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INTRODUCTION

Piecewise polynomials of some fixed degree and continuously differentiable upto
some order are known as splines or finite elements. Splines are used in applications
ranging from image processing, computer aided design, to the solution of partial
differential equations via finite element analysis. The spline fitting problem of
constructing a mesh of finite elements that interpolate or approximate multivariate
data is by far the primary research problem in geometric modeling. Parametric
splines are vectors of multivariate polynomial (or rational) functions while implicit
splines are zero contours of multivariate polynomials. This survey shall dwell mainly
on spline surface fitting methods in IR?® Tensor product splines in (Section xx.1,...),
triangular basis splines (Section xx.7,...). The following criteria may be used in
evaluating these spline methods:

e Implicit or parametric representations

e Algebraic and geometric degree of the spline basis
e Number of surface patches required

e Computation and memory required

e Stability of fitting algorithms

e Local or non-local interpolation

e Splitting or non—splitting of surface patches

e Convexity or non-convexity of the input and solutio

27.1 TENSOR PRODUCT SURFACES

GLOSSARY

B—spline surface: A deformation of a planar domain, traditionally tessellated
into a rectilinear grid. Any B-spline can be written in piecewise Bézier form.
Surface splines may be treated as a collection of tensor product polynomial
patches defined over rectangles.

C* continuity: Smoothness is defined in terms of matching derivatives along
patch boundaries.
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TABLE 27.1.1 Tensor Product Patches

TYPE INPUT

PROPERTIES

Piecewise Bi-Cubic Bezier rectangular grid of points, corner twists

Piecewise Bi-Cubic Hermite | rectangular grid of points, partials,

mixed partials

Bi-Cubic B-spline

rectangular grid of points
Coons patches 4 boundary curves
Gordon surfaces

Bi-Quadratic A-patches

rectangular network of curves

rectilinear 3D grid points

C?1, initial global survey of the data
to determine the tangent and cross-
derivative vectors at the patch corners
C?1, initial global survey of the data
to determine the tangent and cross-
derivative vectors at the patch corners
C?, overlap control polyhedra of adja-
cent patches

C1, Gregory Square

Cl

C1, local calculation of first-order cross

derivatives

Bi-linear interpolation: The “simplest” surface defined by values at four

points.

Ruled (lofted) surface:

linear interpolation.

A surface that interpolates two given curves using

Transfinite tnterpolation: Interpolating entire curves as opposed to values

at discrete points.

Blending functions: The basis functions used by interpolation schemes such

as Gordons surfaces.

Parametric Bézier and B-SPLINES

Parametric representations possess good properties which include easy to order,
easy to generate points on, simple patches, compact storage, and irreducibility. B—-
splines have emerged as the polynomial basis of choice for working with parametric
surfaces. The theory of tensor product patches requires that data have a rectangular
geometry and that the parametrizations of opposite boundary curves be similar. It
is based on the concept of bilinear interpolation. Tensor product Bézier surfaces
are obtained by repeated applications of bilinear interpolation. Properties of tensor
product Bézier patches include affine invariance, convex hull property, and the
variation diminishing property. The boundary curves of a patch are polynomial
curves which have their Bézier polygon given by the boundary polygons of the
control net of the patch. Hence the four corners of the control net lie on the patch.

Piecewise bicubic Bézier patches may be used to fit a C'! surface through a rect-
angular grid of points. After the rectangular network of curves has been created
there are four coefficients left to determine the corner twists of each patch. These
four corner twists cannot be specified independently and must satisfy a “compati-
bility constraint”. Common twist estimation methods include zero twists, Adini’s
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twist, Bessel twist, and Brunet’s twist. To obtain C'' continuity between two
patches the directions and lengths of the polyhedron edges must be matched across
the common polyhedron boundary defining the common boundary curve. Piecewise
bicubic Hermite patches are similar to the piecewise bicubic Bézier patches but take
points, partials, and mixed partials as input. The mixed partials have effect only
on the interior shape of the patch and are also called twist vectors.

