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In this article we provide a practical transformational approach to the synthesis of correct
synchronous digital hardware designs from high-level specifications. We do this while taking
into account the complete life cycle of a design from early prototype to full custom implemen-
tation. Besides time-to-market, both flexibility with respect to target architecture and effi-
ciency issues are addressed by the methodology. The utilization of user-selected behavior-
preserving transformation steps ensures first-time-right designs while exploiting the
experience, flexibility, and creativity of the designer.
To ensure that design transformations are indeed behavior-preserving a novel mechanized

approach to the specification and verification of design transformations on control data flow
graphs which is independent of a specific behavioral model or graph size has been developed.
As a demonstration of an industrial application we use a video processing algorithm needed

for the conversion from a line-interlaced to progressively scanned video format. Both a video
signal processor-based prototype implementation as well as a very efficient full custom
implementation are developed starting from a single high-level behavioral specification of the
algorithm in VHDL. Results are compared with those previously obtained using different tools
and methodologies.
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1. INTRODUCTION

The primary motivation for the development of tools for the automatic
synthesis of behavior-level specifications into efficient RT- or gate-level
descriptions is the reduction of time-to-market while dealing with increas-
ing design complexity. In this article we take a broad view on high-level
synthesis of synchronous digital systems and define it to include what some
call algorithmic or architectural synthesis. This in contrast to Walker and
Chaudhura [1995] who limit high-level synthesis to the scheduling, alloca-
tion, and binding problem.
The design time of a system consists of the time required for synthesis

and achieving correctness [Hanna et al. 1990]. To reduce design time most
research in high-level synthesis concentrates on the automatic synthesis of
efficient implementations of well-defined behavioral specifications using a
parameterized target architecture consisting of functional, memory, and
interconnection units. We call this approach, which is based on fixed
application domain, target architecture pairs; a vertical approach to syn-
thesis. It is, however, well known that for complex designs verification can
take from 30% to 80% [Pressman 1992] of the total design time. Therefore,
the methodology we propose focuses on minimizing the verification effort by
eliminating the need for verification between the behavioral/algorithmic
and logic level by utilizing formal methods to achieve correctness by
construction. A combination of formally verified, designer-driven synthesis
steps is used to reduce the number of design iterations and to obtain more
efficient designs.
Novel aspects discussed in this article include: life cycle support through

the construction of target architectures instead of using fixed pairs of
application domains and target architectures, the use of designer-selected
optimization, refinement, and assignment transformations to support full-
scale transformational design, and a different view on the implementation
suggestion contained in specifications. Furthermore, we propose a mecha-
nized transformation verification approach independent of graph structure,
size, and behavioral model, and the use of a correctness definition that
enforces just behavioral refinement rather than the stricter equivalence.
The next section addresses correctness in high-level synthesis. Additional

requirements of a design methodology imposed by the need to support the
complete life cycle of a system are discussed in Section 3. Section 4
discusses and motivates the choices made in our methodology. Details on
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the design representation, and the classification of transformations are the
topic of Section 5. In Section 6 the design of an example video processing
algorithm is shown. A novel approach to the verification of design transfor-
mation is discussed in Section 7.

2. CORRECTNESS

Achieving correct designs is crucial in high-level synthesis and played the
central role in the development of our methodology and design system
TRADES [Middelhoek 1994a; 1994b; 1995; Middelhoek et al. 1995].
We identify four major levels in the design of digital systems: require-

ments, specification, implementation, and realization. The system require-
ments capture the desired properties of a system informally, often in
natural language. At the specification level system requirements are for-
malized and described in hardware description languages (HDLs) with
unambiguous (formal) semantics. Through a process of stepwise refinement
the final implementation is derived from the specification. The result of a
design step can be considered an intermediate implementation which
functions as a specification for the next step. In this article we reserve the
term ‘implementation’ for abstract design representations that focus on
describing the required system behavior in such a way that it can be
realized efficiently. Although in our case there is no fundamental difference
between specification and implementation the former is more oriented
towards behavior while the latter emphasizes structure of the design. In
case of an executable specification, the specification can also be considered
the initial implementation. We use the term ‘realization’ to refer to the
actual product after manufacturing, i.e., the physical structure exhibiting
the desired behavior.
Correctness in design deals with maintaining consistency between these

levels. Figure 1 illustrates this for a top-down design methodology. The
specification is usually written in HDLs such as VHDL [IEEE 1988] or

Fig. 1. Top-down design methodology.
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Silage [Hilfinger 1985]. The only practical way to validate the behavior of a
specification against the user requirements is through the execution of the
specification (i.e., simulation) using a test suite as input. This process
cannot guarantee correctness because it is not exhaustive. Execution
requires an implementation and therefore structure. This initial structure
is called the implementation suggestion. For this reason specifications, in
practice, are not purely behavioral but algorithmic. In fact an executable
specification can be viewed as an initial, though most likely not very
efficient, implementation.
For the next step from specification to implementation three approaches

towards design correctness can be identified: simulation, verification, and
correctness by construction [Eveking 1987]. Simulation is the most popular
but cannot be used to assure the correctness of a design with respect to its
specification since exhaustive simulation quickly becomes infeasible for
even relatively small designs. The latter two methods are formal and can
be used to guarantee the correctness of an implementation.
Formal verification validates the implementation with respect to the

specification. A disadvantage of formal verification is that errors are
caught only after the design stage. As a consequence there will still be a
need for time-consuming debug cycles [Musgrave and Hughes 1995]. Sam-
som et al. [1994], for instance, uses post-verification techniques based on a
geometric model to verify the application of loop transformations. Incre-
mental verification can be used to avoid some of the problems associated
with post facto verification but it puts the burden of verification on the
circuit designer or requires integration of automatic verification tools. The
Lambda/Dialog system is an example of this latter approach. A more
thorough overview of verification techniques including the Lambda system
can be found in Musgrave and Hughes [1995] contains.
In the third, transformation-based method, the design flow from specifi-

cation to implementation consists of the consecutive application of pre-
proven behavior-preserving transformations in a compositional design de-
scription. The use of preproven transformations removes the burden of
verification from the chip designer. Compositionality is the property that
the behavior of the whole is equal to the composition of behaviors of its
parts. Therefore, replacing a part with a part that has the same behavior is
guaranteed not to change the behavior of the whole. This property is
essential for transformational design. In Section 7.3 a formal definition of
compositionality is given.
Figure 2 shows a data flow graph representation of a design before and

after the application of the distributivity transformation. The circular
nodes indicate operations, the edges communication, and the boxes con-
stant values. The distributivity transformation allows for the implementa-
tion of the multiplier and adder by means of two shifters and an adder. The
preconditions of the transformation define when the transformation may be
applied from the point of view of correctness. They do not impose a notion
of efficiency. For the distributivity transformation the preconditions define,
among other things, that the transformation requires a ‘1’ and a ‘*’ node,
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that the output of the ‘1’ is connected to the right input of the ‘*’ node, and
that the types of the signals entering and leaving the nodes should be
sufficiently wide to avoid overflow. Theorem 7.3 in Section 7.4 gives an
example of transformation preconditions. The transformation changes the
structure of the graph locally in the transformation domain and thereby
the internal behavior of both transformation domain and graph. Transfor-
mations are defined to keep the external behavior (I/O behavior) on the
boundary of the transformation domain the same. Correctness of a trans-
formation is the same as preservation of external behavior. The external
behavior of the graph (on the input/output nodes) remains the same due to
compositionality of behavior.
The use of local behavior-preserving transformations and compositional-

ity can be exploited when dealing with changing specifications or partition-
ing the design for codevelopment. For instance, if we modify the specifica-
tion by changing the value of the constants in Figure 2, the distributivity
transformation is still valid because the change is outside the transforma-
tion domain. Changing the constants after applying a constant propagation
transformation on the constants and adder would invalidate that transfor-
mation, because the change is inside the domain, and thus requires some
‘redesign’. The formal definitions of transformations and transformation
domains make it possible to track the influence of changes in the specifica-

Fig. 2. Transformation in a compositional design representation.
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tion on the correctness (not necessarily on the optimality) of the existing
design and limit the amount of redesign.
When defining transformations special care has been taken to ensure

that correct data types are used after the application of the transformation
so that no overflow conditions can occur. In transformational design
correctness is guaranteed and is an integral part of the top-down design
flow (Figure 1b). Since it is only possible to design correct implementations,
the designer can concentrate on efficiency.
The correctness of the implementation depends on the ability to build

hardware and software that behaves according to the model assumed for
the implementation. In our case this is a straightforward synchronous
digital model which abstracts from time and assumes that combinational
logic stabilizes before a clock edge arrives. To assure the correctness of the
physical realization with respect to the implementation and the abstract
model we must, for product testing, resort to inexhaustive testing. The use
of techniques known as ‘design for testability’ during the step from specifi-
cation to implementation might significantly improve the test coverage
while minimizing testing time.
For complex designs, such as large microprocessors, many iterations of

silicon are currently needed to assure both correctness of the implementa-
tion and conformance of circuit timing in the realization with the synchro-
nous model while meeting performance constraints. This despite the fact
that just as many engineers are employed for verification as are used for
design tasks.
In this section we have discussed two approaches that can guarantee

correctness of implementation with respect to their specification. As argued
in the introduction the design time and thereby time-to-market can be
significantly reduced by eliminating debug cycles. This results in a prefer-
ence for an approach towards synthesis that achieves correctness by
construction.

