk

Abstract. This paper presents a codesign environment for the Ultra-
SONIC reconfigurable computing platform which is designed specifically
for real-time video applications. A codesign environment with automatic
partitioning and scheduling between a host microprocessor and a number
of reconfigurable processors is described. A unified runtime environment
for both hardware and software tasks under the control of a task man-
ager is proposed. The practicality of our system is demonstrated with an
FFT application.

1 Introduction

Reconfigurable hardware has received increasing attention from the research
community in the last decade. FPGA-based designs become popular because of
their reconfigurable capability and short design-time which the old design style,
like ASICs, cannot offer. Instead of using FPGAs simply as ASICs replacements,
combining reconfigurable hardware with conventional microprocessors in a code-
sign system provides an even more flexible and powerful approach for implement-
ing computation intensive applications, and this type of codesign system is our
attention in this paper.

The major concerns in the design process for such codesign system are the
synchronization and the integration of the hardware and the software design
[1]. Examples are the partitioning between hardware and software, the schedul-
ing of tasks and the communication between hardware and software tasks in
order to achieve the shortest overall runtime. Decision on partitioning plays a
major role in the overall system performance and cost. Scheduling is important
to complete all the tasks in a real-time environment. These decisions are based
heavily on design experience and are difficult to automate. Many design tools
leave this burden to the designer by providing semi-auto interactive design en-
vironments. Fully automatic design approach for codesign system is generally
considered to be impossible at present. In addition, traditional implementation
employs a hardware model that is very different from that used in software.
These distinctive views of hardware and software tasks can cause problem in the

design process. For example, swapping tasks between hardware and software can
result in a totally new structure in the control circuit.

This paper reports a new method of constructing and handling tasks in a
codesign system. We structure both hardware and software tasks in an inter-
changeable way without sacrificing the benefit of concurrency found in conven-
tional hardware implementations. At the same time, the hardware task model
exploits the advantages of modularity, scalability, cohesion and structured ap-
proach offered by software tasks. We further present a codesign flow containing
the partitioning and scheduling algorithms to automate the decision process of
where and when tasks are implemented and run. Our codesign system using this
unified hardware/software task model is applied to a reconfigurable computer
system known as UltraSONIC [14]. Finally we demonstrate the practicality of
our system by implementing an FFT computational engine. The novel contri-
butions of this paper are: 1) a unified way of structuring and modelling hard-
ware and software tasks in a codesign system; 2) proposing a codesign flow for
a system with mixed programmable hardware and microprocessor resource; 3)
propose a run-time task manager design to exploit the unified model of tasks;
4) the demonstration of implementing a real application by using our model in
the UltraSONIC reconfigurable platform.

The rest of this paper is organized as follows. Section 2 presents some of
work related to codesign development systems. In section 3, we explain how the
hardware and software tasks are modelled in our codesign system. Section 4
describes the codesign flow and environments of the UltraSONIC system used
as the realistic target. A case study of implementing the FFT algorithm on the
UltraSONIC system is discussed in section 5. Section 6 concludes this paper.

2 Related Work

There are many approaches to hardware/software codesign. Most focus on some
particular stages in the design process such as system specification and mod-
elling, partitioning and scheduling, compilation, system co-verification, cosimu-
lation, and code generator for hardware and software interfacing. For example,
Ptolemy [2] concentrates on hardware-software co-simulation and system mod-
elling. Chinook [5] focuses on the synthesis of hardware and software interface.
MUSIC [6], a multi-language design tools between SDL and MATLAB, is applied
to mechatronic system. For embedded systems, CASTLE [7] and COSYMA [8]
design environments are developed.

Codesign system specifically targeted for reconfigurable systems are PAM-
Blox [4] and DEFACTO [3]. PAM-Blox is a design environment focusing on
hardware synthesis to support PCI Pamette board that consists of five XC4000
Xilinx FPGAs. This design framework does not provide a complete codesign
process. DEFACTO is an end-to-end design environment for developing applica-
tions mapped to configurable platform consists of FPGAs and a general-purpose
microprocessor. DEFACTO concentrates on raising the level of abstraction to
a higher level, and develop the parallelizing compiler technique to achieve opti-

mizations on loop transformations and memory accesses. Although both PAM-
Blox and DEFACTO are developed specifically for reconfigurable platforms, they
take no account of the existence of tasks in microprocessor. Consequentially, nei-
ther system is suitable for hardware/software codesign.

In this work, tasks can interchangeably be implemented in software or re-
configurable hardware resources. We suggest a novel way for task modelling and
task management which will be described in details in the next section. We also
present a novel idea of building infrastructure for dataflow-based applications
implementing on this type of codesign system consisting of a single software re-
source (in the form of a microprocessor) and multiple reconfigurable hardware.
Our approach is inherently modular and is suitable for implementing runtime
reconfigurable designs.

