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ABSTRACT The world is witnessing an unprecedented growth of cyber-physical systems (CPS), which
are foreseen to revolutionize our world via creating new services and applications in a variety of sectors,
such as environmental monitoring, mobile-health systems, intelligent transportation systems, and so on. The
information and communication technology sector is experiencing a significant growth in data traffic, driven
by the widespread usage of smartphones, tablets, and video streaming, along with the significant growth
of sensors deployments that are anticipated in the near future. It is expected to outstandingly increase the
growth rate of raw sensed data. In this paper, we present the CPS taxonomy via providing a broad overview
of data collection, storage, access, processing, and analysis. Compared with other survey papers, this is
the first panoramic survey on big data for CPS, where our objective is to provide a panoramic summary of
different CPS aspects. Furthermore, CPS requires cybersecurity to protect them against malicious attacks and
unauthorized intrusion, which become a challenge with the enormous amount of data that are continuously
being generated in the network. Thus, we also provide an overview of the different security solutions
proposed for CPS big data storage, access, and analytics. We also discuss big data meeting green challenges
in the contexts of CPS.

INDEX TERMS Cyber-physical systems (CPS), Internet of Things (IoT), context-awareness, social comput-
ing, cloud computing, big data, clustering, data mining, data analytics, machine learning, real-time analytics,
space-time analytics, cybersecurity, green, energy, sustainability.

I. INTRODUCTION
The growing number of ‘‘things’’, such as embedded devices,
sensors, radio-frequency identification (RFID), and actua-
tors have revolutionized the world through their integrated
communication and tight interactions to create pervasive and
global cyber-physical systems (CPS). Indeed, it is expected
that over 50 billion sensors will be connected to the Internet,
with an average of 6.58 devices per person by 2020 [2]. This
has allowed the rapid development of myriad of applications
in health-care, public safety, environmental management,
vehicular networks, industrial automation, and so on. A CPS
mainly consists of physical components and a cyber twin
interconnected together, where a cyber twin is a simulation

model representative of the physical things such as a com-
puter program [3]. Internet of Things (IoT), on the other hand,
allows different CPS to be connected together for information
transfer. This means that IoT acts as a connection bridge to
network different cyber-physical things. The global expan-
sion of interconnected CPS is facilitated by standardization
efforts. For instance, the standardization activities of IoT are
being led by the industry (AllSeen Alliance, Open Intercon-
nect Consortium, Industrial Interconnect Consortium) and
IEEE P2413 project on standards specifications of IoT archi-
tectural framework [4]. CPS have resulted in a tsunami of
new information, also known as big data, which can help
boost revenues of many businesses, by identifying customer
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needs and providing them with superior services. However,
this enormous amount of data is so large in size and complex
in real-time that it exceeds the processing capacities of con-
ventional systems. That is why, cloud computing techniques
along with machine learning tools, data mining, artificial
intelligence, and fog computing can help the sensed data to be
easily stored, processed, and analyzed to uncover hidden pat-
terns, unknown correlations and other useful information [5].
That is why big data are referred to as ‘‘the 21st century new
oil’’. The characteristics of big data was well summarized
in the Introduction section of [6]. The relevances of big
data era and CPS actually are also highly relevant to global
sustainability development goals recently discussed in [7].

Before any processing or analysis, data need to be acquired.
The technological advancements in sensors have led to
smarter, more efficient and low-cost sensors; the fact that
facilitated their wide deployment. Two main sources to
sense the data from: i) context-aware computing and com-
munications [8], ii) social computing. With context-aware
computing and communications [8], data are sensed from
physical sensors, virtual sensors which retrieve data using
web services technology, logical sensors which combines
both virtual and physical sensors such as gathering weather
information, global sensors which collect data from middle-
ware infrastructure, and remote sensors for earth sciences
applications [9], [10]. As for social computing, participatory
sensing and mobile crowd-sensing have led to shaping the
structure of social networks, in which users collect and share
sensed data using their own smartphones rather than relying
on sensors [11]–[13].

Cloud computing facilitates big data storage, processing
and management in CPS, by breaking them down into work-
flows, which are then distributed over multiple dedicated
servers. This allows CPS to provide pervasive sensing ser-
vices beyond the capacities of individual things, in addition to
lower latency and power consumption and larger scalability.

Once the data have been collected, making sense of them
becomes one the most important aspects of CPS. How-
ever, it is important first to eliminate redundant information
and reduce data complexity so useful information extrac-
tion can be efficiently performed. In this survey, we will
discuss about different tools to assist with the data mining
process, mainly, feature selection, dimensionality reduction,
knowledge discovery in databases, information visualiza-
tion, computer vision, classification/clustering techniques,
and real-time analysis.

After the data are transformed into manageable sizes,
data mining tools (HDFS [14], MapReduce [15], R [16], S),
real-time big data analytic tools (Storm [16], [17],
Splunk [18]), and cloud-based big data analytic tools
(GFS [19], BigTable [20], MapReduce) can be used to extract
useful information and make sense of data, which would rev-
olutionize the field of smart cities, environmental monitoring
and others.

The ubiquitous cyber-physical world is susceptible to secu-
rity threats to a large degree. These security vulnerabilities are

made easier with the inability to effectively handle the large
amount of data that is constantly flowing through the net-
work; that, in addition to the lack of qualified security experts.
Sensitive data stored in the cloud can be accessed or altered by
unauthorized users. Cyber-security attacks on the computa-
tions, such as false data injection, can affect the integrity and
accuracy of extracted results. For all these reasons, research
efforts have been shifting towards proposing robust security
solutions for big data CPS. In this survey, we provide an
overview of these proposed solutions.

In recent years, there have been growing interests in green
information and communications technologies. Addressing
green issues for CPS allows for a more sustainable and energy
efficient systems. Green solutions are proposed for many
aspects of CPS, mainly for i) data collection/storage, such
as minimizing the number of relay transmissions, removing
redundant transmission links, and the use of data compression
techniques; ii) CPS computing such as dynamic voltage and
frequency scaling and traffic engineering techniques; iii) CPS
processing such as designing energy-efficient orchestrators,
checkpointing aided parallel execution (CAPE), reducing
the amount of exchanged data between clouds, the use of
cloudlets which are closer to users than distant clouds, among
other solutions.

We summarize the contributions of our paper as follows:

• First, to the best of our knowledge, this is the first
panoramic survey on big data for cyber-physical sys-
tems. Unlike other previous relevant literature sur-
veys [5], [9], [21]–[26], this paper provides a broader
viewpoint on CPS from different aspects, mainly data
collection and storage, processing, analytics, cybersecu-
rity, and green solutions, rather than focusing on specific
aspects of CPS.

• Second, we provide a broader summary of security
solutions proposed for big data CPS in data collection,
storage, and access, as well as in data processing and
analytics; unlike previous survey papers such as [15],
[27], [28] that only focused on security of a particular
component or element of big data.

• Third, we provide a summary in big data, storage, and
communications for CPS.

• Fourth, we provide a broader view of big data meeting
green challenges for CPS, unlike [6], [29]–[32].

The sections of this paper are organized as follows.
Section II compares this paper with other related surveys in
literature. Section III describes the different sources, genera-
tions, and collections of big data for CPS, mainly context-
aware computing, communications, and social computing,
while Section IX presents different CPS-related big data
applications. Then, in Section IV, we discuss about big
data caching and routing for better CPS data management.
In Section V, we present the different big data processing
tools from cloud data processing and multi-cloud processing
to big data clustering techniques, NoSQL and fog comput-
ing that help facilitate the analysis of large volume of data.
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In Section VI, an overview of big data analytics techniques
and tools is provided. Section VII provides a summary of
the different security solutions proposed for CPS, mainly
in storage, access and analysis. Section VIII addresses the
relevances of big data and green challenges for CPS. Finally,
SectionX identifies CPS big data challenges and open issues.
Conclusion remarks are presented in Section XI. A list of
acronyms used in this paper is provided in Table 1.

TABLE 1. List of acronyms and their descriptions.

II. RELEVANT WORKS
Several survey papers have focused on specific aspects of big
data, IoT, and CPS. However, to the best of our knowledge,
none of them have investigated the interconnections of these
concepts together in an extensive survey like this one.

In [21], Atzori et al. provided an overview on IoT from def-
initions to technologies to applications and standardizations,
while presenting the different solutions proposed in literature
for deterring security threats and preserving data integrity in
RFID systems. In [9], Perera et al. provided a brief overview
on IoT, with emphasis on sensor networks and their rela-
tionships to IoT. Then, context-aware computing definitions,
categories and characteristics from an IoT perspective were
thoroughly presented. In [23], context data were surveyed
for mobile ubiquitous environments, with the main focus
being on providing efficient context data distribution for real
network systems via highlighting context distribution archi-
tecture’s layers, network deployments and taxonomy. In [24],
different mobile crowd sensing incentives and types were
reviewed to motivate normal users to participate and con-
tribute to different sensing applications. In [25], caching big
data techniques to optimize computational time and reduce
storage overhead as well as improve system performance,
scalability and efficiency were presented. In [5], different
cloud computing schedulers using Hadoop-MapReduce with

their pros and cons were presented for purpose of improving
scheduling in cloud environment. In [22], big data analytics
from challenges to solutions to open research issues were
explored for efficient information extraction and decisions
making.

In [15], different security and privacy protocols forMapRe-
duce were surveyed for integrity, correctness and confiden-
tiality of cloud data computations. As for fog computing,
which extends cloud computing to the edge of the networks,
[27] reviewed the different security and privacy challenges,
solutions and open issues. For specific CPS applications, [28]
provided a thorough survey on cybersecurity issues for smart
grids, with emphasis on security requirements, network vul-
nerabilities, and secure communication protocols and archi-
tectures. Green challenges facing big data cloud computing
and processing were surveyed in [6], [29], [30], and [32], with
different green IoT applications in [31].