3. LIFE-CYCLE-IMPOSED CONSTRAINTS

While minimizing design time is certainly a major issue we feel that the
importance of minimizing time-to-market is sometimes overrated, certainly
in the field of high-level synthesis. Asthana [1995] shows that we are not
alone in this observation. We believe that when taking the complete life
cycle of a design into account, flexibility and efficiency of the design method
are at least as important. If we consider a good design, one that provides
the right functionality at the right time at the right price, it acknowledges
that the balance between functionality, design time, and efficiency changes
during the life of the product.
Because of changing requirements different target architectures and

design flows are needed. This is in contrast to what current ‘vertical’
approaches in synthesis offer, which divide the design space in splices of
application domain and target architecture pairs.
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Rapid system prototyping is used to quickly evaluate a system’s function-
ality or performance. To achieve the desired quick turn-around times and
to reduce the cost of making many design iterations, general-purpose
reusable and programmable hardware is required. The ability to model a
system at different levels of detail is crucial in this phase to speed up
simulation times [Hennessy 1995]. Products initially often have strict
time-to-market requirements in order to capture market share. In product
volume this phase represents only a few percent of total sales. Later on in
its life cycle other considerations become important. High-end features
move down towards the domain of mass production where implementation
cost becomes the dominant driving force.
Marketing issues might demand such things as performance differentia-

tion or low power consumption, requiring parallel architectures in combi-
nation with voltage-scaling techniques. At the same time process technol-
ogy is improving which allows for more sharing of hardware and even more
design trade-offs. Fully exploiting these different requirements and possi-
bilities, while maintaining the same functional behavior, calls for com-
pletely different target architectures. Many examples of such retargeted
designs can be found in the computer and consumer electronics markets.
Unfortunately this differentiation is not supported by existing tools for
high-level synthesis—in fact, it opposes their vertical approach. In Section
6 we will discuss an example of retargeting.
When the design has matured changes are mainly cost-driven. Every

small improvement in efficiency at this stage can result in a significant
improvement in profits because of the high volume. Modifications consist of
small incremental upgrades in functionality, small changes to the specifi-
cation, and further integration and optimization to reduce system cost. This
is typically a ‘replacement market’ where existing products are substituted
by lower-cost versions. Another important difference is that designers have
experience with the design since they have already worked on or seen
previous generations. A design methodology should exploit this experience.
To support the complete life cycle, a design methodology must be very

flexible with respect to the level of optimization and the supported target
architectures. We classify a methodology that supports multiple target
architectures as ‘horizontal’.

4. DESIGN METHODOLOGY

Time-to-market, efficiency, and flexibility with respect to target architec-
ture have been identified as the three issues that must be tackled by a
design methodology that supports the complete life cycle of a system. In
Section 2 we addressed design correctness and proposed the use of formal
and in particular transformation-based methods to reduce design time. In
this section we will investigate how the other objectives can be achieved
and what choices we have made in the development of our design system,
TRADES.
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4.1 Target Independence

Most of the dependence on a specific target architecture in existing design
systems is concentrated in the calculation of the design cost estimators and
the ordering of design steps in optimization algorithms and heuristics. The
actual basic design steps (i.e., transformations) used in different systems,
such as retiming, scheduling, and constant propagation, are very similar
and can be reused in different target-specific design flows after proper
generalization. These generalized transformations, when used in different
order and combinations make it possible to construct multiple target
architectures from an algorithm. Existing design systems, because they use
a fixed sequence of transformations, can only map onto a predefined
parameterized target architecture. In fact, because these systems are
optimized for a particular application domain the input (i.e., the specifica-
tion) indirectly determines the target architecture. A methodology in which
the designer interactively selects which transformation to apply and where
enables the construction of different target architectures from a specifica-
tion. The example of Section 6 will demonstrate how both a processor based
and full custom architecture can be used. Other examples of architecture
construction have been discussed in [Middelhoek 1995].
Generalizing design cost estimators and the ordering of design steps in

heuristics to make them target-independent seems to be much more diffi-
cult. Implementation cost expressed in area, speed, and power is directly
related to the target architecture, as is the ordering of design steps. For
these reasons design cost estimators are no part of TRADES. If required by
the designer they will be provided as add-on analysis tools.
The control data flow graphs (CDFG) often used as design representation

in high-level synthesis [Camposano and Tabet 1989] are not limited to a
specific architecture. On the contrary, CDFGs are very flexible and have
been used to efficiently represent both hardware and software structures
[Middelhoek 1995]. Much literature is available on the application of
different data flow models to the design of digital signal processing sys-
tems. An excellent overview can be found in Lee et al. [1995].

4.2 Efficiency

Achieving efficient and preferably optimal solutions is a difficult problem in
high-level synthesis and much effort has been put in developing good
optimization algorithms. Because of the size of both designs and design
space, and the nature of the optimization problems (many are NP-hard),
optimal solutions can in general not be guaranteed.
We think, and early results confirm this [Middelhoek 1994a; 1994b; 1995;

Middelhoek et al. 1995], that better, more efficient designs can be obtained
by exploiting the flexibility, creativity, and experience of the designer in an
interactive design environment. As noted earlier, in real life a designer
most often already has experience with a design or similar designs.
Automatic push-the-button synthesis tools do not exploit this knowledge.
For this reason, we have chosen to develop a user-centered design method-
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ology, which as a side effect should ease acceptance by designers. Within
TRADES this implies that the selection of design steps (i.e., transforma-
tions) and where to apply them is done manually by the designer, aided by
a rule-based system that can suggest design strategies [Middelhoek 1994b].
Obviously, some well-understood parts of design flows, especially the lower
levels (e.g., logic synthesis), for which good, generally applicable optimiza-
tion algorithms exist, or in cases where efficiency is not the primary
concern, the selection and application of transformations can and will be
automated to further reduce design time. For these situations we suggest
using existing optimization and cost estimation techniques as developed for
silicon compilers on top of our behavior-preserving transformations, to
maintain correctness by construction. The current version of TRADES is
still fully interactive.
For TRADES the above considerations resulted in a combination of

formally verified, designer-selected, preproven behavior-preserving trans-
formations and a CDFG as design representation. This approach is known
as transformational design and is illustrated in Figure 3.

4.3 Existing Solutions

Existing silicon compilers (e.g., Cathedral Compilers [De Man et al. 1986],
Piramid [Woudsma et al. 1990], and the commercial version DSP Station by

Fig. 3. Transformational design.
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Mentor Graphics, Phideo [Lippens et al. 1991], Hyper(-LP) [Chandrakasan
1995]) are specialized towards specific application and target domains. While
this specialization was initially introduced to allow construction of efficient
automatic synthesis tools, consisting of design steps, cost estimators, and
optimization algorithms, it is now more and more becoming a limitation.
Partitioning restricts the design space that can be explored to the common
subset of the application domain and the parameterized target architecture.
This is clearly in conflict with the need to support the complete life cycle. It
also limits the often quoted usefulness of silicon compilers to quickly explore
the design space since the design space is both restricted and fragmented.
Efficiency of the results of these automatic tools is for many applications still

insufficient. While this is improving it must come very close to good manual
designs to be acceptable for mass production applications. This is often still not
the case for anything other than benchmark examples. Piguet [1989] reports that
due to the use of design automation the transistor density normalized to mini-
mum feature size has decreased significantly over the years, indicating less
efficient use of silicon. Experience from the high-volume embedded controller
market shows that efficiencies within 20% of manual designs are needed to
successfully introduce automatic compilation techniques. Such levels of quality
can not yet be achieved consistently using automatic synthesis tools. However, for
first generation implementations where efficiency is less critical silicon compilers
have proven to be valuable tools.
Although the use of formal methods is increasing, design correctness is cur-

rently not very well dealt with. For many systems it mainly depends on simula-
tion and the assumption that automating the synthesis process will reduce the
number of errors compared to manual designs. This is probably true, but at the
same time the complexity of designs increases as does the cost of going to silicon.
Furthermore, due to the black-box nature of silicon compilation systems, tracing
an error in the realization back to its origin can be rather difficult. We also feel
that formal methods do not naturally appeal to chip designers [Musgrave and
Hughes 1995]. To overcome this the formal aspect of a design methodology should
be presented to the designer in a convenient and easy to understand manner. The
use of behavior-preserving transformations that have been proven correct by the
tool designer provides this.
It is also clear that in order to successfully introduce a new design method-

ology, integration with existing tools is essential. For the design of TRADES
integration with the PHIDEO silicon compiler from Philips Research was
required. In the design example in Section 6 TRADES is used to design a very
efficient processing unit for use by PHIDEO which is responsible for schedul-
ing and allocation, and the synthesis of memory and interconnections.

5. DESIGN REPRESENTATION AND TRANSFORMATIONS

The requirements on a representation format that can be used as interme-
diate language between different specification languages and synthesis
systems and as synthesis backbone in transformational design will be
investigated. Issues like expressive power, formal semantics, implementa-
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tion suggestion, and ability to manipulate the format will be addressed.
Furthermore, the transformations required for full-scale transformational
design and related work on transformational design are discussed.