3 System Architecture

Fig. 1 shows the hardware/software system model adopted in this work. We
assume the use of a single processor (software) resource SW capable of multi-
tasking, and a number of concurrent hardware processing elements PE0 to PEn,
which are implemented on FPGAs. We employ a loosely coupled model with
each processing element (PE) having its own single local memory. All system
constraints such as shared resource conflicts, reconfiguration times (of the FP-
GAs) and communication times are all taken into account.

 Local Communication Channel
task

0

task
5

task
12

Mem

Mem

task
1

task
4

task
3

Task
manager
program

Global Communication Channel

PE0 PE1 PEnSW

Mem

task
2

task
9

task
7

Mem

task
10

task
8

task
controller
& memory
interface

task
10

task
8

Reconfig

Fig. 1. Codesign System Architecture

The assumptions used in our model are: 1) tasks implemented in each hard-
ware PE are coarse grain tasks which may consist of one or more functional tasks
(blocks, loops). 2) Each PE has one local memory, only one task can access the
local memory at any given time. Therefore multiple tasks residing in a given
PE must execute sequentially; however, tasks residing across different PEs can
execute concurrently. 3) Tasks for a PE may be dynamically swapped in and out

through dynamic reconfiguration. 4) A global communication channel is avail-
able for the processor and the PEs to communicate with each other. 5) Local
communication channels are available for neighboring PEs to communicate with
each other in a pipeline ring.

Because of the reconfigurable capability of the hardware, we can build the
hardware tasks very much like software tasks. In this way, the management of
task scheduling, task swapping and task allocation can be done in a unified
manner, no matter whether the task in question is implemented in hardware
or in software. Concurrency is not affected as long as we map concurrent tasks
onto separate PEs. Although conceptually different PEs are separate from each
other, multiple PEs may be implemented on a single FPGA device.

3.1 Hardware Task Model

UltraSONIC is a reconfigurable computer system designed specifically for real-
time video processing applications. In such an application domain, it is rea-
sonable to assume that applications are dominated by dataflow behavior with
few control flow constructs[12]. Algorithms can be broken down into tasks in
coarse (or functional) granularity and are represented as a directed acyclic graph
(DAG). Nodes in the graph represent tasks and edges represent data dependency
between tasks. Each task is characterized by its execution time, resource occu-
pied, and its communication cost with other tasks.

The tasks we implement on our system are assumed to conform the following
restrictions:

– Tasks in the DAG are processed (once for each task) from top to bottom
according to their precedence levels and priorities.

– Communication between tasks is always through local single-port memory.
– Task execution is done in three consecutive steps: read input data, process

the data, and write the results. This is done repeatedly until input data
stored in memory are all processed. Thus the communication time between
memory and task while executing is considered to be a part of the task
execution time [11].

– Exactly one task in a given PE is active at any one time. This is a direct
consequence of the single port memory restriction. However, multiple tasks
may run concurrently provided that they are mapped to different PEs. This
is an improvement over the model proposed by others in [9].

– A task starts executing as soon as all the necessary incoming data from its
sources have arrived. It starts writing outgoing data to destinations imme-
diately after processing is completed [10].

4 The Design Environment

Fig. 2 depicts the codesign environment in our system. The system to be imple-
mented is assumed to be described in some suitable high level language, which is

then mapped to a DAG. Tasks are represented by nodes and communications by
edges. The nodes are then partitioned into hardware or software tasks, and are
scheduled to execute in order to obtain the minimum makespan (total process-
ing time). The partitioning and scheduling software used is adapted from tabu
search and list scheduling algorithms reported earlier by the authors [13]. The al-
gorithms are, however, modified to be compatible with this architectural model.
A two-phase clustering algorithm is used as a pre-processing step to modify the
granularity of the tasks in the DAG in order to improve the critical path delay,
enable more task parallelism and provide results the achieve 13%-17% shorter
makespan [15].