CPS has also been surveyed in literature. For instance,
in [33], CPS features, energy control, transmission, resource
allocation and software designs were presented. The
work [34] discussed the integration of cloud computing
with CPS by categorizing them in three different areas:
remote brain, big data manipulation, and virtualization. The
paper [35] surveyed the general concepts, challenges and
applications for CPS.

Most of the previous surveys have not discussed big data
in the contexts of CPS, which is the main focus of this paper.
Furthermore, the green and security challenges and solutions
are explored specifically for big data in CPS. Therefore, this
survey paper provides a big umbrella addressing promising
research frontiers and insights in many challenges and open
issues facing big data meeting CPS. Table 2 provides a sum-
mary comparison of the previously mentioned related surveys
in the field.

TABLE 2. A summary of different related surveys.

III. SOURCES, GENERATIONS, AND COLLECTIONS
OF BIG DATA FOR CPS
Several factors have driven the expansive uses of sen-
sors, mainly for micro-electromechanical systems (MEMS)
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such as accessible design boards (Raspberry pi, Onion,
Arduino) [36], and the new efficient hardware architectures
and components, which made sensors more robust to hard-
ware wearing from harsh environments. Moreover, many of
these sensors incorporate accelerometers that are 1000x more
powerful in terms of sensitivity than those used in a Nintendo
Wii [37]. In this section, we discuss the different sensed
big data sources and types by grouping them into social
computing and context-aware computing. An illustration is
provided in Fig 1.

FIGURE 1. An illustration of the different CPS big data sources and types.

A. CONTEXT AWARE COMPUTING AND
COMMUNICATIONS
The general definition of context-aware communications and
networking (CACN) was provided in [8]. Context-aware
computing could be considered as CACN operating in the
higher networking layers. The data that sensors collect for its
specific application purposes are considered raw data, which
have been directly collected from the environment without
further processing. With raw data alone, it becomes chal-
lenging to analyze and interpret them, and let alone the big
data generated by the large scale deployment of sensors. For
data which provide relevant information that is meaningful
and easily interpretable, sensors need to engage in context-
aware computing; that is, sensors need to store processed
meaningful information, also known as ‘‘context informa-
tion’’, that is easily understandable [8], [38]. An example
to highlight the difference between raw sensor data and
context information would be the blood sugar readings col-
lected by bio-medical sensors on the bodies of patients,
which are considered raw data. When these readings are
processed and represented as a patient’s average glucose level
in the blood, they are referred to as context information.

The quality of context (QoC) metric is used to assess the
quality, validity, precision and up-to-date context informa-
tion [23]. Context-aware computing from acquisition, pro-
cessing, storing and reasoning, can be performed by the appli-
cations themselves, or by using libraries and toolkits, or even
by using a middleware platform [9].

As for sources of context information, they can be retrieved
directly from physical sensors, from virtual sensors (they
collect data from different sources by using web services
technology and represent it as sensor data), from logical
sensors (a combination of physical and virtual sensors), from
a middleware infrastructure (global sensor networks), from
context servers (databases, web services), or even manually
provided such as retrieving users’ preferences. The context
information can be further classified into primary context
and secondary context, which provides information on how
the data were obtained. For example, reading RFID tags
directly from different production parts in industrial plants
is considered the primary context, while obtaining the same
information from the plant’s database is referred to as the
secondary context [9], [21].

B. REMOTE SENSING
Collecting sensor data of objects from a distance is referred
to as remote sensing (RS) [39]. RS is an integral part of
earth sciences. For instance, space-borne and airborne sensors
collect multi-spatial and multi-temporal RS big data from
the global atmosphere for purposes of earth observation and
climate monitoring [40]. Other remote sensing applications
include Google Earth that provides pictures of the earth’s
surface, weather reporting, traffic monitoring, hydrology and
oceanography [41].

In [42], Rathore et al. proposed a big data analytical
architecture for real-time RS data processing using earth
observatory system. The real-time processing includes fil-
tration, load balancing and parallel processing of the use-
ful RS data. The RS datasets are normally geographically
distributed across several data centers, leading to difficulties
in loading, scheduling and transmission of data. Moreover,
the high dimensionality of the RS data makes their storage
and data access rather complicated [40]. That is why, in [43],
Wang et al. proposed a wavelet transform to represent RS big
data by decomposing the datasets into multiscale detail coef-
ficients, which are estimated using expectation-maximization
likelihood. In [44], Xie et al. evaluated the quality of RS data
using statistical inference via using the prior knowledge of
the dataset to get an unbiased estimator for the quality.

C. SOCIAL COMPUTING
With the explosive increase in smartphones usage, mobile
data have experienced an unprecedented growth, carrying
enormous amount of information on user applications, net-
work performance data, service characteristics, geographic
information, subscriber’s profile, and so on [45]. This has led
to shaping the notion of ‘‘mobile big data’’, which, unlike
traditional big data in computer networks, have their own
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unique characteristics. One of these characteristics is the
ability to partition mobile data in time and space domains,
such as in minutes, hours, days, location, and so on. Further-
more, due to the features of smartphones’ usage, the same
traffic, on one hand, can be highly likely requested by a
group of subscribers in certain time and location; and on the
other hand, subscribers in close proximitymay exhibit similar
behavior andmobility patterns, all of which can help optimize
network performance [46].

Social computing allows the integration of these social
behaviors and contexts into web technologies to assist with
predicting social dynamics, which can render the operation,
planning and maintenance of social wireless networks easier
than ever [47], [48]. For instance, due to high social cor-
relations and relationships among subscribers, a user social
network can be formed, in which the habit, interests, mobility,
and sharing patterns can be used to construct social commu-
nity structures and analyze communication behaviors. One
such an example of user social application is the popular
Pokemon Go game, where users in close proximity share
real-time maps to hunt for Pokemon characters [46]. Another
example where social computing can be beneficial is in emer-
gency situations, such as the spread of infectious diseases,
where taking the appropriate policies by analyzing human
interactions and predicting the emergency’s evolution can
help protect the public health [47]. This article [49] intro-
duced Cybermatics as a broader vision of the IoT (called
hyper IoT) to address science and technology issues in
the heterogeneous cyberâĂŞphysicalâĂŞsocialâĂŞthinking
(CPST) hyperspace. Next, we list two different social com-
puting tools for data collection, mainly, participatory sensing
and crowd-sensing.

1) PARTICIPATORY SENSING
Participatory sensing or community sensing allows users to
collect and share information either within social groups
(social sensing) or with everyone (public sensing) using their
own smart devices [11], [12]. This means that sensors can be
substituted by users for purpose of data collection, which can
significantly reduce the monetary costs of deploying physical
sensors. However, with participatory sensing comes several
challenges such as the quality and trustworthiness of collected
data, the willingness of participants to engage in the sensing
tasks and protecting participants’ personal information.

In [11], Zhang et al. proposed a participant coordina-
tion architecture that selects the most efficient participants
without exposing participants’ personal information to the
application server. To protect participants’ privacy, in [50],
Chang et al. proposed a secure scheme called PURE which
allows participants to reach the global model to estimate
via peer reviewing the local regression models. This enables
participants to only report intermediate results back to the
server without the need of sharing local private data with
the server. In [51], Messaoud and Ghamri-Doudane pro-
posed a mobile sensing scheme that reduces the sensing
time required by participants, and increases the fairness of

sensing tasks assignment to ensure participants’ commitment
to sensing while maintaining same data quality as in non-fair
schemes. In an attempt to maximize the overall data quality,
in [52], Wang et al. proposed a multi-task allocation frame-
work (MTPS) which pays participants a compensation from
a shared budget for each sensing task, with additional com-
pensation if a participant is assigned more than one task. This
greedy framework allows the allocation of multiple tasks to
participants. In [53], participatory sensing for environmental
data collection was used, where the urban resolution metric
was used to measure the quality of urban sensing. In [54], par-
ticipatory sensing was applied to vehicular networks, where
location, speed, and fuel consumption of vehicles can be
communicated with the server through phones aboard via a
WiFi interface to reduce data transfer delay time.

2) MOBILE CROWD-SENSING
Mobile crowd-sensing (MCS) can be considered as an exten-
sion to participatory sensing. In addition to collecting data
from mobile devices (mobile sensing), MCS uses social
sensing via integrating and fusing the contributed data from
mobile deviceswith that of themobile social network services
in order to provide solutions to more complex queries [13].
In vehicular networks, with participatory sensing, we can
collect warning messages from vehicles to determine the
traffic status. However, if in addition, a driver needs to know
whether the route is safe to drive on based on authorities’
recommendations, residents’ preferences, and so on, then
MCS can be useful (see Fig. 1).

In [55], Xiang et al. used MCS to construct accurate
outdoor received signal strength (RSS) maps using error-
prone smartphones. In [56], Wang et al. proposed an energy-
efficient cost-effective data uploading in MCS via providing
incentives to participants to use the appropriate timing and
network to upload the data. Data was offloaded to Blue-
tooth/WiFi gateways via using predictions on users’ calls
and mobility. To maintain relatively good performance of
MCS applications, a sufficient number of participants need to
make contributions to sensing. In [24], Zhang et al. discussed
about the different incentives for MCS from entertainment,
service and monetary incentives, in which participants can be
recruited in multiple sensing tasks.

IV. BIG DATA STORAGE AND COMMUNICATIONS
Caching CPS big data can lead to a reduction in the amount of
traffic exchanged, which contributes to a better data manage-
ment, lower latency and energy consumption. In this section,
we discuss some of the solutions proposed for CPS big data
caching and routing.