5.1 Design Representation

One of the most important requirements in transformational design is a
representation format with compositional, formal semantics to allow prov-
ing the correctness of transformations. This is unlike VHDL where the
semantics are informally defined by the simulation model. CDFG and the
similar signal flow graph (SFG) design representation formats have shown
to be very useful in high-level synthesis [Camposano and Tabet 1989] and
allow for formalization of their semantics [Huijs and Krol 1994]. An
overview of data flow languages and their semantics can be found in Lee
and Parks [1995]. The best known CDFG variants in high-level synthesis
are those derived from the applicative language Silage [Hilfinger 1985].
They are, for instance, used in the Cathedral [DeMan et al. 1986], Piramid
[Woudsma et al. 1990], and as DFL in the commercial DSP Station tools.
The proven applicability of CDFG languages to digital design and the need
for compositional formal semantics made us choose the CDFG-like lan-
guage SIL [Kloosterhuis et al. 1992; 1993; Krol et al. 1992], which inte-
grates both control and data flow into a single graph and has formal
semantics [Huijs and Krol 1994]. SIL has been developed cooperatively by
Philips Research, IMEC, and the University of Twente as part of the
EC-funded ESPRIT/SPRITE project. It includes support for hierarchy,
structured data types, recursion, multirate, ordering, and control struc-
tures.
The integration of control and data flow allows the same transformations

to be used in both domains. Furthermore, it eases the transition of
functionality between data and control flow as occurs when, for instance,
the amount of hardware sharing is changed. Examples of this can be found
in Middelhoek [1995] where we show how filter implementations with
different levels of hardware sharing, optimized for area and power, can be
derived using transformations. The amount of control flow ranges from
none to extensive control flow in a processor/program-based implementa-
tion. In this last implementation both processor architecture and program
are constructed from the filter algorithm by means of these generalized
design steps.
The use of SIL as a language backbone for transformational design

requires not only possession of the usual abstraction and composition
properties, but in addition both syntax as well as semantics should be easy
to manipulate. In our experience this requires a one-to-one mapping
between syntactic and semantic components. The use of hierarchy as an
abstraction mechanism, in contrast to its use as an information hiding
mechanism, requires the treatment of hierarchically defined operations in
the same way as primitive operations. This includes the ability to trans-
form them without flattening them first. We define a hierarchical opera-
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tion, ?a-b?, which calculates the absolute difference of two signals. The
Abs Diff graph defining this operation is shown in Sidebar I. It should be
possible to apply the same commutativity transformation to an operation
that is defined by the Abs Diff graph as to one defined by the primitive
add operation.
One of the key objectives during the design of SIL was to make it suitable

as an intermediate design representation between functional, applicative,
and imperative languages used for specification (e.g., Miranda, Silage,
VHDL, C) and high-level synthesis tools. This includes translation of the
implementation suggestion hidden in specifications, such as the ordering
and overwriting mechanism in imperative languages. In Huijs et al. [1992]
it was demonstrated how a SIL graph with an imperative implementation
suggestion can be transformed into a functional-style graph. The next
section will discuss our view on the implementation suggestion. Section 5.3
focuses on constructs of SIL, which are required for preserving the imple-
mentation suggestion and are different from most other CDFG languages.

5.2 Implementation Suggestion

While others consider the implementation suggestion an unwanted side-
effect of the specification process requiring a normalization step to dispose
[Chaiyakul et al. 1993; Gajski and Ramachandran 1994; Janssen et al.
1995], we do not. On the contrary, the implementation suggestion may very
well be intended by the designer and contain valuable 9pointers’ in the
design space towards the optimal solution. This is especially so if the
specification is written by an experienced designer. Furthermore, preserv-
ing the original implementation suggestion makes the design process more
transparent to the designer, which is essential in a user-centered method-
ology. Samsom [1995] supports our view of the implementation suggestion.
Since specification and implementation should by definition exhibit

equivalent behavior (a refinement in behavior could be allowed, see also
Section 7.2), adding or changing the implementation suggestion of a
specification is the sole purpose of synthesis. Therefore, any approach not
capable of representing such an implementation suggestion in an unambig-
uous way is not suitable as backbone for synthesis. On the other hand,
being able to change or remove part of the implementation suggestion is
essential. Techniques proposed in Chaiyakul et al. [1993]; Janssen et al.
[1994] are useful for this latter aspect but neither is capable of obtaining a
unique, normalized representation for each behavior. Due to the (intention-
al) ambiguity in the representation of the implementation suggestion in
Chaiyakul et al. [1993], we think the format is not suited as backbone for
synthesis.
Figure 4 shows an example with parameterized data types where main-

taining the implementation suggestion is important. The graph on the left
most closely matches the implementation suggestion contained in the
specification. Many automatic synthesis tools apply a design step known as
tree height reduction, which is based on the associativity property of

216 • P.F.A. Middelhoek and S.P. Rajan

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.



addition, to reduce the depth of the logic in adder chains, as shown on the
right. This step potentially reduces the critical path, power consumption,
and increases the amount of parallelism [Chandrakasan et al. 1992].
However, because of the unbalanced data types in this instantiation of the
parameterized design, tree height reduction has the opposite effect and the
critical path, in fact, increases due to the larger circuit size. Apparently the
designer had additional knowledge about the relative sizes of the data
types when the specification was written, which was not explicit from the
behavior but was contained in the implementation suggestion.

5.3 SIL Syntax and Informal Semantics

In this section, the relevant aspects of SIL will be discussed. Figure 5
shows a simple recursive SIL graph FAC which calculates the factorial of
natural numbers.
A SIL description consists of one or more graphs of which one is

identified as the top level, system graph. A SIL graphs consists of nodes,
data flow edges, and sequence edges. Nodes denote operations. They ‘fire’ a

Fig. 4. Implementation suggestion.
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result after they have received all necessary input values. These values are
communicated along the data flow edges according to a single token flow
model—i.e., there can be no accumulation of tokens on edges. Sequence
edges, represented by dotted arrows, define additional constraints on the
firing order besides those imposed by the data causalities. They are
required for modeling the overwriting mechanism of imperative languages
and can be used to indicate scheduling constraints. In a SIL graph input
and output nodes serve as communication ports to the outside world.
Besides the primitive nodes whose definition is part of the language, such
as the ‘1’ node, a SIL graph like the FAC graph can be used as definition
for (recursive) hierarchical nodes. Recursion is used to model loops. As
mentioned in the previous subsection, SIL is a control data flow graph
language which integrates control and data flow in a single graph. The
small open (or solid) bullets on the side of some nodes are condition ports. A
true (false) value on an open (solid) bullet indicates execution of the node. A
false (true) value denies execution and in our example recursion is termi-
nated. A denied node in that case fires an empty token, which we will
discuss later. This distributed control model has some significant advan-
tages over the common ‘switch/branch’ and ‘merge’ nodes. The control flow
is localized which is required when using local transformations and avoids
some of the problems normally associated with crossing boundaries of basic
blocks. Furthermore, the single token flow execution model is preserved.
One important aspect in which SIL is different from the single-assign-

ment language Silage, is language support for modeling the overwriting of
variables in imperative languages. This construct is called a join. A join can
be found on the input (or sink) port of the output node where two data-flow
edges come together. The semantics of this construct is that the last
arriving nonempty token is accepted. Note that in Figure 5 a sequence edge
is used to impose this firing order. If only empty tokens arrive, an arbitrary
value from the type is chosen. To determine which token arrived last the
inputs to the join are statically ordered. In our example this is done by
means of a sequence edge. This construct eases the translation of impera-
tive languages to SIL and helps preserve the implementation suggestion.

Fig. 5. Recursive SIL graph for factorial calculation.
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The factorial example demonstrated the basic features of SIL. The timing
and unfolding model will be explained by means of a simple accumulator
circuit shown in Figure 6a.
Figure 6a shows the SIL representation of a simple circuit that sums all

incoming data. In CDFG and SFG representations each edge represents an
infinite stream of tokens. This representation is actually a shorthand
notation for the infinite dependency graph shown in Figure 6b. Like Silage,
the ‘@’ operation maintains state information and represents the connec-
tion between different unfoldings. Since synchronous digital hardware and
many signal processing algorithm operate on an infinite number of samples
the SIL syntax implicitly models this infinite loop, i.e., Figure 6a is a
shorthand notation for 6b. Figure 6a can be obtained by folding the
dependency graph from Figure 6b. This process is very similar to the
folding (projection) techniques used in array processor synthesis where
dependency graphs are folded onto a regular array of processing elements
[Kung 1988].
In Figure 6c a partially folded, multirate SIL description of the circuit is

shown. The upsample (US) and downsample (DS) nodes function as cyclo-
static de/multiplexers. The numbers indicate the active phase. During this
phase the US nodes consume a token from their input and fire it at their
output. An empty token is produced during the other phases. The step from
Figure 6a to c can be made by means of simple transformations. Therefore,
both exhibit exactly the same behavior. We will now roughly estimate the
power consumption of both circuits. The area of Figure 6c is about twice

Fig. 6. Accumulator circuit (a) Folded SIL representation (b) Unfolded data dependency
graph (c) Partially folded SIL graph.
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that of Figure 6a. The critical path however, assuming the use of ripple
adders, is in first order equal (bit delay 1 word width z carry propagation
delay, versus 2 z bit delay 1 word width z carry propagation delay). To
maintain the same throughput, the operating frequency of the adders can
be halved. This allows a reduction of the supply voltage from 5 to 3 Volts
and a power reduction of a factor 2.5 in a CMOS implementation. In
Middelhoek [1995] we have shown how space-time mappings can be used
for both power and area optimizations.
Some important aspects of SIL that we have skipped are the typing and

parameter mechanisms. All ports in SIL are typed. SIL supports the use of
bit, bit-vector, abstract integer, and structured types (arrays, records, etc.).
The parameter mechanism of SIL can be used to describe and transform
designs which for instance use parameterized types (Figure 4). This was used
but not shown for the Abs Diff design in Sidebar I. A complete definition of
syntax and informal semantics of SIL-1 and -2 [Kloosterhuis et al. 1993; 1993]
is on our Web site: ^http://wwwspa.cs.utwente.nl/aid/aid.html&

5.4 Transformations

Our design flow is based on the consecutive application of preproven
behavior-preserving transformations. The use of preproven generalized
transformations in a compositional design description eliminates the need
for (post-) verification or simulation steps. Verification has been performed
during the implementation of the design tool freeing the chip designer from
this effort and minimizing run-time overhead. A transformation is said to
be correct if the set of behaviors allowed by the implementation is a subset
(i.e., a refinement) of the behaviors permitted by the specification. In
Section 7.2 a formalization of the notion of refinement is given.
The definition of a transformation consists of preconditions and actions.