It is not possible to model a general closed surface or a surface with handles
as a single non-degenerate B—spline. To represent free-form surfaces a significant
amount of recent work has been done in the areas of geometric continuity, non-tensor
product patches, and generalizing B—splines. Common schemes include splitting,
convex combinations of blending functions, subdivision, and local interpolation by
construction.

COONS PATCHES AND GORDON SURFACES

Instead of being described by control points, Coons patches and Gordon surfaces
work by generating a surface from a network of curves. Coons patches are based
on a generalization of ruled, or lofted, surfaces. Coons patches interpolate four
boundary curves. They are constructed by composing two lofted surfaces and one
bilinear surface, and hence are called bilinearly blended surfaces. A network of
curves may be filled in with a C* surface using bicubically blended Coons patches.
For this the four twists at the data points and the four cross boundary derivatives
must be computed. Compatibility problems may arise in computing the twists. If
x(u, v) is twice differentiable, we have xy, = Xyqy, but this simplification does not
apply here. One approach is to adjust the given data so that the incompatibilities
disappear. Or if the data can not be changed one can use a method known as
Gregory’s square that replaces the constant twist terms by variable twists that are
computed from the cross boundary derivatives. The resulting surface does not
have continuous twists at the corners and is rational parametric, which may not be
acceptable in certain geometric modeling environments.

Gordon surfaces are a generalization of Coons patches used to construct a
surface g that interpolates a rectangular network of curves. The i1dea is to take a
univariate interpolation scheme, apply it to all curves, add the resulting surfaces,
and subtract the tensor product interpolant that is defined by the univariate scheme.
Polynomial interpolation or spline interpolation schemes may be used. Methods for
Coons patches and Gordon surfaces can be formulated in terms of boolean sums
and projectors. This has also been generalized to create triangular Coons patches.

27.2

GENERALIZED B-SPLINE SURFACES USING
MULTI-SIDED PATCHES

GLOSSARY

Constrained Domain Mapping: Representing a domain point for an n—sided
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TABLE

27.2.1 Multi-sided Schemes

TYPE

Sabin

Varady

Gregory /Charrot

n=3,5 ct constrained domain mapping, symmet- [Sab83]
ric system of parameters

n=3,5 cl barycentric coordinates [Gre86]

Hosaka/Kimura n<=6 ct constrained domain mapping, symmet- [HF84]

ric system of parameters
Vel 2n variables constrained along polygon [Var91]

sides

patch by n dependent parameters. If the rest of the parameters can be computed
when any two parameters are independently chosen it is called a symmetric
system of parameters.

B-spline surfaces have been generalized to include multi—sided patches by using
convex combinations of blending functions. Multi—sided patches can be generated
in basically two ways. Either the polygonal domain which is to be mapped into IR3
is subdivided in the parametric plane, or one uniform equation is used as a com-
bination of equations. In the first case triangular or rectangular elements are put
together or recursive subdivision is applied. And in the later case either the known
control point based methods are generalized or a weighted sum of interpolants is
used.

S—Patches

Loop and DeRose [LD89, LDY0] present generalizations of biquadratic and bicubic
B-spline surfaces that are capable representing surfaces of arbitrary topology by
placing restrictions on the connectivity of the control mesh, relaxing C'' continu-
ity to G' continuity, and allowing n-sided finite elements. This generalized view
considers the spline surface to be a collection of possibly rational polynomial maps
from independent n-sided polygonal domains, whose union possesses continuity of
some number of geometric invariants, such as tangent planes. In this view patches
are required to meed with geometric continuity (denoted G* continuity). This more
general view allows patches to be sewn together to describe free form surfaces in
more complex ways.

GENERALIZED TRIANGULAR SURFACES USING SPLITTING

With splitting schemes every triangle in the triangulation of the data points (also
called a “macro—triangle”) is split into several “mini-triangles”. Split-triangle in-
terpolants do not require derivative information of higher order than the continuity
of the desired interpolant. The simplest of the split—triangle interpolants in the C*
Clough—Tocher interpolant. Each vertex is joined to the centroid, and the macro—
triangle is split into three mini—triangles. The first order data that this interpolant

LIMITATIONS | PROPERTIES | DOMAIN POINTS SOURCE
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requires are position and gradient value at the vertices macro—triangle plus some
cross—boundary derivative at the midpoint of each edge. There are twelve data per
macro—triangle and cubic polynomials are used over each mini—triangle. The C*
Powell-Sabin interpolants produce C*! piecewise quadratic interpolants to C! data
at the vertices of a triangulated data set. Each macro—triangle 1s split into six or
twelve mini triangles.