A. BIG DATA CACHING AND STORAGE FOR CPS
The high amount of traffic driven by the popular use ofmobile
video and online social media applications along with the
scarcity of backhaul resources have pushed researchers and
mobile operators to find solutions. Content caching in CPS is
of high interest, especially that a big proportion of the traffic
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load originates from fetching data from different sources
such as databases, cache servers and network gateways [57].
Rather than caching data from the cloud, performing the
caching at the edge of mobile wireless networks, such as
base stations and user equipments, offers the advantage of
better data management [58], [59]. For instance, in [57],
Zeydan et al. proposed a big data proactive caching archi-
tecture that predicts popular content from users’ behavior
and network characteristics to perform caching at the base
stations. This has the advantage of backhaul offloading to the
edge, so that data get closer to users, thereby enhancing users’
quality of experience and reducing latency. The proposed
architecture is validated using dataset from a Turkish mobile
operator, where it was shown that proactive caching can yield
100% user satisfaction by offloading 98% of the backhaul to
the edge. The proactive caching at the edge is envisioned to
solve big data management in future 5G networks, especially
that base stations densification and acquiring new spectrum
do not seem quite effective in terms of cost, scalability and
flexibility [25], [57]. A new approach to reducing network
traffic in telehealth systems was suggested in [60], where a
filter is used inside the sensors which associates a scale to
each record, to determine the data fields that need to be sent
to the server.

Different works have been proposed to deal with chal-
lenges facing Hadoop for handling big data storage and pro-
cessing [61]–[63]. For instance, in [62], Kanbargi and Kumar
proposed a novel cache to store the intermediate data, which
helps eliminate redundancy in storage and processing of the
big data set, in addition to speeding up the performance
of the system by fetching the data from the cache rather
than running mapper functions. Dache, a data-aware cache
framework for big-data applications, was suggested in [63]
to accelerate the execution of MapReduce tasks. The trans-
mitters of the tasks send their intermediate data to a cache
manager, which is then used to fetch potential processing
results.

Cachememory can help speed upCPS communications via
increasing the execution speed and decreasing the time spent
on memory access to fetch the required data. For instance,
in medical CPS, a timely response from medical sensors to
servers’ requests is required, where caching can be very use-
ful. However, as mentioned in [64], cache misses are highly
likely in CPS, especially when a task is interrupted by a higher
priority task, triggering a cache interference cost. A potential
solution to this problem is cache partitioning where different
tasks with shared resources are isolated and assigned reserved
partitions of a cache memory. This can be very useful for
real-time CPS applications such as mobile-health, environ-
mental monitoring, traffic surveillance, aerospace and so on,
where reliability and predictability are of high importance.
Moreover, with the large-scale network of CPS, temporal
interferences from a large number of devices contending on
shared resources, such as processor cores, buses, I/O devices,
can significantly reduce the runtime of CPS and lead to unpre-
dictable systems. Several algorithms and component-based

approaches have been proposed to help reduce the temporal
interferences of CPS [65]–[67].

B. BIG DATA COMMUNICATIONS FOR CPS
To accommodate the big data environment for CPS, build-
ing a resilient network infrastructure for the data-intensive
applications and services has become essential [68]. The
data collections, the data chunks distribution to data centers
and the data delivery to intended users, necessitate a fast
and reliable networking to bridge these stages together. For
instance, machine-type communications (MTC), a class of
technologies related to IoT and defined by the 3rd Genera-
tion Partnership Project (3GPP), are becoming more popular
as we move towards a smart city. In an attempt to make
homes smarter, Apple introduced the HomeKit, which uses
Siri to control different things inside the home remotely
using the iPhone, iPad and even AppleTV [69]. Samsung,
on the other hand, introduced SmartThings that allow the
automation of many home tasks using WiFi, Zigbee, Blue-
tooth low energy (BLE), and Z-Wave [70]. These new tech-
nologies allow all the devices to be interconnected and to be
communicated together. Many of the MTC communications
are envisioned to run over current cellular networks [71],
providing MTC devices with ubiquitous coverage, global
connectivity, reliability and security. However, this creates a
set of challenges for cellular network providers [72], such as
the inability to handle MTC traffic on networks optimized for
human communications, excessive congestions due to signal-
ing overhead, packet scheduling problems due toMTC traffic
requiring a number of radio resources below the minimum
allocated to a cellular device;, and the large interferences
generated from MTC devices [73]. Different relevant works,
such as [74]–[77], suggested offloading the MTC traffic onto
device-to-device (D2D) communications links. As a matter
of fact, Google OnHub router can support direct D2D com-
munications, as well as WiFi, BTL and 802.15.4 using Brillo
as a stripped OS version of Android. The D2D technology
provides an ideal solution to support the massive communica-
tions of MTC devices, especially that these devices are antic-
ipated to be located close to each other [78]. The paper [79]
discussed the integration of wireless sensor networks (WSNs)
and mobile cloud computing (MCC) and proposed a sensory
data processing framework to transmit desirable sensory data
to the mobile users in a fast, reliable, and secure manner.

In [80], Luo et al. proposed two different sustainable
routing designs called SustainMe. The first model uses a
dedicated backup protection in which network components
are turned off after data is fully delivered to help save energy.
The second model uses shared backup protection to achieve
a trade-off between energy efficiency and capacity usage
efficiency. The latter is shown to consume less capacity than
the the first model, but at the expense of an increase in energy
expenditure. In [81], Cheng and Wang proposed a software
defined network (SDN) routing for Hadoop to accelerate the
speed of big data delivery through speeding up the MapRe-
duce data shuffling. This is useful for time-sensitive big

73608 VOLUME 6, 2018



R. Atat et al.: Big Data Meet CPSs: Panoramic Survey

data applications. As a matter of fact, SDN can significantly
improve big data applications, especially which separates
the control and data planes, allowing the control plane to
be logically centralized so that decisions and network opti-
mization are performed efficiently via having a global view
of the network. All these SDN’s features can make the big
data acquisition, processing, transmission and storage much
easier and faster. On the other hand, big data can also assist in
efficiently designing and optimizing SDN functions through
traffic engineering, cross-layer design, security and inter- and
intra-data center communications [82].

In [68] and [83], taking advantage of social and geograph-
ical community structures, routing, navigation services, and
data delivery performance can all be improved. In [6], dif-
ferent big data routing algorithms for energy efficiency were
reviewed, such as selecting routing paths for data centers that
achieve the lowest energy costs, parallelizing data transfers
by using multiple cores in data routing, and balancing big
data traffic through a distributed adaptive routing algorithm
that minimizes packet delivery.

In massive high-density environment, data collections and
transmissions can be challenging tasks especially with the
different data flow information, quantities and characteristics.
In [84], cyclists’ data collections and transmissions were
studied. Autonomous data collection using automated video
analysis can be performed in order to overcome the need for
costly manual data collection. For instance, a computer vision
system can group users’ features based on spatial proximity
data, speed, trajectory and others. The obtained information
can be input to an algorithm that obtains valuable information
such as traffic stream, number of cyclists, lane density and
so on.

In high-density environment, it is important for data to be
efficiently collected in a short period of time to ensure up-to-
date information. For this purpose, concurrent data collection
trees can be valuable where multiple data collection streams
can be initiated by different users on same set of devices [85].
This can be extremely helpful for delay-sensitive applica-
tions. In [86], Chen et al. proposed concurrent massive data
transmission for remote real-time health monitoring system.
An input/output(I/O) Completion Port (IOCP) main server
dynamically binds Internet protocol (IP) addresses to massive
sensors before they can send their data. The main server
assigns one of the IOCP servers with the least number of
concurrent connections to micro sensors using Oracle Real
Application Cluster (RAC). Finally, data storage is sepa-
rated from Oracle server instances using Network Attached
Storage (NAS) technology to allow for greater I/O perfor-
mance for massive concurrent connections. The paper [87]
firstly analyzed the objective of massive access control
for machine-type communications (MTC) or machine-to-
machine communications (M2M), another terms of CPS used
in 3GPP standardizations for wireless cellular networks, and
proposed distribution reshaping to enable data arrival dis-
tribution with highly coordinated manner to notably reduce
multiple access congestions.

Real-time data fusions are important for heterogeneous
IoT/CPS data streams and unreliable networks with increas-
ing data size. To support locally available computational
values to help real-time analytics, the work [88] proposed the
fusion of three different data models with relational, seman-
tical, and big data based data and metadata. The paper [89]
proposed two-layer architecture for IoT data analysis, where
the first layer is with the service oriented gateway based
generic interface to obtain data from multiple interfaces and
IoT systems and store them scalably and make relevant real-
time analysis to extract high-level activities, while the second
layer works for the probabilistic fusion of these high-level
activities.

C. SUMMARY AND INSIGHTS
To summarize, different strategies can be employed to
enhance CPS performance via speeding up data collection,
processing and distribution. At the CPS traffic level, data
collection and processing can be accelerated through caching
at the edge, filtering the data to make it more manageable in
size, caching execution tasks, and using cloudlets whenever
possible. At the CPS devices level, the use of on-fly D2D,
SDN, backup protection, and social/geographical community
structures along with navigation services can help accelerate
data delivery and reduce latency. The use of these technolo-
gies and solutions can significantly speed up data handling
while at the same time extending the communication range
of CPS traffic.

V. BIG DATA PROCESSING FOR CPS
Cloud computing along with data clustering facilitates the
parallel processing and execution of tasks and queries. Map-
ping and scheduling workflows in a multi-cloud environment
speeds up the processing and allows for a better big data
management. In this section, we discuss cloud computing,
big data clustering, NoSQL and fog computing for big data
workflows processing.

A. CLOUD DATA PROCESSING
With the large volume of data in the order of exabyte,
it becomes almost impractical to process the data on indi-
vidual machines, no matter how powerful they are. Parallel
processing of the data chunks on dedicated servers, such as
MapReduce tool proposed by Google, offers advantages over
conventional processing methods; however it is still not very
effective to handle a large amount of data, mainly due to
scalability, latency, availability, and inefficient programming
techniques, including but not limited to database manage-
ment systems [90], [91]. One attractive solution to dedicated
servers is the processing on cloud centers, which offers users
the ability to rent computing and storage resources in a
pay-as-you-go manner [92]. In addition, even though users
will be sharing a common hardware, the shared resources
appear exclusive to them through machine virtualization via
hiding the platform details [93]. However, this approach can
create problems in the pay-as-you-go environment due to
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untruthfulness, unfairness and inefficiency of resources and
workload transactions [94].