Preconditions define if a transformation may be applied to a selected part
of the graph without compromising correctness. The designer has to decide
where and when a transformation is applied; preconditions do not contain a
notion of optimality. For the example distributivity transformation shown
in Figure 2 the preconditions state how the ‘1’ and the ‘*’ should be
interconnected and how the data types of the inputs and outputs of the ‘1’
node should relate to avoid overflow. Theorem 7.3 in Section 7.4 shows the
preconditions of a transformation. The actions state which elements should
be removed from or added to the original graph to execute the transforma-
tion.
Transformations are defined to be primitive, small, and local. Primitive

implies that redundancy in the set of transformations is minimized, i.e., a
transformation cannot be further decomposed into smaller behavior-pre-
serving transformations without moving to a lower level of abstraction.
Smallness is required to ensure that it is reasonable to verify the correct-
ness of both the definition and implementation of the transformation.
Achieving correct implementations can be further aided by reverse map-
ping techniques where both the forward transformation and its inverse are
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implemented independently [Józwiak 1995]. Locality is needed to exploit
the compositionality of behavior. It also guarantees that execution of
transformations is nearly instantaneous and independent of the size of the
design.
At first sight it may seem that some transformations, such as partition-

ing, are global, but this is not the case. While the decision about where to
partition is a global problem the partitioning itself can be done by many
small local steps. The same is true for scheduling. In Samsom [1995] it is
claimed that loop transformations cannot be tackled with this approach,
but as we have shown in Middelhoek [1996] loop transformations discussed
in Samsom [1995] can in fact be decomposed into smaller transformation
steps.
In high-level synthesis we recognize three tasks: optimization of the

algorithm, refinement to a lower level of abstraction closer to hardware,
and dealing with the time space trade-off, i.e., defining the relation
between operations in the algorithm and (hardware) operators. These tasks
are reflected in the three categories of transformations we identify: optimi-
zation, refinement, and assignment transformations.
Examples of the first category, of which many are inspired by software

compiler optimizations, are algebraic transformations, like the one shown
in Figure 2, and constant propagation, both of which change the structure
of the algorithm. Examples of refinement transformations are strength
reduction, decomposition (of for instance a constant multiplier into a shift
operation), and transformations between different data types. Good meth-
ods for dealing with data typing are very important both from a correctness
and efficiency point of view. Achieving bit-true behavior between the
original design and the transformed one is nontrivial [Middelhoek 1994a].
The same is true for the calculation of minimal bit-widths to optimize area
and timing. The structure of the algorithm in time and space can be altered
by means of retiming, multirate, loop, and scheduling transformations.
Traditionally most emphasis in high-level synthesis has been on scheduling
and allocation steps [Gajski and Ramachandran 1994; Walker and
Chaudhura 1995]. An overview of transformations used in TRADES can be
found in Engelen et al. [1993].
Figure 7 shows examples from the three categories. The tail merging

transformation is used to merge identical operations in two mutually
exclusive data paths, like the ones generated in the translation of if-then-
else constructs. The transformation is used in the design of the Abs Diff
function as shown in Sidebar I. In Section 7 the correctness proof of this
transformation is discussed. The second transformation from Figure 7 is
used for the implementation of the conversion between data types which
use the same representation but different interpretation: bit vectors inter-
preted as 1-complement and those interpreted as 2-complement. This is
modeled by means of Abstraction (A) and Representation (R) nodes. The
inverse conversion from 2- to 1-complement is somewhat more difficult due
to the required extension of the representation. The last transformation is
a variant of retiming. To illustrate its use we have already supplied values
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for the constants. On the left side the designer specified a delay element
with a static though as yet undetermined amount of delay between 0 and
10. In SIL this can be specified by means of the special top ‘T’ constant
which represents an undetermined value of the type. The first constant-
splitting transformation uses some of this design freedom—the delay is at
least 1 and may be up to 10. This allows the designer to specify that the
latency of the circuit may be altered (within bounds), as is often the case in
signal processing applications where throughput is the constraint. The
second pipelining transformation rewrites the single delay element into the
concatenation of two delay elements. These transformations allow the
designer to deal with flexible latency while remaining within the bounds of
the specification.
In TRADES the designer instantiates a generalized preproven transfor-

mation from a menu and applies it to a selected part of the design. The
design system automatically checks if the preconditions of the transforma-

Fig. 7. Optimization, refinement and assignment transformation.
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tion are satisfied; if so, the transformation is executed on the selected part,
otherwise the designer is informed why.

Design of an Abs–Diff

An important part of the video conversion algorithm described in Section 6 is the
Abs Diff block discussed here. It calculates the absolute difference between two signals
and is used to estimate the direction of edges. The block is reused four times in the
original algorithm. Because the four different instantiations of the design require
different data types, the design of the Abs Diff function is parameterized in the data
types. This introduces some additional problems which will not be discussed in this
paper. We use transformations to derive the same solution obtained previously at Philips
Research using manual design.

Figure 15a shows the specification of the Abs Diff block in Pascal-like pseudocode. It
will be optimized for area. The use of integer data types is assumed but not shown in the
figures. The straightforward translation of the pseudocode into SIL is shown in Figure
15b. The open and solid bullets on the left sides of nodes are conditions and are used to
model conditional execution. A true (false) value on an open (solid) bullet indicates that
execution is enabled. The dotted edge is a sequence edge and models an extra constraint
on the firing order of the nodes.
To reduce the area required for implementing the design the number of and cost per

operation must be minimized. The former can be achieved by reducing redundancy and
increasing the amount of hardware sharing. Operation cost can be minimized by exploit-
ing special cases for which efficient implementations exist. Both objectives can be
achieved by first performing a refinement step of operations and data types. Sharing and
redundancy reduction are further aided by applying transformations based on, for
instance, commutativity and the algebraic identity relation to regularize the graph.
Figure 15c shows the result of these steps and temporarily moving the conditions to
assign nodes which in combination with the join model a multiplexer. The design after
redundancy is removed using common subexpression elimination on the multiply and add
nodes is illustrated in Figure 15d.
Figure 16e shows further refinement utilizing type transformations, from the integer to

the 2-complement bit-vector domain, and exploitation of special cases. A valid intermedi-
ate step could be first typing the .-1 sections of the graph in 1-complement where this
operation can be realized using a simple vector-wide bit inversion. Tail merging, which is
formalized in Section 7, is used for merging mutually exclusive operation in Figure 16f.

Fig. 15. Abs Diff example.
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The final result after further tail merging, and clustering of the primitive operations in
such a way that the behavior of the clusters corresponds to that of the building blocks in
a hardware library, is shown in Figure 2g.
As illustrated in Figures 15 and 16, a combination of data path optimizations (e.g.,

algebraic transformations and common subexpression eliminations), refinements (e.g.,
strength reduction and type transformations) and control transformations (e.g., condition
moving) is needed for the complete design. The final result is much smaller and
somewhat slower than the original. Notice that the initial transformation steps actually
increase the size of the design—this behavior seems to be typical. Specifications often
represent a local optimum since designers tend to optimize the obvious inefficiencies and
use high-level generalized operators. Our experience indicates that a very large set of
transformations is needed to deal with real-world designs. Even the small Abs Diff
design required more than 25 different kind of transformations. Other systems do not
offer such a wide spectrum of transformations and are often limited to data path
optimization and some refinements. In the final implementation of the video processing
algorithm the solution shown in Figure 16g is not used. We found that still better
optimizations are possible is we take the context of the Abs Diff block into account. This
requires a partial flattening of the design. While area optimization was the primary
objective in the Abs Diff example, the methodology can also be applied to minimize
power or increase speed which typically requires the use of time-space transformations
[Middelhoek 1994a; 1994b; 1995; Middelhoek et al. 1995].

The set of transformations required for full-scale transformational design is
very large even though we have attempted to minimize this set by using
generalized, primitive transformations. For instance, if we would not use
generalized transformations, over 20 different variants of associativity
using different data types and operations would have to be defined. Even
for the transformational design of the small Abs Diff design, which calcu-

Fig. 16. Abs Diff continued.
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lates the absolute value of the difference of two signals, shown in Sidebar I,
well over 25 different kinds of transformation are needed (not counting
type transformations). Janssen et al. [1994] suggested that selecting a set
of transformations for transformational design is “relatively simple”; our
experience however indicates the opposite. The set of primitive transforma-
tions needed in full-scale transformational design necessary for achieving
correctness by construction, is very large and directly related to the
expressive power of the design representation. Preferably we would like to
define a complete set of primitive design transformations. A set of primitive
transformations is said to be complete if for all pairs of behaviorally
equivalent designs in the design space, there exists a valid sequence of
primitive transformations between them. In general there will be more
than one set of transformations that satisfies this property. Vemuri [1990]
presents a method for proving the completeness of a set of 18 RTL design
transformations for the Single Architectural Register Transfer model.
Unfortunately this representation model is very simply compared to SIL
and uses only structural transformations. Furthermore, the proof assumes
the existence of a normal form of a behavior and the use of invertible
transformations. As far as we know such a normal form is not known and
attempts to define one [Chaiyakul and Gajski 1993; Janssen et al. 1994]
have failed. Because transformations on SIL can reduce design freedom (for
example the constant-splitting transformation shown in Figure 7) they are
generally not invertible.
Because of the large number of transformations, the efficiency of the

process of implementing and verifying transformations requires special
attention. Manual verification of all transformations required in the com-
plete system is not feasible and a mechanized approach is needed. In
Section 7 we propose a novel method for the verification of transformations
on CDFGs.