GENERALIZED TRIANGULAR SURFACES USING BLOSSOM-

ING

The B-patches developed by Seidel [Sei89] are based on the study of symmet-
ric recursive evaluation algorithms and are defined by generalizing the de Boor
algorithm for the evaluation of a B—spline segment from curves to surfaces. A
polynomial surface that has a symmetric recursive evaluation algorithm is called a
B-Patch. B-patches generalize Bézier patches over triangles and are characterized
by control points and a three parameter family of knots. Every bivariate polynomial
F : R? — R? of degree n has a unique representation

F(U)y=Y_ NMU)P;,  P;eR*
[i]=n
as a B-patch with parameters Ry, ..., R*™!, So,...,S" Y Ty, ..., 7" 1 in R? if the

parameters (R;, S;, T ) are affinely independent for 0 < |Z| < n—1. The real-valued
polynomials N;”(U) are called the normalized B—weights of degree n over K.

GENERALIZED TRIANGULAR SURFACES USING MULTI-
SIDED PATCHES

One approach to create multi—sided patches has been by introducing base points
into rational parametric functions. Base points are parameter values for which
the homogeneous coordinates (x,y,z,w) are mapped to (0,0,0,0) by the rational
parameterization.

Gregory’s patch [Gre83] is defined using a special collection of rational basis
functions that evaluate to 0/0 at vertices of the parametric domain and thus in-
troduce base points in the resulting parameterization. It is possible to describe
Gregory’s patch solely in terms of control points and weights. Warren [War92] uses
base points to create parameterizations of four-, five-, and six—sided surface patches
using rational Bézier surfaces defined over triangular domains. Setting a triangle
of weights to zero at one corner of the domain triangle produces a four-sided patch
that is the image of the domain triangle. This technique can be generalized to
create five- and six—sided patches by treating each vertex of the triangular domain
independently.

27.3

SPLINE SURFACES OVER MESHES WITH ARBI-
TRARY TOPOLOGY
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The representation of free-form surfaces is one of the major issues in geometric
modeling. These surfaces are generally defined in a piecewise manner by smoothing
joining several mostly four—sided patches. The patches are given in vector valued
parametric form, mapping a rectangular parametric domain into IR3.

Local construction, blending polynomial pieces, and splitting are common ap-
proaches to constructing surfaces over irregular meshes. Because of its nonlinear
nature and the advantages of a local construction, different approaches have been
centered around selecting geometrically meaningful variables that can be fixed (as
input or derived from data) so as to arrive at a sufficient and consistent set of
linear constraints on the remaining variables. Blending polynomial pieces means
constructing k pieces for a k-sided mesh facet such that each piece matches a part
of the facet data and a convex combination of the pieces matches the whole. Blend-
ing approaches prescribe a mesh of boundary curves and their normal derivatives.
However for this approach the existence of a well-defined tangent plane at the data
points is not sufficient to guarantee the existence of a C'' mesh interpolant since
the mixed derivatives py, and p,, are given independently at any point p. Splitting
approaches on the other hand expect at least tangent vectors at the data points
and sometimes the complete boundary to be given. In Mann et al. [MLL%T92]
it 1s concluded that local polynomial interpolants generally produce unsatisfactory
shapes.

Peters [Pet91] considers the interpolation of a mesh of curves by a smooth reg-
ularly parameterized surface with one polynomial piece per facet. Not every mesh
with a well-defined tangent plane at the mesh points has such an interpolant. Nec-
essary and sufficient vertexr enclosure constraints on a mesh of polynomial curves
that guarantees the existence of a regular smooth interpolant are given. The curva-
ture of mesh curves emanating from mesh points with an even number of neighbors
must satisfy an additional “vertex enclosure constraint”. The vertex enclosure con-
straint is automatically satisfied by the splitting construction and can be satisfied
by singularly parameterizing one of the boundary curves. An algorithm for the
local interpolation of a cubic curve mesh by a piecewise [bi]quartic C! surface is
described. The scheme is based on a sufficient constraint that forces the mesh
curves to interpolate second—order data at the mesh points. Rational patches, sin-
gular parameterizations, and the splitting of patches are interpreted as techniques
to enforce the vertex enclosure constraint.