The main difference between parallelizing tools, such as
MapReduce and cloud computing, is that MapReduce uses
mappers and reducers to produce intermediate results and
final results, respectively. However, public clouds offers users
with virtual machines (VMs) with a highly elastic resource
allocation [92]. The function of Map is in charge of process-
ing input key-value pairs and generating intermediate key-
value pairs; while Reduce function is used to further compress
the value set into a smaller set based on the intermediate
values with the same keys [95]. To maximize the query rate of
remotely located data in an attempt to maximize system per-
formance, Destounis et al. [96] designed a dynamic resource
allocation algorithm that takes into account the computations
of query streams across the nodes and the limiting number of
resources available.

Due to the volume and velocity characteristics of big data,
streaming data processing and storage might require different
compression techniques to ensure efficiency and scalability.
Yang et al. proposed a novel low data accuracy loss com-
pression technique for cloud data processing and storage.
A similarity check was performed on partitioned data chunks
and a compression is conducted over the data chunks rather
than the basic data units [97]. Another similarity check-based
compression technique was proposed in [98] using weighted
fast compression distance.

Integrating cloud computing in IoT can take the processing
of sensing data streams to the next level to provide ubiquitous
sensing services beyond the capacities of individual things.
When combined with artificial intelligence, machine learn-
ing, and neuromorphic computing techniques, it is envisioned
that new applications will be developed with automated deci-
sion making, which would revolutionize the field of smart
cities, industrial plants, environmental monitoring and oth-
ers (see Fig. 2). Cloud computing will enable IoT appli-
cations to have a reduced latency, power consumption and
enhanced scalability. Examples of such applications include
but not limited to healthcare, where patients’ information
can be accessed using a cloudlets-based infrastructure [99].
Cloudlets are clouds that are closer to users to help over-
come the high latency and power consumption of distant
clouds [100]. Other cloud application examples include vehi-
cles traffic control system [101], genome analysis [102], earth
surface analysis [103] and many others.

B. MULTI-CLOUD DATA PROCESSING
In many IoT scientific applications, the data collection and
generation, computation, processing and analysis are broken
down into workflows, consisting of interdepending comput-
ing entities. Due to the data-intensive nature of IoT applica-
tions, the large-scale workflows need to be distributed across
multiple cloud centers [104]. To allow the support of multi-
ple applications and to overcome the limitations of current
frameworks that are dedicated to a unique type of applica-
tions, Pham et al. [105] proposed a distributed application

FIGURE 2. CPS cycle to automation.

management framework in multi-cloud environment by using
a domain specific language (DSL) to describe applications
in a hierarchical manner. However, the inter-cloud commu-
nications constitute a big deal of the financial costs of pro-
cessing workflows due to their large volume. In [104], to
optimize system performance, Wu and Cao proposed a
budget-constrained workflow mapping in multi-cloud envi-
ronment. An efficient pay-on-demand pricing strategy for
streaming big data processing in multi-cloud environment
was proposed in [106], to offer a low price for data load
processing, while maximizing the revenues of cloud service
providers. As for building trust across multiple cloud cen-
ters that collaborate together on data storage and processing,
Li et al. in [107] proposed a trust-aware monitoring architec-
ture between users and cloud centers with hierarchical feed-
back mechanism to enhance the robustness and reliability of
the quality of service of cloud providers, which helps provide
them with a rating based on their trust reputation. This allows
users to select services from different cloud providers based
on feedback and past service records.

In [108], Wang et al. optimized virtual machine (VM)
placement in national cloud data centers to help minimize the
energy consumption of data-intensive services, such as planet
analysis. In these cloud centers, VMs are assigned to physical
servers, which helps provide users with a high quality of
service but at the expense of greater energy consumption. The
trade-off between energy consumption and quality of service
is taken into consideration in the optimization problem. The
cost of data access and storage limitations of national cloud
centers was considered in [109], where the authors used
Lagrangian relaxation based heuristics algorithm to obtain
the optimal data centers placement that can reduce data access
costs.

The distribution of users’ tasks on geographically dis-
tributed cloud centers was addressed in [110], where the
authors proposed a big data management solution to max-
imize system throughput such that fairness of limited
resources usage by users is guaranteed and the operational
cost of service providers is reduced. To allocate resources
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of multi-cloud centers to users, a multi-round combinational
double auction based mechanism was proposed in [111],
where auctions on different VMs were performed by both
users and data centers in multiple rounds to maintain a high
quality of service level.

C. BIG DATA CLUSTERING
Data clustering refers to partitioning a set of objects com-
prising of attributes into different groups of similar objects
and features [112]. Data clustering becomes very useful in
big data applications, where there is a high need to process
and analyze large volume of data. Estimating the number
of clusters becomes important as clustering facilitates the
distribution of the data storage, tasks execution, parallel
computing, and queries requests [113]. Fig. 3 shows two
groups of clustering methods researched in depth in litera-
ture: i) hierarchical clustering, and ii) centroid-based clus-
tering. In hierarchical clustering, nearby objects have higher
probability of being grouped together than far away objects.
On the other hand, in centroid-based clustering, objects closer
to the cluster center are grouped together. The paper [114]
discussed a flexible multiple clustering analytic and service
framework, and a novel tensor-based multiple clusterings
(TMC) approach.

FIGURE 3. An illustration comparing centroid-based clustering and
hierarchical clustering (adapted from [118] and [119]).

One of the most popular centroid-based clustering is
k-means due to its computational efficiency and low-
complexity implementation. However, as the number of clus-
ters increases, k-means clustering suffers from the empty
clustering problem and the increase in number of iterations
for convergence. This means that traditional k-means is not
suitable for big data applications. Different works have sug-
gested enhanced versions of k-means clustering for purposes
of improving clustering quality, execution time, and accu-
racy. For instance, in [115], Shettar and Purohit used an
enhanced version of the k-means clustering, where the initial
centroids of the cluster are not selected randomly but based
on averaging the data points. This achieves higher accuracy
than conventional k-means. Another enhanced version of k-
means clusteringwas suggested in [116], to help eliminate the
empty clustering problem of traditional k-means. The cluster-
ing approach was based on a combination of Fireworks and
Cuckoo-search algorithms with representative points being
selected as the centroids. In [117], Karimov et al. also used a

centroid calculation heuristics to help enhance the clustering
performance as the number of clusters increases.

In [112], for instance, Kumar et al. used hierarchical clus-
tering in their proposed algorithm, where the number of
clusters was estimated visually based on a reordered distance
matrix. The data samples were clustered using single linkage
(SL), which cuts large edges of the clustering tree in a min-
imum spanning tree (MST). The algorithm was shown to be
superior in terms of clustering speed and accuracy when com-
pared to other clustering algorithms like k-means. Another
hierarchical clustering was suggested in [120], where users
themselves define the number of clusters based on different
similarity measures such as homogeneity and the relative
population of each cluster. This helps improve user satis-
faction of the clustering algorithm. A hierarchical k-means
clustering algorithm was proposed in [121] to find high qual-
ity initial centroids. The centroids were obtained based on
a hierarchical structure of k-means that consists of several
levels, where the first level is the original dataset. Subsequent
levels are compromised of smaller size datasets that consist
of similar patterns as the original dataset. Fuzzy clustering,
another clustering technique, is similar to k-means; however
an object can be associated with more than a single cluster
depending on its degrees of membership that are usually
calculated based on Euclidean distances between the object
and the data center [122].

Another big data clustering is clustering features (CF),
where a CF-tree includes a summary of data patterns in a
cluster. It uses a threshold preset by users to set the size of
micro clusters in a CF-tree. However, this method can have
time and scalability complexities, especially with the large
number of data that needs to be scanned and assessed to
construct the tree. Clustering based on summary statistics
allows the threshold to be different for different micro clusters
by dynamically adjusted it based on regions’ densities [123].
Graph clustering attempts to cluster data points based on net-
work’s structure and nodes’ connections, where similarities
between nodes allow them to be connected to build a commu-
nity. An example would be building a Tweet graph for Twitter
online social application where Tweets (nodes) with similar-
ities (similar URL count, similar hashtag count, or similar
username count) are connected together with edges [124].
Finally, incremental mining helps deal with the increasing
network size and data growth challenges by incrementally
updating the clusters without the need for reconstructing them
from scratch.

In the context of CPS applications, [125] attempted to
perform structuralized clustering for sensor-based CPS for
purposes of reducing the energy consumption of the sensor
network. The sensor network is basically structured into small
equal units, each consisting of a set of clusters, whose number
is carefully selected based on the cluster head workload and
its distance to the base station to achieve energy efficiency.
In [126], Huang et al. tried to solve the cascaded subnet-
works’ failures problem in CPS by obtaining an upper bound
on the small clusters’ size to mitigate networks’ failure,
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TABLE 3. Summary of big data clustering techniques for CPS.

especially when they are tightly coupled. In [127], Bali and
Kumar proposed a secure clustering method for vehicular
CPS, where a trust metric is calculated for each vehicle based
on their transmission characteristics in order to create secure
clusters. Another secure clustering for vehicular CPS was
proposed in [128], where the clustering problem is formulated
as a coalition game taking into consideration the relative
velocity, position and bandwidth of vehicles. Furthermore,
incentives and penalty mechanisms are suggested to prevent
selfish nodes from degrading the communication quality per-
formance. A density-based stream data clustering for real-
time monitoring CPS applications was suggested in [129],
where the authors used FlockStream algorithm to group sim-
ilar data streams. Each data point is associated with an agent,
and similar agents within a visibility range of each other in
the virtual space, form a flock allowing for real-time stream
clustering. A summary of the different big data clustering
techniques for CPS is provided in Table 3.

D. NoSQL
Conventional relational database management systems are
not suitable for heterogeneous big data processing, as they
consist of strict data model of pre-defined data structures and
constraints with a fixed schema [140]. NoSQL (Not Only
Structured Query Language) relaxes many of the relational
databases’ properties such as ACID transactional properties
to allow for greater querying flexibility, operational scalabil-
ity and simplicity, higher availability and faster read/write
operations of unstructured big data through replicating and
partitioning the data across several nodes [141], [142].