5.5 Related Work

The use of transformations for the design of both software and hardware is
not new. While formal program refinement techniques never really caught
on, the use of transformations in software compilers is common [Aho et al.
1986; Loveman 1977]. There are, however, several aspects that make
hardware design different from software design and the use of formal
techniques more attractive. In hardware design, rebuilding hardware nor-
mally has a very high cost and is time-consuming. Furthermore the
efficiency and real-time requirements are also very stringent compared to
most software.
Many (partially) transformation-based design systems exist or are under

construction as part of larger projects. The HYPER system developed at the
University of Berkeley [Brodersen 1992; Chandrakasan et al. 1992; Iqbal et
al. 1993; Potkonjak and Rabaey 1994] provides a set of transformations for
automatic algorithmic-level design optimization. HYPER consists of trans-
formations from the optimization, refinement, time-space assignment cate-

From VHDL to Efficient and First-Time-Right Designs • 225

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.



gories. The refinement transformations are however limited to strength
reduction. Silage is used as specification language and translated to the
HYPER CDFG [Rabaey and Hoang 1990]. Repetition is modeled by means
of iteration nodes. Conditional execution is emulated through multiplexer-
like constructs. Within HYPER many automatic optimization scripts have
been developed successfully for different purposes, including optimizing
resource utilization, critical path and power reduction, and to improve
testability. The transformations are not verified and designs are not
bit-true with respect to the specification [Middelhoek 1994a]. Simulation is
required to evaluate both correctness and the numerical behavior of the
transformed design. The methodology is therefore not correct by construc-
tion. The system does not support mixed-level designs or refinement (of
data types) nor does it support the construction of architectures. TRADES
and HYPER are largely complementary. The automatic optimization algo-
rithms developed for HYPER could be applied within TRADES while
HYPER could benefit from our more powerful CDFG language, support for
VHDL, and much larger set of preproven design transformations which
guarantees correctness by construction.
The CAMAD [Hallberg and Peng 1995; Peng et al. 1989; Peng and

Kuchcinski 1994] high-level synthesis system uses automatic transforma-
tions for scheduling and allocation. Algorithms written in Pascal or Behav-
ioral VHDL used for specification are translated into an Extended Timed
Petri Net representation in which data and control flow are separated. In
comparison with TRADES this system is automatic and only supports a
very small part of the design path from high-level specification to efficient
implementation. For hardware/software codesign the ETPN representation
is partitioned in a hardware and software part [Stoy and Peng 1994]. The
hardware part is synthesized using CAMAD while C compilers are used for
software synthesis. However, for many applications (e.g., DSP based sys-
tems) where codesign techniques are useful the quality of code produced by
C-compilers is not nearly sufficient. Furthermore, for many DSPs such as
those used in Section 5, no C compiler is available. While their approach is
interesting for prototyping we feel hardware/software codesign of commer-
cial products will require many more transformation steps and could be
better tackled with TRADES.
For automatic optimization of sparsely-multiplexed data paths at the

algorithmic level the GATE tool [Janssen et al. 1994] has been developed at
IMEC, Belgium. The tool uses optimizing, strength reduction, and retiming
transformations. The optimization strategy is based on transforming DFG-
based specifications of data paths into a pseudo-normalized expanded form.
Normalization makes the optimization more or less independent from
variations in the specification. In the next step area is minimized by
transforming using a ‘greedy algorithm’. GATE is one of the few systems
that discusses problems related to the assignment of data types in a
behavior preserving way. Compared to TRADES this approach provides a
much smaller set of transformations (no refinement for instance), uses a
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simple architectural model, does not support control flow and purposely
removes the implementation suggestion.
For the optimization of specifications which use multidimensional sig-

nals, such as those from the video and image processing domains, Syn-
Guide [Samsom et al. 1993; Samsom 1995] has been developed at IMEC,
Belgium. The tool provides (affine) transformations on loops with manifest
(i.e., data-independent) bounds. Transformations are performed on Silage
and can be used in both an interactive and automatic mode using the
memory optimization tool MASAI [Franssen et al. 1994; Samsom et al.
1994]. A geometry-based verification model has been developed for auto-
matic post-verification of the design after applying loop transformations.
SynGuide is very application-specific compared to TRADES and used
post-verification, but it shares our philosophy on the implementation
suggestion and interactive design.
The Olympus tool set developed at Stanford University [De Micheli et al.

1991] is oriented to high- and low-level synthesis. The tool achieves some
target architecture independence by using bottom-up synthesis to calculate
design costs instead of using architecture dependent cost estimators. Hard-
wareC is used as specification language at the algorithmic level. As
internal format at the behavioral/algorithmic level the Sequencing Inter-
mediate Format (SIF) is used. The Hercules tool for behavioral synthesis
provides both interactive, such as hierarchy expansion, and automatic
transformations like loop unrolling, constant propagation, common subex-
pression, and dead code elimination. The tool only provides a very small
number of transformations and uses simulation to determine correctness.
A complete set of transformations is defined for a class of RT-level

designs called Single Architectural Register Transfer designs [Vemuri
1990]. This work is limited to structural transformations (basically sched-
uling and allocation) which can be used as basis for an interactive design
exploration tool. While the architectural model is very simple the work is
interesting because it addresses the completeness problem of a set of design
transformations as discussed in Section 5.4.
As part of the Format project [Tiedeman et al. 1993] behavior-preserving

transformations are used to synthesize behavioral specifications of commu-
nication dominated hardware into structural VHDL. Specifications are
defined by means of timing diagrams which are translated to T-LOTOS. An
interactive bottom-up transformational approach is used. Each transforma-
tion adds a module to the current partial (initially empty) implementation.
A transformation is correct if there exists a remainder that when combined
with the new partial implementation implements the specification. This
approach is completely different from TRADES.
The System Architect’s Workbench [Thomas et al. 1988; Walker and

Thomas 1989] uses the Value Trace CDFG as design representation. For
specification, the Instruction Set Processor Specification (ISPS) language is
used. Transformations supported include hierarchy introduction, expan-
sion, constant propagation, loop unrolling, and common subexpression
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elimination. Interactively used transformations on the control flow are
discussed in Walker and Thomas [1989]. McFarland investigated the
correctness of transformations in the System Architect’s Workbench. Sev-
eral errors were found, often related to incorrect use of bit array data types.
The Yorktown Silicon Compiler-based [Brayton et al. 1988] system [Cam-

posano 1989] emphasizes transformations to improve scheduling and allo-
cation. The computations and control structure are not changed. The
Yorktown Internal Form, which is similar to CDFG languages, is used as
intermediate language. The transformation steps used for scheduling and
allocation are proven correct. Correctness by construction is based on
transivity of behavioral equivalence but no use is made of compositionality.
Most systems incorrectly ignore the influence of data typing on both

correctness at the bit-level [Middelhoek 1994a] and efficiency (Section 5.2,
Figure 4). Very few can guarantee correctness because the transformations
are not formally verified. That formal verification of transformations is not
a luxury has been shown in Rajan [1995; 1995] and McFarland [1993].
Furthermore most of these systems employ an automated approach to the
application and selection of transformations. To facilitate this they limit
the application domain to, for instance, data path [Janssen et al. 1994] or
memory optimization [Samsom et al. 1994].
Although such approaches have proven to be useful in many cases

(examples include memory reduction, optimizing resource utilization, criti-
cal path and power reduction, and to improve testability, and scheduling,
allocation), we found that they are too limited for full-scale transforma-
tional design.

6. DESIGN OF AN IPS CONVERTER

In this section the interactive design of both a real-time multi video-signal
processor based prototype as well as a full-custom implementation of a
real-time video processing algorithm are discussed. As a test case for our
transformational design methodology we have selected the edge direction
detection section of interlaced-to-progressive scan conversion (IPSC) algo-
rithms. Figure 8 shows a diagram of the complete IPSC processor.
IPSC algorithms are used to double the screen retrace frequency by

interpolating intermediate scan lines of a field of an interlaced frame. If an
edge is present in a field, interpolation takes place in the direction of the
edge. Detection of edges is based on the gradient in the luminance. Three
gradients are calculated, based on the difference in luminance of three
pairs of opposing pixels in the line before and after the estimated line. The
smallest gradient indicates the direction of the edge. In combination with
linear interpolation of the luminance signal this is known as the edge-based
line average (ELA) algorithm. A diagram of the direction detector is shown
in Figure 9. A more detailed description can be found in Middelhoek
[1994b] and Middelhoek et al. [1995]. Our direction detector was used in
combination with an extended form of the ELA algorithm which first feeds
the input signal through two low-pass filters and uses median interpolation
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instead of linear interpolation (Figure 8). This last modification requires
the luminance of the pixel from the previous field with the same spatial
location as the pixel to be estimated. Recent extensions to the filter include
the use of motion compensation for determining the correct pixel from the
previous field. Further extensions have been proposed in Lee et al. [1994],
which also contains a more complete overview of the algorithm and its
history.
We have selected the direction detector because it is relevant in industry

and currently used in television systems and could also prove useful for
IPSC in the new HDTV standard [Basile et al. 1995]. In a previous custom
implementation the direction detector accounted for 40% of the size of the
data path while the field and line memory consumed the most chip area.
The example has been studied extensively both at Philips Research [Lippen
et al. 1991] and IMEC [Sahraoui and Rijnders 1992] as part of the
ESPRIT/SPRITE project and both a prototype and custom implementations
have been developed. This allows us to compare our results with respect to
efficiency and flexibility with those obtained previously using different
methodologies and tools.
Using our methodology we interactively designed two implementations

for the direction detection algorithm, starting from a single high-level
VHDL specification. A prototype software implementation was designed for
realization on a multi video-signal-processor based prototyping system.
This system has been developed by Philips [van Roermund et al. 1989] for
the evaluation of video processing algorithms in real time. In addition an
efficient, low-cost full-custom hardware implementation was designed. For
the latter the PHIDEO silicon compiler was used to synthesize the memory
and interconnection structures as shown in Figure 8. This approach has the
advantage that changes in the memory access profile, due to modifications