Reif [Rei93] constructs a piecewise G spline surface based on biquadratic rect-
angular Bézier patches from a set of control points on meshes with arbitrary topol-
ogy. Geometrical smoothness conditions are used only near the singular vertices
of a mesh. He constructs an additional ring of “G—edges” around singular vertices
and expresses the smoothness conditions in a system of linear equations.

Peters [Pet93] gives an algorithm for refining an irregular mesh of points into
a bivariate C'! surface. The algorithm generalizes the construction of quadratic
splines from a mesh of control points, and an explicit parameterization of the surface
with quadratic and cubic pieces is given. When the mesh is regular then a quadratic
spline surface is generated. Irregular input meshes with nonquadrilateral mesh cells
more or fewer than four cells meeting at a point are allowed and generate spline
spaces that generalize the space of quadratic splines. The main idea is to refine
the irregular input mesh by the averaging process of Doo—Sabin and generate strips
of regular mesh points that isolate regions of irregular points. The algorithm can
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model bivariate open or closed surfaces of general topological structure. However
the algorithm generates a large number of patches relative to the number of faces
in the control mesh.

Loop [Loo94] constructs a piecewise G spline surface composed of sextic tri-
angular Bézier patches in one-to-one correspondence with the faces of a triangular
control mesh. Surfaces of arbitrary topological type are created by approximating
any mesh that represents a triangulated 2-manifold. In the case of a regular pa-
rameterization the surface generated by this method is equivalent to a quartic C?
triangular B—spline. The question of whether there exists values in the space of
the shape parameters so that the affine combinations of mesh vertices are strictly
convex has not been resolved.

27.4

SUBDIVISION SURFACES

Subdivision techniques can be used to produce generally pleasing surfaces from
arbitrary control meshes. Subdivision consists of splitting and averaging. Each
edge or face is split and each new vertex introduced by the splitting is positioned
at a fixed affine combination of its neighbor’s weights.

The algorithms start with a polyhedral configuration of points, edges, and faces.
The control mesh will in general consist of large regular regions and 1solated singular
regions. Subdivision enlarges the regular regions of the control net and shrinks the
singular regions. Each application of the subdivision algorithm constructs a refined
polyhedron, consisting of more points and smaller faces, tending in the limit to
a smooth surface. In general the new control points are computed as a linear
combination of old control points. The associated matrix is called the subdivision
matriz.

The earliest of these approaches are the recursive subdivision schemes of Doo
and Sabin [DS78] and Catmull and Clark [CC78]. These algorithms generate C*
surfaces that interpolate the centroids of all faces at every step of subdivision.
Nasri [Nas91] describes a recursive subdivision surface scheme that is capable of
interpolating points on irregular networks as well as normal vectors given at these
points. The subdivision scheme developed by Loop [Loo87] splits each triangle of
a triangular mesh into four triangles. Fach new vertex is positioned using a fixed
convex combination of the vertices of the original mesh. The final limit surface
has a continuous tangent plane. Hoppe et al. [H. 94] extends Loop’s method to
incorporate sharp edges into the final limit surface. The vertices of the initial
polyhedron are tagged as belonging on a face, edge, or vertex of the final limit
surface. Based on this tag different averaging masks are used to produce new
polyhedra.

Storry and Ball [SB89] demonstrate that a B—spline subdivision patch can be
fitted into a general n—sided area of a bicubic surface with at least tangent plane
continuity on the boundary. A Hermite formulation is used for the surface patches,
and after the control points have been determined the subdivision algorithm is
applied to produce an n—sided patch of optimal continuity properties. One degree
of freedom is identified and related to shape control. Reif [Rei92] presents a unified
approach to subdivision algorithms for meshes with arbitrary topology and gives
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a sufficient condition for the regularity of the surface. The existence of a smooth
regular parametrization for the generated surface near the point is determined from
the leading eigenvalues of the subdivision matrix and an associated characteristic
map.