NoSQL databases can store data in three different forms:
key-value stores, document databases, and column-oriented
databases [143]. In the document databases form, the data is
stored in a complex structure form such as XML documents.
Column-oriented databases store columns of data in data
tables, allowing greater ease of adding and deleting columns
compared to row-oriented databases.

Furthermore, two main classes for NoSQL systems:
operational NoSQL systems (Cassandra, MongoDB, Oracle
NoSQL), and analytical NoSQL systems which are based

on MapReduce, Hadoop, and Spark. Operational NoSQL
systems include online transaction processing (OLTP) sys-
tems, while analytical NoSQL systems include decision sup-
port systems (DSSs). The main difference between OLTP
and DSSs is that the latter involves processing over larger
tables and hence, involves complex queries processing
(scanning, joining, and aggregating), while OLTP performs
read/write operations for a smaller number of entries in the
database [142]. For instance, in [144], Mohan et al. used
NoSQL for big data workflows execution to improve the
scalability, parallelism and execution compared to traditional
MapReduce framework.

E. FOG DATA COMPUTING
Cloud computing and services can be extended to the edge of
network via the fog computing paradigm. Though both cloud
and fog provide data computations, storage and application
services to end-users, the distinguished features of fog from
cloud include its proximity to end-users, the dense geographi-
cal distribution and its mobility support [145]. These features
facilitate fog computing for latency-sensitive applications.
Consider an example [146] of smart traffic lights and con-
nected vehicles, where an ambulance flashing lights sensed
by a video camera could automatically trigger street lights
to open lanes for the ambulance to pass through the traffic.
In smart grid scenario [145], the fog devices at the edge
collect the data generated by grid sensors, real-time process
the data, and issue control commands to the actuators. A
fog-based intelligent decision support system was proposed
in [147] for driver safety and traffic violation monitoring
based on the IoT. A smart city speeding traffic surveillance
scheme using fog computing paradigmwas provided in [148],
and its effectiveness was validated by intensive experiments
conducted using real-world traffic surveillance video streams.
Fog computing could make possible the early predictions
of biomarkers to enable automated decisions making in a
connected health scenario [149]. A fog computing system
for e-Health applications was implemented in [150], where
fog nodes were installed in home to achieve the smallest
processing time. Disaster decision support systems, deployed
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TABLE 4. Comparisons among different parallel processing techniques.

with fog nodes, could process acquired real data and trig-
ger alarms in case of an emergency [151]. An augmented
brain computer interaction game based on fog computing
and linked data was developed in [152]. Other exemplary
scenarios [146] for fog computing could be wireless sensor
and actuator networks, decentralized smart building control,
software defined networks, and so on.

Beyond the latency-sensitive applications, fog computing
could also offload the core network traffic and keep the
sensitive data inside the network [2]. In [153], fog com-
puting at smart gateways was shown to enhance the health
monitoring system through the usage of advanced tech-
niques such as embedded data mining, distributed storage
and notification service at the edge of network. In [154],
Hong et al. proposed a high level programming model,
called mobile fog, for future Internet applications that are
geospatially distributed, large-scale and latency-sensitive.
The placement and migration method for infrastructure
providers was proposed in [155] to incorporate cloud and
fog resources. Specifically, the network intensive operators
were placed on distributed fog devices while computation-
ally intensive operators were placed in the cloud. Some
design goals and challenges in fog computing platform were
described in [156], which also suggested several important
components of a fog computing platform, i.e., authentica-
tion and authorization, offloading management, location ser-
vices, systemmonitor, resourcemanagement, virtualmachine
scheduling.

The security and privacy issues were examined in the
context of smart grids [28] and machine-to-machine com-
munications [157], and so on. These security solutions for
cloud computing may not be directly applicable to fog
computing, as fog devices are placed at the edge of net-
works. One security issue of fog computing is the authen-
tication at different levels of gateways. The compromise of
gateways serving as fog devices could lead to the Man-
in-the-Middle attack [158]. Since a certain amount of fog
networks are connected through wireless, typical wireless
attacks (e.g., jamming attacks, sniffer attacks, and so on)
could be possible threats for fog computing [27]. Further-
more, the leakage of private information, such as data,
location or usage could be the main concerns of end
users.

F. SUMMARY AND INSIGHTS
From Table 4, we can observe that users’ workloads can
be more efficiently processed in a multi-cloud environment,
especially that most CPS applications deal with a large
volume of data. However, such a solution requires addi-
tional optimization techniques to optimize VMs placement
for energy, security, fairness, and costs. We have discussed
relevant issues in fog computing relevant issues, while there
would be also more relevant big data processing issues
in cloud computing and edge computing, such as relevant
architectures and applications, distributed data analytical
frameworks, cyber defense and cyber intelligence as well as
convergence and complexity issues.

VI. BIG DATA ANALYTICS
Big data analytics constitutes one of the most important
arenas in big data systems, as it allows to uncover hidden
patterns, unknown correlations and other useful information,
which in turn assist in boosting the revenues for many busi-
nesses. In this section, we present an overview of relevant big
data analytics techniques and tools. Readers may find some
introductions of big data analytics in [159].

A. DATA MINING
One of the interesting features of CPS is the automated deci-
sion making. This means that CPS objects are supposed to
be smart in sensing, identifying events and interacting with
others [160]. The massive data collected by CPS needs to be
converted into useful knowledge to uncover hidden patterns
to find solutions, enhance system performance and quality
of services. The process of extracting this useful information
is referred to as data mining. One solution to facilitate the
data mining process is to reduce data complexity via allowing
objects to capture only the interesting data rather than all
of it. Before data mining can be applied to the data, some
processing steps need to be completed such as key features
selection, preprocessing and transformation of data. Dimen-
sionality reduction is one potential method to reduce the
number of features of the data [161]. For instance, in [162],
Chen et al. used neural network with k-means clustering via
principal component analysis (PCA) to reduce the complex-
ity and the number of dimensions of gene expression data
to extract disease-related information from gene expression
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profiles. Knowledge discovery in databases (KDD) is also
used in different CPS scenarios to find hidden patterns and
unknown correlations in data so that useful information can
be converted into knowledge [163]. One such use of KDD is
in smart infrastructures systems, where these systems need to
answer queries and make recommendations about the system
operation to the facility manager [164].

Tsai et al. [5] broke down the core operations of data min-
ing into three main operations: data scanning, rules construc-
tion and rules update. Data scanning is selecting the needed
data by the operator. Rules construction includes creating
candidate rules by using selection, construction and perturba-
tion. Finally, candidate rules are checked by the operator, then
evaluated to determine which ones will be kept for the next
iteration. The process of scanning, construction and update
operations is repeated until the termination criteria is met.
This data mining framework works for deterministic mining
algorithms such as k-means, and the metaheuristic algorithms
such as simulated annealing and genetic algorithm.

Clustering, classification and frequent pattern are dif-
ferent mining techniques that can be used to make CPS
smarter. Clustering methods have already been discussed in
Section V-C. Tsai et al. [5] discussed about two different
purposes for clustering: i) clustering for infrastructure of IoT,
and ii) clustering for services of IoT. Clustering for infras-
tructure of IoT helps enhance system performance in terms
of identification, sensing and actuation, such as in [165],
where nodes can exchange information between each other
to identify whether they can be grouped together depending
on the needs of the IoT applications. As for services of IoT,
clustering can help provide higher quality services such as
in smart homes [166]. On the other hand, classification does
not require prior knowledge to complete the partitioning of
objects into clusters, also known as unsupervised learning.
Classification tools include decision trees, k-nearest neigh-
bor, naive Bayesian classification, adaboost and support vec-
tor machines. Classification can also be done to improve
infrastructure as well as services of IoT. Finally, frequent
pattern mining is about uncovering interesting patterns such
as which items will be purchased together with previously
purchased items, or suggest items for customers to purchase
based on customer’s characteristics, behavior, purchase his-
tory, and so on. Fig. 4 illustrates the CPS big data mining
process for useful information extraction.

The paper [167] proposed NextCell algorithm to improve
the location prediction via utilizing the social interplay mined
in cellular call records.

B. REAL-TIME ANALYTICS
Real-time analysis is another approach to produce useful
information from massive raw data. Real-time streams data
are first converted to a structured form data before being ana-
lyzed by big data analysis tools such as Hadoop. Many appli-
cation domains such as healthcare, transportation systems,
environmental monitoring, and smart cities will require real-
time decision making and control [12]. For example, Twitter

FIGURE 4. CPS big data mining process.

data can be real-time analyzed to enhance the prediction pro-
cess and to provide useful recommendations to users [168];
terrorist incidents data can be real-time analyzed to predict
future incidents [169]; big data stream in healthcare can be
analyzed to help medical staff make decisions in real-time,
which can help save patients’ lives and improve the healthcare
services provided, while reducing medical costs [170]. Near
real-time big data analysis architecture for vehicular networks
was proposed in [171], which consists of a centralized data
storage for data processing and a distributed data storage for
streaming processed data in real-time analysis.

In [172], a real-time hybrid-stream big data analytics
model was proposed for big data video analysis. The paper
[173] considered the online network analysis as a stream
analysis issue and proposed to utilize Spark Streaming to
monitor and analyze the high-speed Internet traffic data in
real-time. The work [174] proposed mobile edge computing
nodes deployed on a transit bus with descriptive analytics
to explore meaningful patterns of real-time data streams for
transit. The paper [175] discussed the term and related con-
cepts of Real Time Analytics (RTA) for industry big data
analytical solutions. This paper [176] provided a framework
to efficiently leverage big data technology and allow deep
analysis of large and complex datasets for real-time big data
warehousing.