Fig. 8. Architecture of a line interlaced-to-progressive scan conversion processor.
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in the latency of the direction detector, can be easily and automatically
accounted for. The two designs are typical for the kind of implementations
that are developed during the life cycle of a product. Figure 10 illustrates
both design flows. Each box except for the VHDL-to-SIL translator repre-
sents the application of a number of transformations. The designer inter-
acts with TRADES by selecting a transformation from a menu. By selecting
a part of the graph the designer indicates where TRADES must apply the
transformation when the preconditions of the transformation are satisfied.
Estimating the cost of design alternatives is not part of TRADES and must
be assessed by the designer or estimated by external tools.
Our prototype was compared to one previously implemented at Philips

Research. To evaluate our synthesis results with respect to flexibility and
efficiency we derived two alternative custom implementations starting
from VHDL. First, as a reference to the current state of commercial
synthesis tools, a direct implementation of the high-level VHDL description

Fig. 9. Flow graph of a direction detector for IPSC algorithms.
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of the edge detection algorithm was synthesized with Viewlogic Systems’
ViewSynthesis (VS) version 2. Next, an implementation was derived using
VS starting from a lower-level, manually optimized structural VHDL
specification developed at Philips Research which is illustrated in Figure 9.
At IMEC this same structural specification, although specified in ELLA,
was further optimized for area and speed using synthesis tools from the
academic community. The results obtained at IMEC are scaled towards the
VS system by using the original Philips implementation as a reference. We
refer to these latter two respectively as the ‘structural’ and the ‘optimized
structural’ specifications. Results are compared to those obtained using
TRADES and VS as a back end for low-level synthesis. Figure 11 shows the
different paths. We used extensive simulation to verify the correctness of
our results. Both implementations obtained using TRADES were indeed
correct by construction even though TRADES is not yet fully implemented
and verified.

6.1 VHDL to SIL Translation

Different approaches to the translation of VHDL to SIL have been investi-
gated. Within both Philips and the University of Twente experimental tools

Fig. 10. Design flows for prototyping and custom hardware design.
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for the semantics-based translation of a subset of VHDL to SIL have been
implemented. Such a semantics-based approach has, however, some signif-
icant drawbacks. The translation process is complicated because it requires
the interpretation of the meaning of a VHDL description. Furthermore it is
limited to a subset of VHDL, requiring complex synthesis guidelines to
define the synthesizable subset which again introduces compatibility prob-
lems. Within TRADES we are therefore developing an alternative syntax-
based approach to the translation of full VHDL (with the exception of the
explicit time constructs AFTER and FOR) [Molenkamp et al. 1995; Meken-
kamp et al. 1996]. It requires only a relatively straightforward and trans-
parent statement-by-statement translation which preserves the implemen-
tation suggestion contained in the specification.
After translation a SIL description results which is basically a VHDL

simulator modeled in SIL. Although this represents a valid way to imple-
ment the desired behavior in hardware, it is not very efficient. Therefore,
the resulting SIL description is ‘cleaned up’ and optimized using the same
behavior-preserving transformations as are used in the rest of the design
flow. The designer decides which transformations are applied where and
thereby which part of the original implementation suggestion is preserved.
An important advantage is that the complexity of the translation process is

Fig. 11. Experiment: four alternative design flows from VHDL to silicon.
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now moved to the SIL domain, where correctness can be guaranteed and
transformations reused.
As a starting point the most straightforward high-level VHDL specifica-

tion of the direction detection algorithm was used. This specification was
simple and about a fifth of the size of the structural description that
resulted from the manual design. A first attempt to synthesize this descrip-
tion directly using VS failed because it violated the synthesis guidelines for
VS. After some tuning of the original specification the VS tool accepted the
specification. Note that every manual rewrite of the specification requires a
validation step of the specification by means of simulation. Our VHDL-to-
SIL compiler, however, accepted the initial high-level specification without
any problem and generated useful SIL which was cleaned up interactively
using transformations. This demonstrates the flexibility of the syntax-
based translation method. The low-level structural VHDL description used
by Philips proved to be no problem for VS. Details on the efficiency of the
four alternative paths are discussed in Section 6.5.
For the mapping onto the VSP system we compared our results with an

implementation of the algorithm obtained previously at Philips. Results are
discussed in Section 6.4.

6.2 ‘Clean-Up’ Transformations

An obvious disadvantage of the syntax-based method is the large size of the
SIL graphs that result after the translation. This is somewhat compensated
for by the fact that the straightforwardness and transparency of the
translation process preserves the structure of the original VHDL specifica-
tion, which is especially important in a user-centered methodology.
Due to the syntax-based translation, the VHDL event mechanism ap-

pears in SIL and manifests itself as two nested loop levels, modeled in SIL
by means of recursion. The inner loops model the continued execution of
processes. The outer loop triggers computation if internal events occur (the
delta mechanisms) [Molenkamp et al. 1995; Mekenkamp 1996]. Loop and
other transformations are used to remove this event mechanism. How this
is done largely depends on the structure of the wait-statement in the
original VHDL specification. For the IPS example the clean-up step was
performed interactively. Currently we are working on automating the
recurring parts of the clean-up process. ‘Clean-up’ transformations reduced
the number of operations in the SIL description to 30% of the original. The
final graph after cleaning up looks very similar to the one in Figure 9.

6.3 General Optimizations

Our primary design objective for the direction detector was the minimiza-
tion of area. From Figure 9 it will be clear that the top three comparators
which can be implemented as subtractors can be combined with the
bottommost absolute difference function. The steps used are very similar to
those needed in the design of the Abs Diff function as shown in Sidebar I.
Further optimizations are possible by integrating the top three absolute
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difference functions with the comparators below and not calculating the
absolute difference in all cases. This step requires a partial flattening of the
design. As a side effect the size of the select min/max function can also be
halved because only the correct max-min pair need be selected.
In general, area is reduced by minimizing the number of operations and

implementation cost per operation. The former can be reduced by increas-
ing the amount of sharing or reducing redundancy. If we decompose
operations into more primitive operations the chances for sharing and
redundancy reduction increase. This was demonstrated in Sidebar I. As it
turns out we can use tail merging and common subexpression elimination
in combination with many small transformations (like those based on the
algebraic identity relation) to effectively halve the required implementation
cost.

6.4 Prototype: VSP Implementation

To map the SIL graph onto a processor architecture the behavior of
operations in the graph should correspond to the instructions of the
processor. This requires the clustering of SIL operations (i.e., the introduc-
tion of hierarchy) to make the behavior of the clusters correspond with that
of processor instructions. Furthermore, type transformations are required
to scale the data types of all operations to the (fixed) word width of the
processor.
The mapping of the transformed direction detection algorithm onto the

VSP-2 shows a reduction in operations from 15 to 13. The main reason for
this small gain is that execution of control operations is relatively expen-
sive on a processor. These can only be performed on word-wide signals and
are just as expensive as operations in the data path, whereas the custom
implementation can use efficient single bit-wide signals. Within the small
algorithm this control aspect becomes dominant.
For the scheduling and allocation (i.e., the mapping in time and space) of

the instruction stream onto the processors, commercial tools specifically
designed for the VSP-1 and VSP-2 were used. It would, however, also be
possible to perform these steps within TRADES.
When comparing our prototype implementation to the original prototype

we found a small bug in the original related to an incorrect comparison
operation which had not yet been discovered by simulation. This illustrates
the usefulness of our approach for obtaining correct implementations.
The VSP-based prototyping system can now be used to evaluate the

algorithm in real time. In comparison, our compiled code-based SIL simu-
lator running on a fast HP workstation required 30 seconds per field.

6.5 Custom Implementation

The most important transformations are a combination of strength reduc-
tion and type transformations which allow the mapping of abstract opera-
tions onto lower-level operations which, after clustering, can be mapped
efficiently onto hardware structures. Figure 12 shows the final graph in
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which clustering (i.e., the introduction of hierarchy) is used, for instance, to
construct the adders with carry-in input from two chained SIL adders.
First, the results with respect to area in terms of gate count will be

investigated. Table I lists the gate counts resulting from the four different
design flows shown in Figure 11. The third row shows the maximum

Fig. 12. Flow graph of the optimized direction detector.
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reduction in area obtained at IMEC. Their improvements resulted from
using transformations based on stuck-at detection (i.e., dead code elimina-
tion and constant propagation) and applying them to the original structural
specification (second row). Other transformations that were tried, such as
logic optimization using SIS, actually increased the size of the circuit,
probably because they interfered with regularity of the data path. Their
best results have been translated to gate counts obtained by VS using the
structural implementation as a reference. The large size of the direct
implementation using VS clearly indicates the limitations of the commer-
cial tool. More interesting is understanding the large difference between
the implementation of the manually designed structural specification and
the TRADES results and the relatively small gain obtained in the imple-
mentation of the optimized structural specification. The optimizations used
for the optimized structural implementation were too low-level to result in
a large area gain. They missed the reduction in redundancy possible at the
algorithmic level and the optimizations possible by partial flattening and
later reclustering in a different way. For instance the Abs Diff function
had to be flattened and optimized across the boundary of the hierarchy
because the optimizations shown in the inset were not globally optimal.
Our approach, using TRADES, of first optimizing the algorithm at the
algorithmic level and the possibility to deal with mixed RT- and gate-level
descriptions is much more effective in this example.
To what extent should these improvements be attributed to the design

methodology or to the designer? There is no doubt that the designers of the
structural and optimized structural implementation were more experienced
than we are. We think there are a couple of effects in play. Although we can
not quantify it, our belief is that the transparency of the design process and
use of small design steps significantly improved understanding and hence
quality of the design. Because the designer is stimulated to think about
seemingly obvious design steps he understands the design better and as a
consequence is able to see more efficient alternatives. Secondly there is a
learning effect, as already mentioned in Section 3. By looking at previous
implementations we learned quite a few optimizations. Because our ap-
proach was completely interactive we were able to exploit this. Further-
more, the ability to mix different levels of abstraction allowed us to control
the implementation in sufficient detail to guarantee efficient mapping to