27.5

MULTIVARIATE BOX SPLINES AND SIMPLEX
SPLINES

Multivariate splines are a generalization of univariate B—splines to a multivari-
ate setting. Multivariate splines have applications in data fitting, computer—aided
design, the finite element method, and image analysis. Work on splines has tra-
ditionally been for a given planar triangulation using a polynomial function basis.
Box—splines are multivariate generalizations of B-splines with uniform knots. Many
of the basis functions used in finite element calculations on uniform triangles occur
as special instances of box splines. In general a box spline is a locally supported
piecewise polynomial. One can define translates of box splines which form a nega-
tive partition of unity.

In the bivariate case box splines correspond to surfaces defined over a regular
tessellation of the plane. If the tessellation is composed of triangles, it is possible
to represent the surface as a collection of Bernstein-Bézier patches. The two most
commonly used special tesselations arise from a rectangular grid by drawing in lines
in north—easterly diagonals in each subrectangle or by drawing in both diagonals
for each subrectangle. For these special triangulations there is an elegant way to
construct locally supported splines.

Splines over arbitrary triangulations of the parameter plane were first consid-
ered by Dahmen and Michelli [DM82] and Hollig [Hol82]. These multivariate splines
are defined as projections of simplices and are therefore called simplex splines.

Auerbach [AMNS91] constructs approximations with simplex splines over irreg-
ular triangles. Bivariate quadratic simplicial B—splines defined by their correspond-
ing sets of knots derived from a (suboptimal) constrained Delaunay triangulation
of the domain are employed to obtain a C'' surface. This approach is well suited
for scattered data. Each vertex of a given triangle is associated with two addi-
tional points which give rise to six configurations of five knots defining six linearly
independent bivariate quadratic B—splines supported over the convex hull of the
corresponding five knots. The coefficients of the linear combinations of normalized
simplicial B-splines are visualized as geometric control points satisfying the convex
hull property.

Fong and Seidel [FS86, FS92] construct multivariate B—splines for quadratics
and cubics by matching B—patches with simplex splines. The surface scheme is an
approximation scheme based on blending functions and control points and allows
the modeling of C*~1 continuous piecewise polynomial surfaces of degree k over
arbitrary triangulations of the parameter plane. The resulting surfaces are defined
as linear combinations of the blending functions and are parametric piecewise poly-
nomials over a triangulation of the parameter plane whose shape is determined by
their control points.
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27.6

IMPLICT POLYNOMIAL SPLINES

A-splines are a suitable polynomial basis for working with piecewise implicit
polynomial curves and surfaces. While it is possible to model a general closed sur-
face of arbitrary genus as a single A—spline the geometry of impliict surfaces has
proven to be more difficult to specify, interactively control, and polygonize than
parametrics. The main shortcoming held against the use of implicit representa-
tions is that zeros of polynomials being multivalued may cause the zero contour to
have multiple real sheets, self-intersections and several other undesirable singulari-
ties. On the positive end, using polynomials of the same degree, implicit polynomial
splines have more degrees of freedom compared with parametric and hence poten-
tially are more flexible to approximate a complicated surface with fewer number
of pieces and to achieve a higher order of smoothness. The potential of implicits
remains largely latent and virtually all commercial and many research modeling
systems are based on the parametric representation. An exception is SHASTRA
which allows modeling with both implicit and parametric splines [Baj93].

There are two main advantages of using implicit surfaces instead of parametrics.
First, the set of algebraic surfaces are closed under basic modeling operations such
as offset and intersection that are often required in a solid modeling system. Second,
for the same polynomial of degree n, implicit algebraic surfaces have more degrees
of freedom (W)(%w —1) compared with 2(n+2)(n+1)—1 degrees of freedom
for rational parametric surfaces.