Arranging the data in a representative form can pro-
vide information visualization, which makes the information
extraction and understanding of complex large-scale systems
much easier [177]. Geographical information systems (GIS)
is one important tool of visualization [178], as it can help
real-time analysis of many applications such as in health-
care, urban and regional planning, transportation systems,
emergency situations, public safety, and so on. In [178],
Chopade et al. proposed a large-scale system data visual-
ization architecture called X-SimViz, which allows users for
real-time dynamic data analytics and visualization. Computer
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vision is another approach to detecting security anomalies.
Visualization can also be useful tool in predicting real-time
cyber attacks. For instance, in [130], Tan et al. used com-
puter vision to transform the network traffic data into images
using a multivariate correlation analysis approach based on
a dissimilarity measure called Earth Mover’s Distance to
help detect denial-of-service attacks. A computer vision deep
learning algorithm for human activity recognition was pro-
posed in [179]. The model is capable of recognizing twelve
types of human activities with high accuracy and without
the need of prior knowledge, which is useful for security
monitoring applications.

C. CLOUD-BASED BIG DATA ANALYTICS
Cloud-based analysis in CPS constitutes a scalable and reli-
able architecture to perform analytics operations on big data
stream, such as extracting, aggregating and analyzing data of
different granularities [180]. A massive amount of data are
usually stored in spreadsheets or other applications, and a
cloud-based analytics service, using statistical analysis and
machine learning, helps reduce the big data to a manageable
size so information can be extracted, hypothesis can be tested,
and conclusions can be drawn from non-numerical data such
as photos. Data can be imported from the cloud and users are
able to run cloud data analytics algorithms on big datasets,
after which data can be stored back to the cloud [181]. For
instance, in [182], Yetis et al. used cloud computing using
MapReduce algorithm to conduct analysis on crime rates in
the city of Austin using different attributes like crime type and
location to help build a design that prevents future crimes for
public safety.

Even though cloud computing is an attractive analytics tool
for big data applications, it comes with several challenges,
mainly concerning security, privacy and data ownership,
which will be discussed further in Section VII. In [99], Tawal-
beh et al. extended the use of clouds to mobile cloud comput-
ing to help overcome the challenge of resources limitations
such as memory, battery life and CPU power. A mobile cloud
computing architecture was suggested for healthcare applica-
tions with discussion on various big data analytic tools avail-
able. In [183], Clemente-Castellèt’ß et al.suggested using
a hybrid cloud computing consisting of public and private
clouds to accelerate the analysis ofmassive data workloads on
MapReduce framework without requiring significant modifi-
cations to the framework. In a private cloud, cloud services
delivered over the physical infrastructure are exclusively ded-
icated to the tenant. The hybrid cloud uses a set of virtual
machines running on the private cloud, which take advantage
of data locality, and another set of virtual machines run on a
public cloud to run the analysis at a faster rate.

To optimize the utilization of cloud computing resources,
predicting the expectedworkload and the amount of resources
needed becomes important to reduce waste. In [184],
Neves et al. developed a system that predicts the resources
requirements of a MapReduce application to optimize
bandwidth allocation to the application, while, in [185],

Islam et al. used linear networks along with linear regres-
sion to predict the future need of new resources and VMs.
When the system fails short in predicting the right amount of
resources needed, it becomes incapable of accommodating
a high workload demand, leading to anomalies. Anomalies
detection is an essential part of big data analytics, as it
helps improve the quality of service via checking whether
the measurements of the workload observed and the baseline
workloads diverge by a specific margin, where the baseline
workloads provide a measure on how the demand changes
during a period of time based on historical records [186].

D. SPATIAL-TEMPORAL ANALYTICS
Massively data obtained from widely deployed spatio-
temporal sensors have caused grand challenges on data stor-
age, process scalability, and retrieval efficiency. The paper
[187] proposed distributed composite spatio-temporal index
approach VegaIndexer for efficiently processing the large
amount of spatio-temporal sensor data. The paper [188]
investigated the big data issues in Internet of Vehicles (IOV)
applications and proposed to use clouding based big data
space-time analytics to enhance the analysis efficiency. The
paper [189] proposed STAnD to determine anomaly patterns
for potential malicious events within these spatial-temporal
data sets. Massively data obtained from widely deployed
spatio-temporal sensors have caused grand challenges on
data storage, process scalability, and retrieval efficiency. The
spatial distributed CPS nodes also can be used to analyze
location information. The paper [190] proposed an efficient
indoor positioning based on a new empirical propagation
model using fingerprinting sensors, called regional propa-
gation model (RPM), which is based on the cluster based
propagation model theory, and then the paper [191] used
particle swarm optimization (PSO) to estimate the location
information via Kalman filter to update the initial estimated
location.

E. BIG DATA ANALYTICAL TOOLS
In this section, some typical tools are briefly introduced for
aforementioned three methods of big data analytics, namely
data mining, real-time big data analytics and cloud-based big
data analytics.

1) TOOLS FOR DATA MINING
Hadoop [22] is an open source managed by the Apache
Software Foundation. There are two main components for
Hadoop, namely HDFS [14] and MapReduce [15]. HDFS
is developed from an inspiration of GFS [19], and it is a
scalable and distributed storage system, which is an appropri-
ate solution for data-intensive applications, such as Gigabyte
and Terabyte scale. Rather than just being a storage layer of
Hadoop, HDFS is also beneficial to throughput improvement
of the system and it supplies efficient fault detection and
automatic recovery. MapReduce is a framework which is
used to analyze massive data sets in a distributed fashion by
means of numerous machines [192]. There are two functions
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in the mathematical model of MapReduce includingMap and
Reduce, both of which are available to be programmed. R is
also an open-source software environment for data mining
developed by AT&T Bell Labs [16]. Actually, R is a real-
ization of the S language used to explore data, implement
statistical analysis and draw plots. Compared with S, R is
more popular and supported by a large number of database
manufacturers, such as Teradata and Oracle.

2) TOOLS FOR REAL-TIME BIG DATA ANALYTICS
Storm [16], [17] is a distributed real-time computing system
for big data analysis. Compared with Hadoop, Storm is easier
to operate and more scalable to provide competitive and
efficient services. Storm makes use of distinct topologies for
different storm tasks in terms of storm clusters, which are
composed of master nodes and worker nodes. The master
nodes and worker nodes play two kinds of roles in the fields
of big data analysis, namely nimbus and supervisor, respec-
tively. The functions of these two roles are in agreement
with jobtracker and tasktracker of the MapReduce frame-
work. Nimbus takes charge of code distribution across the
storm cluster, the schedule and assignment of worker nodes
tasks, and the whole system surveillance. The supervisor
compiles tasks given by nimbus. Splunk [18] is also a real-
time platform designed for big data analytics. Based on the
web interface, Splunk is available to search, monitor and ana-
lyze machine-generated big data, and the results are exhibited
in different varieties including graphs, reports, alerts and so
on. Compared with other real-time analytical tools, Splunk
provides various smart services for commercial operations,
system problem diagnosis, and so on.

3) TOOLS FOR CLOUD-BASED BIG DATA ANALYTICS
As the most popular tool for cloud-based big data analyt-
ics, Google’s cloud computing platform [193] consists of
GFS [26] (big data storage), BigTable [20] (big data man-
agement) and MapReduce (cloud computing), which was
discussed in the previous section. GFS is a distributed file
system and it is enchanced to meet the requirements of big
data storage and usage demands of Google Inc. In order to
deal with the commodity component failure problem, GFS
facilitates continuous surveillance, errors detection and com-
ponent faults tolerance. GFS adopts clustered approach that
divides data chunks into 64-KB blocks and stores a 32-bit
checksum for each block. BigTable supplies highly adaptable,
reliable, applicable and dynamic control and management in
the field of big data placement, representation, indexing and
clustering for enormous and distributed commodity servers,
and it constitutes of a row, column, record tablet and time
stamp.

F. SUMMARY AND INSIGHTS
To better extract information from big data, it is of utmost
importance to enhance cloud’s analysis performance. A com-
bination of different techniques discussed in this section can
be used to optimize cloud computing resources. If VMs

FIGURE 5. An illustration of CPS taxonomy.

and cloud’s resources and requirements can be predicted
beforehand, then workloads can be efficiently processed and
analyzed by taking advantage of cloud analytical tools pre-
viously discussed. Furthermore, using a hybrid cloud can
further speed up the analysis of workloads, leading to reduced
latency and efficient data mining.

VII. BIG DATA CYBERSECURITY AND PRIVACY
In the realm of cyber physical systems, the tight interaction
among physical objects which collect and transmit a large
volume of data place security threats under the spotlight
of attention. With this enormous amount of data that are
constantly flowing through the network, it becomes essen-
tial to protect the system from cyber attacks [194]. In this
section, we provide an overview of the different security
solutions proposed for big data storage, access and analytics
(see Table 5 for a summary).

A. SECURITY IN BIG DATA STORAGE AND ACCESS
While data storage in the cloud offers several advantages in
terms of data storage, availability, scalability and processing,
it increases the chance of malicious attacks, that in addition
to potential privacy invasion by cloud operators who can have
accesses to sensitive data. All this puts a question mark on
whether cloud data storage is feasible, especially for govern-
mental agencies and financial industries. Several works have
attempted to solve the security challenges of cloud storage.
For instance, Gai et al. [195] proposed a method that splits
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files into encrypted parts and store them in distributed cloud
servers without users’ data being directly reached by cloud
service operators. In [196], Kang et al. optimized the data
placement on cloud servers that minimizes the retrieval time
of data files while guaranteeing their security based on the
distance between nodes that store the data chunks, such that
the malicious attacker cannot guess the locations of all the
data chunks. In [197], Sekar and Padmavathamma suggested
that data should be encrypted and decrypted before being
sent to clouds. The paper [198] addressed iOS devices as
case studies and stressed the possible applications for pairing
mode in iOS devices, which supports a trusted relationship
between an iOS device and a personal computer, for covert
data exfiltration.