Table I. Gate Count After Different Design Paths
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hardware by the VS synthesis tool, without getting lost in unnecessary
details.
Another important advantage of our methodology is that it allows the

algorithm to be specified as it is most natural to the designer and least
error-prone. Optimizing the algorithm results in a more complex descrip-
tion (just compare the difference between the intermediate design in Figure
9 and the final in Figure 12). The latter would be difficult to notate
correctly without the use of behavior-preserving transformations because
the design is less intuitive and certainly less comprehensible than the
high-level VHDL specification.
The implementation derived from the structural specification required 13

pipeline stages to reach the 27 MHz throughput requirement. Sohraovi and
Rijnders [1992] claim that the optimized structural specification resulted in
a speed gain of 25%. We noted however that it did not seem very likely that
transformations based on stuck-at detection (i.e., constant signal detection)
could result in any speed gain other than that obtained because of fan-out
reduction. It seemed more likely that the reported gain was due to the
inability of the timing tools to calculate data-dependent critical paths. That
this is indeed the case has been confirmed by Sahraoui and Rijnders [1992].
Different optimizations used at IMEC resulted in a speed increase of up to
41% at the expense of area. Delay estimation using a carry-ripple model
indicates a speed gain close to 50% for the implementation obtained using
TRADES.
If we look at power consumption the results obtained with TRADES seem

even more favorable because the improvements in area and speed accumu-
late. The capacitance component in the power equation is half that of the
implementation obtained from the structural specification. In addition the
increase in speed of up to 50% results in fewer pipeline stages than the
structural implementation, again reducing the capacitance component.
Alternatively we could also maintain the same number of stages but reduce
the supply voltage. Of course this would require the other sections of the
design to be speeded up equally, which seems feasible. This results in a
power reduction between 50% and 80%. On the other hand it is expected
that stuck-at based optimizations will result in a power reduction which is
relatively less than the reduction in area. Also, power reductions as a result
of the originally reported speed gains are unlikely.
Although measuring the actual design time is very difficult when work-

ing with prototype tools we observed that it was very small compared to the
time required for gathering all the necessary information on the design.
Our experience indicates that elimination of debug cycles does indeed seem
very effective in reducing design time. To quantify these savings a compar-
ative study of a large number of designs should be part of future work.
This design exercise of an industrial example demonstrated the feasibil-

ity of transformational design. We designed for multiple target architec-
tures very efficient first-time-right implementations, while exploiting exist-
ing tools where possible to further reduce design time.
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7. FORMAL SPECIFICATION AND VERIFICATION OF
TRANSFORMATIONS

We have seen in Sidebar I how a sequence of transformations is used to
optimize and refine specifications at the algorithmic level (also known as
behavior level) into implementations at the register transfer and gate level.
The transformations are correct if the set of behaviors allowed by the
implementation is a subset of the behaviors permitted by the specification.
Trivial implementations that allow an empty sequence of behaviors can be
ruled out by showing either that at least one behavior is allowed by the
implementation, or that the implementation is equivalent to its specifica-
tion with respect to behavior. A transformation transforms one graph
structure into another by removing or adding nodes and edges. An informal
representation would lead to subtle errors, making it difficult to guarantee
the correctness of the transformations. In this section we undertake to
provide guarantees for correctness of transformations on CDFGs, indepen-
dent of the underlying behavior model.1 Our verification technique is very
powerful in that the correctness verification of a transformation holds
irrespective of the size and structure of the graph on which a transforma-
tion is applicable. Furthermore, we relax the constraint that two ports
connected by a data-flow edge in CDFGs are behaviorally equivalent. We
generalize that a data-flow edge can exist between source port and sink
port, where the source port is a subtype of the sink port—i.e., we allow
behavioral refinement between the source and the sink. Such a generaliza-
tion is useful if we need to connect a port which allows a subrange of bit
vectors to a port that can allow arbitrarily-sized bit vectors.
We use a property-oriented approach to address the correctness problem.

In this approach, a small set of basic properties corresponding to SIL
graphs, called axioms, are asserted. The truth of other properties is
checked by applying a small number of inference rules on known true
properties. Such derived properties are called theorems. We use the Proto-
type Verification System2 (PVS) from SRI International to mechanize the
verification scheme. The PVS specification language allows us to specify
the properties using a convenient level of abstraction. The PVS verifier
features automatic procedures and interactive inference rules to check
properties of specifications. The inference rules are based on higher-order
logic [Shankar et al. 1993]. The rest of the section is organized as follows.
We discuss related work in Section 7.1. We provide a formal characteriza-
tion for SIL, and a verification scheme for transformations in Section 7.2. A
brief account of the mechanization in PVS, and results from verifying
various transformations are tabled in Section 7.5.

1 By ‘behavior model’ we mean the model governing the type and history of data values that
the graph may assume.
2 ^http://www.csl.sri.com/sri-csl-fm.html&
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7.1 Related Work

There have been some efforts in analysis and verification of refinement
transformations in the past. However, none of the past work has dealt with
formal verification of the correctness of transformations on CDFG graphs
in general. Most of the efforts have concentrated on specialized hardware
description languages tied to specific behavior models. In comparison, our
work does not depend on any specific model of behavior. This makes it
applicable to a variety of CDFG formalisms used in different high-level
synthesis frameworks. Furthermore, we can handle CDFGs of arbitrary
structure and size for verification, unlike previously proposed techniques.
A formal model was proposed for verifying correctness of high-level

transformations by McFarland and Parker [1983]. A formal system using
transformations for hardware synthesis has been discussed by Fourman
[1990]. A synthesis system for a language based on an algebraic formalism
has been presented by Jones and Sheeran [1990], and its formalization has
been presented by Rossen [1990]. Another algebraic approach to transfor-
mational design of hardware has been worked out by Johnson [1984].
Correctness of register-transfer level transformations for scheduling and
allocation has been dealt with by Vemuri [1990]. A formal analysis of
transformations used in Systems Architect’s Workbench (SAW) high-level
synthesis was studied by McFarland [1993]. Transformations used in YIF
(Yorktown Internal Form) [Brayton et al. 1988] have been proved to be
behavior-preserving [Camposano 1989]. In this work, a strong notion of
behavior equivalence based on an imperative semantics tied to a particular
model of representation is used. A post facto verification method for
comparing logic-level designs against a restricted class of data-flow graphs
in SILAGE was presented by Aelten and others [Aelten 1994]. A formaliza-
tion of SILAGE transformations in HOL was studied by Angelo [1994].

7.2 Formal Characterization of SIL

In this section we first introduce a relation that describes refinement on
ports. The refinement relation is specified without giving a concrete model
of the behavior of ports. This is achieved by providing the basic properties
that the relation has to satisfy under any model of behavior. We then
specify the structural properties that the ports need to satisfy for behav-
ioral refinement. These properties are then used to specify refinement of
CDFGs. The fundamental properties are asserted as axioms, while other
properties are derived as theorems by application of inference rules on
other theorems or axioms. The verification scheme for correctness of
transformations with an illustration of its application to the cross-jumping
tail-merging transformation is discussed in Section 7.4.
We introduce an abstract refinement relation silimp as a relation on

ports3 of the nodes. Thus, if p1 and p2 are sets of ports, silimp(p1,p2) means

3 We could also allow the silimp relation to hold among sets of ports. The size of the sets of
ports could be arbitrary.
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that p1 is a refinement of p2. This relation could be interpreted to mean
that the set of values allowed by p1 is a subset of the values allowed by p2.
It should be noted, however, that we do not constrain the type or history of
data values the ports could assume at any time. The refinement relation
silimp is asserted to have the properties of reflexivity and transitivity. Such
basic properties have to be satisfied under any behavior model of control
data-flow graphs. The equivalence of SIL graphs sileq is defined by intro-
ducing the symmetry property in the refinement relation silimp.
A data-flow edge connecting two ports modifies the behavior of the sink

in accordance with other data-flow edges connecting the same edge output.
The behavior of such a sink, called a join, is determined by an ordering of
the data-flow edges as discussed in Section 5.1. We model this ordering by
associating weights with the data-flow edges. A function w on ports would
return a weight, which could be a number.