27.7

SURFACES OVER MESHES WITH ARBITRARY
TOPOLOGY

Sederberg [Sed85] showed how various smooth implicit algebraic surfaces in
trivariate Bernstein basis can be manipulated as functions in Bézier control tetra-
hedra with finite weights. He showed that if the coefficients of the Bernstein-Bézier
form of the trivariate polynomial on the lines that parallel one edge, say L, of the
tetrahedron all increase (or decrease) monotonically in the same direction, then
any line parallel to L will intersect the zero contour algebraic surface patch at most
once. Patrikalakis and Kriezis [PK89] extended this by considering implicit alge-
braic surfaces in a tensor product B—spline basis. However the problem of selecting
weights or specifying knot sequences for C' meshes of implicit algebraic surface
patches which fit given spatial data was left open.

The problem of constructing a C'* mesh of implicit algebraic patches based on
an input polyhedron P has been considered by many. Dahmen [Dah89] presented a
scheme for constructing C'! continuous piecewise quadric surface patches over a data
triangulation in space. In his construction each triangular face is split and replaced
by six micro quadric triangular patches, similar to the splitting scheme of Powell—-
Sabin [PS77]. Dahmen’s technique however works only if the original triangulation
of the data set allows a transversal system of planes, and hence is quite restricted.
Moore and Warren [MW91] extended the marching cubes scheme to compute a C'*
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TABLE 27.7.1

Point Sampling

INPUT

EXAMPLES

rectangular grid
slices

scattered

results of physical simulations
contour data extracted from a CT scan

laser range scanners, 3D scanners to measure RGB components of object color

plecewise quadratic approximation to scattered data using a Powell-Sabin like split
over subcubes. Guo [Guo91] used cubics to create free-form geometric models and
enforced monotonicity conditions on a cubic polynomial along the direction from
one vertex to a point of the opposite face of the vertex. A Clough-Tocher split is
used to subdivide each tetrahedron of the simplicial hull. He derived a condition
Axr—eyte, — ax > 0 for all A with Ay > 1, where ay are the coefficients of the cubic
in Bernstein-Bézier form. [DTS93] utilize a single cubic patch per tetrahedron.

Lodha [Lod92] constructed low degree surfaces with both parametric and im-
plicit representations and investigated their properties. A method is described for
creating quadratic triangular Bézier surface patches which lie on implicit quadric
surfaces. And another method is described for creating biquadratic tensor product
Bézier surface patches which lie on implicit cubic surfaces. The resulting patches
satisfy all the standard properties of parametric Bézier surfaces, including interpo-
lation of the corners of the control polyhedron and the convex hull property.

Bajaj and Thm [BI91] construct low—degree algebraic surfaces that approximate
or contain with C' continuity any collection of points and algebraic space curves
with derivative information. Their Hermite interpolation algorithm solves a homo-
geneous linear system of equations to compute the coefficients of the polynomial
defining the algebraic surface. Bajaj, Thm and Warren [BIW93] extend this idea to
C* (rescaling continuity) interpolate or least squares approximate implicit or para-
metric curves in space. They show this problem can be formulated as a constrained
quadratic minimization problem, where the algebraic distance is minimized instead
of the geometric distance.