Clustering
(2-phase)

Partitioning
(Tabu search)

Scheduling
(List Scheduling)

parameters
for CPSdag info

Displaying
graphs

Displaying
graphs

Memory Allocation

mapping and
communication

info

mapping and
scheduling and
final dag info

new dag

temporal HW task groups

target API,
protocol

Target
architecture

(Loosely-coupled
multiprocessors
:buses, memory,

SW, HWs)

SW code
(multithreaded

in C/C++)

Task manager
program generator

(C/C++)

VHDL
Verilog

Standard xFrame
xPEtask

xPEcontrol
xPEregister

Comercial FPGA
Design tools

(Xilinx)

PCI

Configuration files of each
temporal HW group (.ucd)

Target

SW tasks

mapping and
scheduling info

Design specification in
high level language

DAG

Fig. 2. Codesign environment

This group of algorithms, containing clustering, partitioning and scheduling,
is collectively called the CPS algorithm for short. The CPS algorithm reads
textual input files including DAG information and control information for clus-
tering, partitioning and scheduling process. During this input stage, the user can
optionally specify the type of tasks as software-only task, hardware-only task,
or dummy task. A software-only task is a task that the user intentionally im-

plements in software without exception, and similarly for a hardware-only task.
Dummy tasks are either source or sink for inputting and outputting data respec-
tively, and are not involved in any computation. In our system, we assume that
input and output data are initially provided and written to the microprocessor
memory. Unspecified tasks are then free to be partitioned, scheduled and bound
to either hardware or software resources.

The result of the partitioning and scheduling process are the physical and
temporal binding for each task. Note that in case of hardware tasks, they may
be divided into many temporal groups that can either be statically mapped to
the hardware resource, or dynamically configured during runtime.

We currently assume that software tasks are manually written in C/C++,
while hardware tasks are designed manually in a HDL (such as Verilog) using
a library-based approach. Once all the hardware tasks for a given PE are avail-
able, they are wrapped in a standard frame with a pre-designed circuit (xPEtask,
xPEregister and xPEcontrol) which is task independent. Commercially available
synthesis and place-and-route tools are then used to produce the final configura-
tion files for each hardware. Each task in this implementation method requires
some hardware overhead to implement the task frame wrapper circuit. Therefore
our system favours partitioning algorithms that generate coarse grain tasks.

The results from the partitioning and scheduling process, the memory al-
locator, the task control protocol, the API functions, the configuration files of
hardware tasks, are used to automatically generate the codes for a task manager

program that controls all operations in this system, such as dynamic configura-
tion, task execution and data transfer. The resulting task manager is inherently
multi-threaded to ensure that tasks are run concurrently.

task
0

task
2

The Task Manager

Check operation
messages on each
PE and decide
when to
+ run HW tasks
+ run SW tasks in
 background
 (multithread)
+ reconfig HW
 tasks
+ transfer data
 between PEs
+ transfer data
 between SW&PE

Start (TaskID=3)
task

1

task
3

Finish (TaskID=1)

Message board

Registers

InterPE Data
Transfer

PE0

PE1

IntraPE Data
Transfer

SW

Finish Transfer

Global
variable
for SW
tasks

Task
Controller

task
4

task
5

Task
Controller

Message board

Message board

Registers

Start (TaskID=5)
Finish (TaskID=4)
InterPE Data
Transfer
IntraPE Data
Transfer

Finish Transfer

Fig. 3. The Task Manager control view

4.1 The Task Manager Program

The center of our implementation is the task manager (TM) program running on
the microprocessor (software) resource to manage both hardware and software
tasks. This program controls the sequencing of all the tasks, the transfer of data
and the synchronization between them, and the dynamic reconfiguration of the
FPGA in the PEs when required. Fig. 3 shows the conceptual control view of
the TM and its operation. The TM communicates with a local task controller
on each PE in order to assert control. A message board is used in each PE to
receive commands from the TM or to flag finishing status to the TM.

In order to properly synchronize the execution of the tasks and the com-
munication between tasks, our task manager employs a message-passing, event-
triggered protocol when running a process. However, unlike a reactive codesign
system [16], we do not use external real-time events as triggers. Instead, we use
the termination of each task or data transfer as event-triggers, and signaling of
such events is done through dedicated registers. For example, in Fig. 3, messages
indicating execution completion from tasks 1 are posted to registers inside PE0.
The task manager program polls these registers, finds the message, then pro-
ceeds to the next scheduled task, in this case task 3. By using this method, tasks
on each PE is run independently because the program operates asynchronously
at the system level.

4.2 The UltraSONIC Reconfigurable Platform

The codesign described above is targetted for the UltraSONIC System [14]. Ul-
traSONIC (see Fig. 4(a)) is a reconfigurable computing system designed to cope
with the computational power and the high data throughput demanded by real-
time video applications. The system consists of Plug-In Processing Elements
(PIPEs) interconnected by local and global buses. The architecture exploits the
spatial and the temporal parallelism in video processing algorithms. It also fa-
cilitates design reuse and supports the software plug-in methodology.