When data need to be transferred from one cloud
to another, data privacy and integrity become important.
In [199], Ni et al. proposed a secure data transfer scheme
where users encrypt the data blocks before uploading to
the cloud. When transferring from one cloud to another,
a security protocol was described using secret keys and
a signature checking with polynomial-based authentication
was performed without retrieving data from the source cloud.
While the mentioned works considered encryption as a way
to protect the data from privacy violations, encryption intro-
duces a new challenge: cloud data deduplication, especially
when data is shared among many users. Even though dedu-
plication can save up to 95% in terms of needed storage
for backup applications [200], and 68% for standard file
systems [201], it wastes resources, and consumes energy,
and makes the data management very complicated. In [202],
Yan et al. attempted to solve the deduplication problems via
proposing a scheme, where the users upload the encrypted
data to the cloud along with a token for data duplication
check, which is then used by the cloud service providers to
check whether the data has already been stored. A scheme
to verify data ownership was presented to ensure secure data
management.

B. SECURITY IN BIG DATA ANALYTICS
Enabling security and privacy aspects of big data analytics
has attracted a great attention from the scientific community
mainly due to different reasons. First, the data are more
likely stored, processed and analyzed in several cloud centers
leading to security issues due to the the random locations of
data. Second, big data analytics treats sensitive data in similar
way to other data without taking security measures such
as encryption or blind processing into consideration [203].
Third, big data computations need to be protected from
malicious attacks in order to preserve the integrity of the
extracted results. In the realm of CPS, an enormous amount of
data make the surveillance of security-related information for
anomaly detection a challenging task for analysts. In health-
care, for instance, the security issues of information extrac-
tion from massive amount of data and accurate analytics
are of high importance. Sensitive data recorded in databases
need to be protected via monitoring which applications and

users get accesses to the data [204]. In order to guarantee a
strong secure big data analytics, the following tasks can be
performed [205]:

• Surveillance and monitoring of real-time data streams,
• Implementation of advanced security controls such as
additional authentication and blocking suspicious trans-
actions,

• Anomaly detection in behavior, usage, access and net-
work traffic,

• Defending the system against malicious attacks in real-
time,

• Adoption of visualization techniques that give a full
overview of network problems and progress in real-time.

In [206], He et al. tackled the big data analytics in mobile
cellular networks based on random matrix theory, where big
data is represented in matrix form of size n × N , where n is
the number of data samples of a random vector x, and N is
the number of independent realizations of x. For cellular net-
works, big data manifests as big signaling data consisting of

1) a large number of control messages to ensure reliability,
security and efficiency of communications,

2) big traffic data which require traffic monitoring and
analysis to balance network load and optimize system
performance

3) big location data generated by GPS sensors, Bluetooth,
WiFi and so on, to assist in different areas such as
transportation systems, public safety, crime hot spots
analysis and so on,

4) big radio waveforms data emanating from 5G massive
MIMO systems to estimate users’ moving speed for
purposes of finding correlation among transmitted sig-
nals as well as assist in channel estimation,

5) big heterogeneous data such as data rate, packet drop,
mobility and so on that can be analyzed to ensure
cybersecurity.

The work [207] proposed a secure high-order clustering
algorithm via fast search density peaks on hybrid cloud for
industrial Internet of Things.

Machine learning, among other tools, offers a promising
solution to automate many of the above mentioned security-
related tasks, especially with the continuous growth of the
flowing data in terms of scale and complexity. Through the
process of training datasets, machine learning makes possi-
ble the detection of future security anomalies via detecting
unusual activities in the network traffic. To achieve a higher
accuracy, a large volume of training datasets are needed,
but this would be at the cost of added overhead and stor-
age constraints. The process of training can be supervised,
unsupervised or semi-supervised, depending on whether the
outcome of a particular dataset is already known. Particularly,
the system starts via classifying similar datasets into clusters
to determine their anomaly. A human analyst can then explore
and identify any unusual data. The outcome found by the
analyst can then be fed back to the training system in order
to make it more ‘‘supervised’’ [208]. This has the potential
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TABLE 5. Summary of security solutions proposed for CPS.

in enabling the training system adapt to new forms of threats
without human intervention, so actions can be immediately
taken before actual damages occur.

Different approaches for anomaly detection exist in litera-
ture such as discretizing the continuous domain into different
dimensions such as in the surveillance system in [209], where
the author partitioned the surveillance area into a square grid
where the positions and velocities of the moving objects
falling in each cell are modeled by a Poisson point process.
Another approach is the multivariate Gaussian analysis in
which data are flagged as abnormal when they lie a number
of standard deviations away from the mean. For instance,
in [210], Rocha et al. used multivariate Gaussian analysis
to detect Internet attacks and intrusions via analyzing the
statistical properties of the IP traffic captured. In cluster-
ing methods such as k-means clustering, data points can be
grouped into clusters based on their distance to the center of
the cluster. Then, if some data point lies outside of the group
cluster, it is considered as an anomaly. Jia et al. [211] used
kernel k-means clustering with local-neighborhood informa-
tion to detect a change in an image by optimally computing
the kernel weights of the image features such as intensity
and texture features. As for the artificial neural network
approach, one implementation of such a model is the autoen-
coder, also known as replicator neural network, which flags
anomalies based on calculations of the difference between the

test data and the reconstructed one. This means that if the
error between test and reconstructed data exceeds a specified
threshold, then it is considered far away from a healthy
system distribution [212]. An example of such an approach
is given in [213], where the authors used the autoencoder as a
high accuracy and low-latency model to detect anomalies in
the energy consumption and operation of smart meters.

Privacy preserving data analytics and mining can be quite
challenging tasks since analyzing encrypted data is an ineffi-
cient, costly and non-straightforward solution. Homomorphic
encryption is one of the solutions proposed to enable analyt-
ical operations to be performed on ciphertexts using multiple
mathematical operations [214], [215]. For instance, in [216],
Li et al. used Efficient Privacy-preserving Outsourced calcu-
lation with Multiple keys (EPOM) homomorphic encryption
to encrypt data before sending to cloud. The cloud then uses
ID3 algorithm to perform data mining on encrypted data.
The algorithm uses a hierarchical tree decision to determine
which attributes from a set of samples provide the best pre-
diction or information gain. Another approach for process-
ing mining on encrypted data in cloud using homomorphic
encryption was suggested in [217]. A cloud service provider
(CSP) collects and stores encrypted data, while a server,
referred to as Evaluator, collaborates with CSP to perform
mining over encrypted data. A miner submits encrypted min-
ing queries to CSP which in turn computes inner product
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between vectors to determine the frequency of the mining
itemset without CSP and Evaluator having access to the sen-
sitive data. However, homomorphic encryption can be com-
putationally expensive and impractical for big datasets [218].

One potential approach to protect private data during the
analytic processes is the k-anonymization proposed in [219].
First, users who access the data need to be authenticated and
authorized based on the level of shared results’ privacy. Then,
a list of hashed and primary identifiers is generated to act
as a data filter for the information that can be accessible
by the authorized user. K-anonymization is then applied on
the personally identifiable columns in the dataset in order to
generalize or suppress values in the output dataset. The result
is an k-anonymized list on which analysis and mining can be
performed on the authorized accessible data.

Although k-anonymization appears to be a promising
adaptable approach to privacy preserving data analytics inde-
pendent of the underlying processes, its feasibility in the big
data contexts is possibly not further evaluated for data types
and computational time. Furthermore, k-anonymization can
be problematic if different datasets contain same sensitive
values [220]. One approach that attempts to solve this prob-
lem is the cosine similarity computation protocol suggested
in [218] and [221]. The proposed approach allows for larger
datasets scalability for both binary and numerical data types
in a time-efficient manner. The idea is to allow data to be
shared without disclosing the sensitive information to unau-
thorized users. This can be done via computing the scalar
product between different vectors of numerical values, such
as calculating the cosine of the angle between them. Having
the result closer to 1 indicates that vectors are more similar to
each other.

On the other hand, many of the big data applications have
hierarchical structures in nature, and thus require hierarchical
privacy preserving solutions. For instance, in [222], hierarchi-
cal cloud and community access control can be implemented
to strengthen privacy preserving in smart homes and smart
meters. The home controller, which protects household per-
sonal data, is connected to a cloud platform through a commu-
nity network, which provides privacy preserving solutions to
homes through data separation, aggregation and fusion. The
cloud combines the access control schemes for homes and
community in more complex and stronger privacy protection
process.

C. SUMMARY AND INSIGHTS
From Table 5, it is clear that a single security solution is
not sufficient to ensure a robust system against attackers.
It is quite necessary to incorporate different strategies to
face security flaws that stem from poor systems designs.
For instance, it makes sense to combine advanced security
controls with cryptography to guarantee that only legiti-
mate users have accesses to data. However, such a solution
might not work well for delay-sensitive CPS applications
such as e-health systems, especially in the cases that the
small sensors have limited computational capabilities. For

such applications, it is more efficient to employ visualization
detection along with machine learning-based anomaly detec-
tion techniques to protect users’ sensitive data.

VIII. BIG DATA MEET GREEN CHALLENGES FOR CPS
There are two view directions for big Data meeting green
challenges for CPS. Firstly, we address greening big data
systems for CPS, including CPS big data collection/storage,
computing and processing. Secondly, we discuss big data
with CPS toward green applications. Table 6 shows different
sustainable applications, along with challenges and solutions
for a greener CPS. Table 7 provides a summary of these
solutions proposed in different research papers, while Table 8
groups them into three different categories: green data man-
agement, green architectures and green software solutions.

A. GREENING BIG DATA FOR CPS
1) GREEN DATA COLLECTIONS AND COMMUNICATIONS
With a massive number of interacting objects, gathering
sensed data poses a challenge in terms of energy consump-
tion, mainly due to the limited communication range between
subnetworks, necessitating that objects act as relays for sur-
rounding objects in order to extend their communications.
This affects the lifetime of objects since each object needs to
relay large volume of data generated by its neighbors [233].
In this context, different solutions have been proposed for
different big data applications. In [233], Takaishi et al. pro-
posed energy efficient solutions for data collection in densely
distributed sensor networks. In an attempt to reduce the num-
ber of relay transmissions needed, sensor nodes transmit their
data to a data collector node, the sink node, when they become
close in proximity to it. Therefore, it becomes important to
figure out the trajectory that the sink node needs to follow
the nodes’ information such as location and residual energy,
as well as the cluster formation in order to reduce the energy
consumption of data collection. Data compression technol-
ogy is another solution to help deal with challenges of data
storage, collection, transmission, processing, and analysis.
For instance, in [262], Tong et al. proposed a highly efficient
lossy data compression based on smart meters’ load features,
states and events with a small reconstruction error. ZIP-IO
compression technique was proposed in [263] using FPGA
as a potential implementation framework. Video compression
is another important tool in big data for surveillance applica-
tions. Tian et al. [264] proposed a background-based coding
optimization algorithm that uses the residual gradient and
the block edge differences to improve picture quality while
achieving a high level of compression.