Bajaj, Thm, Guo, and Dahmen [Dah89, Guo91, Guo93, BI91] provide heuristics
based on monotonicity and least square approximation to circumvent the multiple
sheeted and singularity problems of implicit patches. Bajaj [Baj92, BI92, BIW93]
constructed implicit surfaces to solve the scattered data fitting problem. Bajaj and
Thm [BI91] considered an arbitrary spatial triangulation 7 consisting of vertices in
IR? (or more generally a simplicial polyhedron P when the triangulation in closed)
with possibly normal vectors at the vertex points. Their algorithm constructs a
C' continuous mesh of real implicit algebraic surface patches over 7 or P. The
scheme is local (each patch has independent free parameters) and there is no local
splitting. The algorithm first converts the given triangulation or polyhedron into
a curvilinear wireframe with at most cubic parametric curves which C? interpolate
all the vertices. The curvilinear wireframe is then fleshed to produce a single
implicit surface patch of degree at most 7 for each triangular face 7 of P. If
the triangulation is convex then the degree is at most 5. Similar techniques exist
for parametrics [Pet91, Far86, Sar87] however the geometric degree of the solution
surfaces tend to be prohibitively high.
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Bajaj, Chen and Xu [BCX95] construct 3- and 4-sided A—patches that are im-
plicit surfaces in Bernstein—Bézier(BB) form that are smooth and single—sheeted.
They give sufficiency conditions for the BB form of a trivariate polynomials within
a tetrahedron such that the zero contour of the polynomial is a single sheeted
non-singular surface within the tetrahedron and its cubic-mesh complex for the
polyhedron P is guaranteed to be both nonsingular and single sheeted. They dis-
tinguish between convex and non-convex facets and edges of the triangulation. For
non-convex facets and edges a double-sided tetrahedra is built and for convex facets
and edges single-sided tetrahedra are built. A generalization of Sederberg’s con-
dition is given for a three-sided j—patch where any line segment passing through
the j-th vertex of the tetrahedron and its opposite face intersects the patch only
once. Instead of having coefficients be monotonically increasing or decreasing there
is a single sign change condition. There are also free parameters for both local and
global shape control. [BCX94] uses these conditions for C! cubic and C? quintic
schemes to approximate a polyhedron P using a simplicial hull construction. Re-
constructing surfaces and scalar fields defined over the surface from scattered data
using implicit Bézier splines are given in [BX94, BBX95].

ENERGY BASED SPLINES

Terzopoulos, Platt, Barr, Barzel, Fleischer, and Witkin [TF88, PB88, PTBS87,
WFB87] have presented discrete models which are based extensively on the theory
of elasticity and plasticity and use energy fields to define and enforce constraints.
Haumann [Hau87] used the same approach but used a triangularized model and a
simpler physical model based on points, springs, and hinges. Thingvold and Co-
hen [TC90] defined a model of elastic and plastic B-spline surfaces which supports
both animation and design operations. The basis for the physical model is a gen-
eralized point mass-spring-hinge model which has been adapted into simultaneous
refinement of the geometric/physical model. Always having a sculptured surface
representation as well as the physical hinge/spring/mesh model allows the user
to intertwine physical based operations, such as force application, with geometrical
modeling. Refinement operations for spring and hinge B—spline models are compat-
ible with the physics and mathematics of B—spline models. The models of elasticity
and plasticity are written in terms of springs and hinges, and can be implemented
with standard integration techniques to model realistic motions of elastic and plas-
tic surfaces. These motions are controlled by the physical properties assigned and
by kinematic constraints on various portions of the surface.

Terzopoulos and Qin [TQ94] develop a dynamic generalization of the nonuni-
form rational B-spline (NURBS) model. They present a physics—based model that
incorporates mass distributions, internal deformation energies, and other physi-
cal quantities into the NURBS geometric substrate. These dynamic NURBS can
be used in applications such as rounding of solids, optimal surface fitting to un-
structured data, surface design from cross—sections, and free—form deformations.
Qin and Terzopoulos [QT95] develop a dynamic freefrom surface model based on
swung NURBS surfaces which is useful for representing objects with symmetries
and topological variability.
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HIERARCHIAL SPLINES

Hierarchical splines are a multi—resolution approach to the representation and ma-
nipulation of free—form surfaces. A hierarchal B—spline is constructed from a base
surface (level 0) and a series of overlays are derived from the immediate parent in
the hierarchy. Forsey [FB88] presents a refinement scheme that uses a hierarchy
of rectangular B-spline overlays to produce C? surfaces. Overlays can be added
manually to add detail to the surface, and local or global changes to the surface
can be made by manipulating control points at different levels.

Forsey and Wang [FW93] create hierarchical bicubic B—spline approximations
to scanned cylindrical data. The resulting hierarchical spline surface is interactively
modifiable using editing capabilities of the hierarchical surface representation al-
lowing either local or global changes to surface shape while retaining the details of
the scanned data. However oscillations occur when the data has high—amplitude or
high—frequency regions.

27.8 SOURCES AND RELATED MATERIAL

SURVEYS

All results not given an explicit reference above may be traced in these surveys.

e [Baj92]: Summary of data fitting with implicit algebraic splines.

Far86, Far93]: Summary of the history of triangular Bernstein-Bézier patches.
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