Fig. 4(b) shows how our codesign model is implemented in the UltraSONIC
PIPE. The xPEcontrol implements the message passing protocol to control the
operation of all the hardware tasks (xPEtask) resident in this PIPE. The message
board is implemented in xPEregister. The total hardware overhead of using the
Task Manager is modest. It consumes around 10% of the reconfigurable resource
on each PIPE (which is implemented on Xilinx’s XCV1000E).

5 An Example: FFT Implementation

In order to demonstrate the working of our system, we chose to implement the
well known FFT algorithm. Although we can implement the algorithm for an
arbitrary data length, we use an 8-point FFT implementation to illustrate the
results of our codesign system. The DAG of an 8-point FFT can be straight-
forwardly extracted as shown in Fig. 5(a). Nodes 0, 1, 2 are used for arranging

Task A

Task B

Task C

Memory
Interface

Controller

StartXReg

FinishXReg

InterPIPETrfReg

InterPIPETrfCmd

TaskDataInReg0

TaskDataOutReg0

TaskDataInReg3

TaskDataInReg2

TaskDataInReg1

TaskDataOutReg3

TaskDataOutReg2

TaskDataOutReg1

TaskDataCtrlReg0

TaskDataCtrlReg1

Local
Memory
2x4MB

MemControl

Bus Control &
Routing

Page1

Page3
Page2

xPEregisterPIPE Engine

xPEcontroller

TaskReq TaskAckD
at

aI
N

D
at

aO
U

T
P

F
IN

P
F

O
U

T

PortA PortB

PF Right (PFC)PF Left (PFC) PFG

Data IN/OUT

Address
PIPEBus

P
Fm

em
IN

P
Fm

em
O

U
T

xPEtask

xPEtask

xPEtask

PIPE
Memory

Pagen

PIPE Router

XCV300

LBC
(Local

BusController)
PIPE

1
PIPE

2
PIPE

3
PIPE
16

PCI Bus
64bit 66MHz

PCI
PipeFlow Chain 32bit + 2bit Ctrl

PIPE Bus - 64bit Address/Data and 2 bit control

Global PipeFlow Bus
32bit + 2bit Ctrl

PIPEengine PE
REG

Vertex Device XCV1000E

PIPErouter

SRAM

Data/Add

PIPEFlow Right 32bit

Global PIPEFlow Bus (Global) 32bit

PIPE Bus (Global) 64bit

PIPEFlow Left 32bit

Data/Add
SRAM

SRAM

SRAM

(b) The hardware design structure in each PIPE(a) The UltraSONIC reconfigurable platform

Fig. 4. The hardware implementation in UltraSONIC architecture

inputs data and are implemented as software-only tasks. Tasks 3 to 14 are but-
terfly computation nodes. The number shown inside the parenthesis (the second
number) on each edge is the number of data values needed for each iteration
of the task. Each task is executed repeatedly until all data (shown as the first
number on the edge) are processed. Initially in this DAG, the software execution
times are obtained by profiling tasks on PC, while the hardware times and areas
are obtained by using Xilinx development tools.

0,1,2

3,4 5,6

7,9,
11,13

8,10,
12,14

cluster
A

cluster
B

cluster
C

cluster
D

cluster
E

Sink Sink Sink Sink

Src0

1 2

43 65

87 109

1211 14

Sink Sink Sink

13

Src

10000/(8)

5000/(4)5000/(4)

2500/(2) 2500/(2)

1250/(1)

1250/(1)

2500/(2)

Sink

10000/(8)

5000/(4)

2500/(2)

2500/(2)

(a) 8-point FFT (b) After clustering (c) After partitioning and scheduling

A CFG Task
B,C,D

SRC DST

B

CFG Task
E C

SRC DSTTRF

TRF DST SRC

D

EXE B

TRF
EXE C

EXE E
EXE D

SRCDST TRF
SRCDST TRF

E

SW TM PE0 PE1
EXE A

Fig. 5. The DAG of 8-point FFT algorithm

This DAG information is supplied to the CPS algorithm in our design envi-
ronment (see Fig. 2) to perform automatic clustering, partitioning and schedul-

ing. Parameters such as reconfiguration time, bus speed, FPGA size, are all
based on the UltraSONIC system. The clustering algorithm produces a new
DAG that contains tasks in higher granularity as shown in Fig. 5(b). These new
tasks are then iteratively partitioned and scheduled. The computational part of
each of the hardware tasks are designed manually in Verilog and the software
tasks are written in C. Our tools then combine the results from the partitioning
and scheduling algorithms, wrap the hardware task designs automatically with
the standard task frame, and generate the task manager program.