Definition 7.1 (Weight)

w: [port,port 3 weight]

This means that we need to compare the weights on the data-flow edges
that form a join. The weights on data-flow edges that do not form a join
need not be compared. However, the definition of SIL specifies that no two
data-flow edges communicate tokens simultaneously into a join, and no two
weights on the edges forming a join can be equal. This suggests that we
need a reflexive, transitive, and antisymmetric ordering relation on
weights: such a relation is called partial order. We define a partial ordering
relation4 , on weights, and assert that the weights are ordered if and only
if the associated data-flow edged form a join. A data-flow edge between port
p0 and p1 is indicated by the relation dfe(p0,p1). The axiom is specified as
follows:

AXIOM 7.1 (Partial order on weights)

FORALL (p0,p1:p2:port):
NOT (p0 5 p1)
IMPLIES
dfe(p0,p2) AND dfe(p1,p2)
IFF

(w(p0,p2) , w(p1,p2) OR
w(p1,p2) , w(p0,p2))

We describe the property that the behavior of a join depends on the
ordering of the data-flow edges, by comparing weights on the edges flowing
into the join port. We state the property that the join port is in a
refinement relationship with the source whose associated data-flow edge
has the maximum weight:

4We do not employ the usual notation ,5 to stress that no two weights on different edges
forming a join can be equal.
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AXIOM 7.2 (Behavior of join)

FORALL (p1,p2:port)):
(FORALL (p:port):
w(p,p2) , w(p1,p2)) IMPLIES

silimp(p1,p2)

We can derive the behavior due to a data-flow edge whose sink is not the
output of any other data-flow edge. We will call such an edge an exclusive
data-flow edge (xdfe). The behavior due to such an edge is derived as the
following theorem:

THEOREM 7.1 (Behavior in the absence of join)

FORALL (n1:graph),(p:port):
xdfe(outport(n1),p)
IMPLIES
silimp(outport(n1),p)

We emphasize here that source port connected to a sink port by a data-flow
edge has a behavior which is a subset of the behavior of the sink port. This
means that the set of values that the source can assume is a subset of the
set of values that the sink can assume. Such a refinement relationship,
which is more general than a strict enforcement of behavioral equivalence,
allows a data-flow edge between a subtype port (such as a fixed range of bit
vectors) to its supertype port (arbitrarily-sized bit vectors).
We can now associate the refinement and equivalence relation with a

complete graph by using the properties expressed above. A graph refines or
implements another graph when the data relation of the implementing
graph is contained in the data relation of the specification graph. This
property is expressed by the final axiom as follows:

AXIOM 7.3 (Graph refinement)

FORALL (n0,n1:graph):
refines (n0,n1) AND
silimp(inports(n0),inports(n1))

IMPLIES
silimp(outport(n0),outport(n1))

7.3 Compositionality

The axiom of refinement 7.3 allows us to provide a compositional proof of
correctness of transformations: i.e., the refinement of component subgraphs
of a graph G ensures the refinement of G. This allows us to assert that if a
transformation is applied locally to a subgraph g of a graph G, leaving the
rest of the graph unchanged, then the graph G undergoes a global refine-
ment transformation. Thus, we can state the following theorem:
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THEOREM 7.2 (Compositionality of Refinement). Let g1, g2,. . . ,gN be the
component subgraphs of G and g91, g92,. . . ,g9N the subgraphs of G9. If every g9i
is a refinement of gi, then G9 is a refinement of G. i.e., ( i: refines (gi

9, gi)) f
refines (G9, G)

The proof follows by induction on graph structure. A detailed proof is given
in a doctoral thesis [Rajan 1995].

7.4 Verification of Transformations

The general method we employ to specify and verify transformations
consists of the following steps:

(1) Specify the structure of a SIL graph, i.e., the transformation domain, on
which the transformation is to be applied. The structure may have
arbitrarily-sized ports or an arbitrary number of ports.

(2) Specify the structure of the SIL graph, i.e., the transformation domain,
expected after the transformation is applied. The structure may have
arbitrarily-sized ports or an arbitrary number of ports.

(3) In the case of verifying refinement, we impose the constraint that the
corresponding inputs of the SIL graphs before and after transformation
are silimp—that is, the set of input values to the SIL graph after
transformation is a subset of the set of input values to the SIL graph
before the transformation. For behavioral equivalence, the constraint is
imposed as sileq: the sets of input values to both graphs are identical.

(4) Verify the property that the outputs of the SIL graph before transfor-
mation are silimp—that is, the outputs of the SIL graph after transfor-
mation are refinements of corresponding outputs of the SIL graph
before transformation. In the case of behavior-preserving transforma-
tions, the corresponding outputs are verified to be sileq.

We illustrate this scheme in the cross-jumping tail-merging transformation
from Figures 7 and 13 and used in the Abs Diff example of Sidebar I. In
this transformation, two conditional nodes of the same kind whose output
ports connect to the same sink are checked for being mutually exclusive—
that is, that the conditions on both of the conditional ports are not true (or
false) at the same time (when exactly one of them is true at any time). In such
a case, the two nodes can be merged into one unconditional node of the same
kind, and the conditions moved to the nodes of the subgraph connecting it.
In the course of our verification we found a mistake in the informal

specification of the transformation. The conditions had incorrectly been
placed on the nodes n0 and n1 instead of m0 and m1. Furthermore, we
could relax the mutual exclusiveness constraint, which is a weakening of
the precondition. We introduce the assumption that the ordering of the
data-flow edges coming out of the nodes m0 and m1 in the original graph is
the same as the ordering of the dataflow edges coming into the node m01 in

242 • P.F.A. Middelhoek and S.P. Rajan

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 2, April 1996.



the optimized graph. We have suitably modified, generalized, and verified
the transformation. The generalized transformation is shown in Figure 14.
The transformation is stated as a theorem as follows:5

THEOREM 7.3 Cross jumping tail merging

FORALL (par0,par1,par00,par11,r1,r2:port),
(m0,(m1:same kind(m0,m1)),
(m01:same kind(m0,m01)):graph):
% Initial graph structure: exclusive data
flow edges at input ports of m0 and m1 -
joins disallowed at input ports

xdfe(par0,inports(m0)) AND xdfe(par1,inports(m1))
AND
% Ordering of Weights of edges at output ports
of the initial graph structure are
the same as that at the output ports of
the final graph structure

(w(outport(m0),r1) , w(outport(m1),r1)
IFF

w(par00,inports(m01)) , w(par11,inports(m01))) AND
% port r1 is connected to output ports of
m0 and m1, and no other port

dfe(outport(m0),r1) AND dfe(outport(m1),r1) AND
(FORALL pp: (pp /5 outport (m0)) OR
(pp /5 outport(m1)))

IMPLIES
NOT dfe(pp,r1)) AND
% Final graph structure: input ports of
m01 is connected to par00 and par11, and

no other port.

5To avoid cluttering the theorem most of the data type information has been omitted.

Fig. 13. Cross jumping tail merging.
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dfe(par00,inports (m01)) AND
dfe(par00,inports(m01)) AND
dfe(par11,inports(m01)) AND
(FORALL par: (par /5 par00 AND par /5 par11)

IMPLIES
NOT dfe(par,inports(m01))) AND
% r2 is connected to output of m01, and no
other port - i.e. not a join

xdfe(outport(m01),r2) AND
% We trigger the inputs of final graph
with a refinement of the values of the
initial graph

silimp(par00,par0) AND silimp(par11,par1)
IMPLIES

% We show that the outputs of the initial
and final graphs are refinements

silimp(r2,r1)

7.5 Mechanization in PVS

The Prototype Verification System (PVS) [Owre et al. 1993] is an environ-
ment for specifying entities such as hardware/software models and algo-
rithms and verifying properties associated with the entities. An entity is
usually specified by asserting a small number of known true general
properties. These known properties are then used to derive other desired
properties. The process of verification involves checking relationships that
are supposed to hold among entities. The checking is done by comparing
the specified properties of the entities. For example, one can compare if a
register-transfer level implementation of hardware satisfies the properties
expressed by its high-level specification. PVS has been used for reasoning
in many domains, such as in hardware verification [Cyrluk et al. 1994;
Cyrluk 1993; Rajan et al. 1995], protocol verification, and algorithm verifi-
cation [Lincoln et al. 1993].
We have specified and verified transformations such as copy propagation,

constant propagation, common subexpression insertion, commutativity,

Fig. 14. Cross jumping tail merging: generalized and verified. See Theorem 1.3.
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associativity, distributivity, and strength reduction described by Engelen et
al. [1993] in PVS. In general, the proofs of transformations proceed by
rewriting, using axioms and proved theorems, and finally simplifying to a
set of Boolean expressions containing only relations between ports and port
arrays. At this final stage the Boolean simplifier based on Binary Decision
Diagrams (BDD) [Brace et al. 1990; Janssen et al. 1994] integrated in PVS,
is used to determine that the conjunction of Boolean expressions is indeed
true. We show the run-times of verifying the various transformations in
Table II. It should be noted that the cross-jumping tail-merging transfor-
mation required the longest run-times and largest number of major infer-
ence rules. Each major inference rule might involve multiple primitive
proof rules corresponding to typed higher-order logic. Algebraic transfor-
mations such as commutativity and self-inverse required a small number of
major inference rules, because the underlying arithmetic decision proce-
dures in PVS are used to automatically prove the algebraic transformations
without requiring a manual interaction through a major inference rule.

CONCLUSIONS AND FUTURE WORK

We have argued that a design methodology for high-level synthesis which
achieves correctness by construction to reduce design time, supports a wide
variety of target architectures and different levels of optimization is highly
desirable. Existing approaches do not offer this. We have shown how a
formal transformation-based design methodology can be used to support
the complete life cycle of a system while offering efficient, first-time-right
designs. The methodology is based on the application of user-selected
preproven primitive small local behavior-preserving transformations in a
compositional design representation. We identified three categories of
transformations which are essential for fullscale transformational design:
optimization, refinement, and time-space assignment.

Table II. Run Time in Seconds on a Sparc 2/32MB
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To prove the correctness of transformations a formal characterization of a
general control data flow graph specification language has been achieved.
We have given a small set of axioms that capture a general notion of
refinement and equivalence of such graphs. We have specified and mechan-
ically verified about a dozen of the optimization and refinement transfor-
mations. Many transformations have been generalized by weakening the
preconditions. We found errors in this process and suggested corrections.
The feasibility of the methodology has been demonstrated on the design

of both a prototype and very efficient full custom implementation of a
direction detector starting from a single high-level VHDL specification.
Furthermore, we have shown the method’s ability, through reuse of trans-
formations, to efficiently integrate different design flows as well as its
ability to function in a hybrid multitool environment. We believe these
capabilities, in combination with the interactiveness and transparency of
the method, will make transformational design the methodology of choice
for high-level synthesis.
Because of the large number of transformations necessary to tackle the

design of industrial problems, further integration of our verification
scheme with the definition of transformations in TRADES is needed.
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