Fig. 5(c) depicts the run-time profile of this implementation. Each column
represents activities on the available resources which are software tasks (SW),
and two hardware processing elements (PE0 and PE1). TM is the task man-
ager program which is also running on the software resource. The execution of
this algorithm proceeds from top to bottom. It shows all the runtime activi-
ties including configuration (CFG), transferring data (TRF), events that trigger
task executions (EXE), the source of data (SRC), receiving data (DST) and the
executions of the tasks (A to E).

The FFT algorithm for different data window sizes are also tested on the
UltraSONIC system and are shown to work correctly. The method, although re-
quires some manual design steps, is very quick. Implementing the FFT algorithm
only took a few hours from specification to completion.

6 Conclusions

This paper presents a semi-automatic codesign environment for a system con-
sisting of single software and multiple reconfigurable hardware. It proposes the
use of a task manager to combine the runtime support for hardware and soft-
ware in order to improve modularity and scalability of the design. Partitioning
and scheduling are done automatically. Codes for software tasks are run in soft-
ware concurrently (using multi-threaded programming) with the task manager
program which is based on message-passing and event-triggered protocol. Imple-
mentation of the FFT algorithm on UltraSONIC demonstrates the practicality
of our approach.

Future work includes testing our codesign system with more complex appli-
cations, tools to map behavioral or structural descriptions to DAG automatically
and to improve the task management environment so that external asynchronous
real-time events can also be handled.

7 Acknowledgement

The authors would like to acknowledge the continuing support of John Stone,
Simon Haynes, Henry Epsom and the rest of the UltraSONIC team at Sony
Broadcast Professional Research Laboratory in UK.

References

1. Ernst, R., “Codesign of embedded systems: status and trends”, IEEE Design &
Test of Computers, 1998.

2. Manikutty, G.; Hanson, H., “Hardware/Software Partitioning of Synchronous
Dataflow Graphs in the ACS domain of Ptolemy”, University of Texas, Litera-
ture Survey, Final Report May 12 1999.

3. Hall, M.; Diniz, P.; Bondalapati, K.; Ziegler, H.; et al., “DEFACTO:A Design
Environment for Adaptive Computing Technology”, Proceedings of the 6th Recon-
figurable Architectures Workshop, 1999.

4. Mencer, O.; Morf, M.; Flynn, M.J., “PAM-Blox: high performance FPGA design
for adaptive computing”, FPGAs for Custom Computing Machines, 1998.

5. Chou, P.H.; Ortega, R.B.; Borriello, G., “The Chinook hardware/software co-
synthesis system”, System Synthesis, 1995.

6. Coste, P.; Hessel, F.; Le Marrec, P.; Sugar, Z.; et al., “Multilanguage design of
heterogeneous systems”, Hardware/Software Codesign, 1999.

7. Wilberg, J.; Kuth, A.; Camposano, R.; Rosenstiel, W.; et al., “Design Exploration
in CASTLE”, Workshop on High Level Synthesis Algorithms Tools and Design
(HILES), 1995.

8. Ernst, R., “Hardware/Software Co-Design of Embedded Systems”, Asia Pacific
Conference on Computer Hardware Description Languages, 1997.

9. Srinivasan, V.; Govindarajan, S.; Vemuri, R., “Fine-grained and coarse-grained
behavioral partitioning with effective utilization of memory and design space ex-
ploration for multi-FPGA architectures”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 9, pp. 140 -158, 2001.

10. Hou, J.; Wolf, W., “Process partitioning for distributed embedded systems”, Hard-
ware/Software Co-Design, 1996.

11. Pop, T.; Eles, P.; Peng, Z., “Holistic scheduling and analysis of mixed time/event-
triggered distributed embedded systems”, Hardware/Softwarw Codesign, 2002.

12. Chatha, K.S.; Vemuri, R., “Hardware-software partitioning and pipelined schedul-
ing of transformative applications”, IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 10, pp. 193-208, 2002.

13. Wiangtong, T.; Cheung, P.Y.K.; Luk, W., “Comparing Three Heuristic Search
Methods for Functional Partitioning in HW-SW Codesign”, International Journal
on Design Automation for Embedded Systems, vol. 6, pp. 425-449, July 2002.

14. Haynes, S.D.; others, a., “UltraSONIC: A Reconfigurable Architecture for Video
Image Processing”, Field-Programmable Logic and Applications (FPL), 2002.

15. Wiangtong, T.; Cheung, P.Y.K.; Luk, W., “Cluster-Driven Hardware/Software
Partitioning and Scheduling Approach For a Reconfigurable Computer System”,
submit to Field-Programmable Logic and Applications (FPL), 2003.

16. De Micheli, G., “Computer-aided hardware-software codesign”, IEEE Micro, Vol
14, pp. 10-16, 1994.