To achieve higher power savings for machine-to-machine
(M2M) or machine type communications (MTC), this paper
[265] proposed improved approaches for M2M devices, radio
access networks and core networks with simplified activities
under optimized signaling flow without introducing nega-
tive impacts on legacy human-to-human (H2H) terminals.
In wireless cellular networks, when mobile terminals can

VOLUME 6, 2018 73619



R. Atat et al.: Big Data Meet CPSs: Panoramic Survey

TABLE 6. Sustainable CPS: applications, challenges and solutions.

directly communicate each other without the aids of cen-
tral stations or base stations, the communications in those
scenarios are called device-to-device (D2D) communica-
tions [266], which is another term of CPS in those scenarios.
The paper [267] studied energy-efficient power control for
D2D communications underlaying cellular networks with
multiple D2D pairs and co-channel interference caused by
resource sharing. The work [268] proposed an architecture
using D2D multicast for energy efficient content delivery in
cellular networks. Removing redundant transmission links
can also reduce energy consumption while increasing net-
work capacity. Topology control algorithms such as local
minimum spanning tree (LMST) [239] and Local Tree-
based Reliable Topology (LTRT) [240] have low compu-
tational complexities and can help obtain the best logical
topology which can be beneficial for energy efficient data
collections. In addition to removing redundant transmission
links, removing redundant data can help save energy, such
as in [242], where a compressive-sensing-based collection
framework was proposed for reducing data redundancy and
saving energy. To implement this solution, an online learning
module predicts the amount of data (principal data) that needs
to be collected for compressive sensing. This means that the
principal data are supposed to represent the whole big data
using the compressive sensing technique. Then, each node

can locally tweak the collection strategy dynamically depend-
ing on neighbors status, residual energy, and link quality.
Nodes’ clustering can also contribute to energy saving via
reducing the number of data collection and transmissions,
such as fan-shaped clustering proposed in [241] for large-
scale networks with energy efficient selection of a cluster
head and relay node. Other clustering algorithms have existed
in literature, such as the well-known Low-Energy Adaptive
Clustering Hierarchy (LEACH) [269], which can be use-
ful for big data wireless sensor networks. The work [270]
adopted an energy-efficient architecture for Industrial Inter-
net of Things (IIoT) with a sense entities domain, RESTful
service hosted networks, a cloud server, and user applications
to balance the traffic load and support a longer lifetime of the
whole system. The paper [271] mainly studied two important
issues: 1) performing cyber-physical systems (CPS) commu-
nications over cellular networks with ubiquitous coverage,
global connectivity, reliability and security, 2) offloading a
proportion of CPS traffic to small cells and freeing more
network resources to other users.

2) GREENING BIG DATA COMPUTING
While cloud centers are becoming an important aspect of
big data computing to process data chunks in parallel, they
contribute to a high energy expenditure, leading to increased
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costs and maintenance [272]. Therefore, research efforts are
shifting towards creating sustainable big data computing
techniques. Shojafar et al. [246] proposed a job scheduler
between servers calledMMGreen to reduce energy consump-
tion of computing in cloud data centers. The MMGreen
architecture is composed of physical servers hosting VMs
connected to a front-end component that manages the incom-
ing workload. Scheduler jobs that use dynamic voltage and
frequency scaling (DVFS) technique for energy efficient
servers include static scheduler whose power consumption
is independent of clock rates and usage, and sequential
schedulers which attempt to minimize reconfiguration costs
via performing offline resource provisioning via predicting
future workload information [29]. The paper [273] proposed
1) thermal-aware and power-aware hybrid energy consump-
tion model jointly including the information of computing,
cooling, andmigration energy consumption, 2) a tensor-based
task allocation and frequency assignment model to reflect the
relationship among different tasks, nodes, time slots, and fre-
quencies, 3) a thermal-aware and DVFS-enabled big data task
scheduling algorithm for the energy consumption reduction
of data centers.

In [246], Shojafar et al. described different techniques to
reduce energy consumption such as DVFS to reduce VMs’
frequencies and real-time adjustment of VMs frequencies
processing and switching while maintaining quality of ser-
vice to users. In [247] and [248], M2M power savings were
optimized via reducing the execution frequency of some
activities without negatively impacting the human-to-human
communications.

Besides targeting the energy efficiency of cloud servers,
network devices also need energy efficient solutions, since
they also contribute to the total energy expenditure of the
cloud data center. Traffic engineering is one solution for
this problem, which takes advantage of the traffic prediction
to turn off network devices such as switches during idle
periods in order to reduce power consumption [249]–[252].
Traffic engineering techniques, such as the software defined
networking (SDN)-based traffic engineering [253], allow the
network devices to dynamically adapt to current workload.
One problem with traffic engineering techniques is that the
predicted traffic pattern might not be accurate due to the
variability of big data applications running in the data center.
This makes the network configuration suffer from frequent
oscillations, since the network configuration needs to be
updated frequently leading to performance degradation [254].
To take into consideration this time-varying aggregate traffic
load, one proposed solution is to include flow deadlines to
measure the speed at which requests’ responses are delivered
to users. This allows the design of energy-efficient scheduling
and routing for data center networks [254]–[256]. Another
solution to enhance the inaccurate traffic engineering tech-
niques is to take into consideration the unique features of data
centers such as regularity of the topology, VM assignment,
application characteristics. Such a framework was proposed
in [257], where the energy-saving problem was solved in two

steps: i) a VM assignment algorithm that integrates applica-
tion characteristics and network topology to better understand
traffic patterns for energy efficient routing, and ii) an algo-
rithm that minimizes the number of switches and balances
traffic flow among them. Experimental results showed a 50%
energy savings using the proposed framework.

3) GREEN PROCESSING
An energy-efficient orchestrator for smart grid applications
was proposed in [30]. The green orchestrator coordinates
sustainability between smart grids and big data enterprises
from green infrastructure (data centers) to running green
frameworks such as Hadoop MapReduce. The orchestrator’s
main components are: i) a green lesser to establish a per-
job service-level agreements (SLA) that takes into account
the available power, the power consumption statistics of jobs,
the network and server states; ii) a pre-execution analyzer that
executes jobs based on their power consumption statistics;
iii) a network and server states predictors; iv) a network traffic
analyzer which helps eliminate redundant traffic using traffic
engineering techniques; v) a VMizer that intelligently places
VMs such that some nodes are put to sleep; (vi) a pizer that
schedules and places processes to a subset of clusters such
that system resources are efficiently utilized; and (vii) a post-
execution analyzer to analyze the energy profile of completed
jobs.

Another green big data processing architecture is check-
pointing aided parallel execution (CAPE), which uses check-
points that save the sates of processes to avoid restarting
unnecessary executions from beginning in case of hard-
ware or software failures [258]–[260]. CAPE also allows
threads of a shared-memory program to be executed in paral-
lel on a distributed memory architecture rather than a shared
memory architecture. The CAPE architecture can lead to
energy saving since if the execution period of processors is
short, they can go to idle mode rather than staying active for
the whole execution of the program. This makes it beneficial
in processing big data in CPS applications [260], [261].

Another approach to green big data processing is the
efficient utilization of network resources by reducing the
volume of communications that need to be exchanged in
cloud data center networks. For instance, Asad et al. pro-
posed spate coding for the purpose of reducing the amount
of exchanged data, but without compromising the rate of
information exchange [234]. Spate coding incorporates both
index coding and network coding, and uses side informa-
tion originating from several processes sharing a physical
node to encode packets. This coding technique was shown
to reduce the volume of communications by 62%, along
with other advantages such as improving the utilization of
system resources from disk utilization, queue size, and the
number of bits transmitted during shuffle phase of Hadoop
(200%) [234]. Other approaches to reduce the burden on
data centers from the information exchange include traffic
flow prediction to reduce network transfers [184], [235], and
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TABLE 7. Summary of different green solutions proposed for CPS.

TABLE 8. Different green solutions approaches.

redundancy elimination scheme to remove redundant infor-
mation data exchange, among others [236]–[238].

B. CPS-BASED BIG DATA TOWARD GREEN APPLICATIONS
CPS-based big data applications can contribute to greening
different sectors, environment, economic, and social/technical
issues [6], [31], [32]. As for the environment, efforts are
made to reduce air/water pollution as well as the impact of
climate changes. For instance, sensors can be deployed to
monitor air and water qualities. Using MapReduce or Spark
programming frameworks, the concentration of pollutants
can be monitored and studied [274]; the air quality not
covered via monitoring stations can be estimated [275],
and the causalities of air pollutants can be identified using
urban big data dynamics [276]. Pollution can also originate
from oil spills. Predicting such catastrophes very early can
help save beaches, coastlines and waters [6], [32]. Marine
oil spills can be detected using a large archive of remote
sensing big data [10]; and a real-time warning can be gen-
erated from a quantitative data analysis using supervised
oil system [277]. Concerning water pollution, underwater
sensors can be deployed to monitor water environment, such
as water level, water flow, temperature, and pressure. The
sensor network can be connected to a cloud platform via
a wireless transceiver for analysis and visualization [278].
Noise pollution in cities is another contributing factor to
environmental pollution, which can have negative impact on
health, especially with the increasing number of circulating
vehicles [6], [32]. Noise pollution levels can be predicted via
collecting four data sources: complaint data, social media,
points of interests, and road network data [279]. These
data can be gathered via deploying static municipal sensors,

together with participatory sensing with smart phones in
order to provide more accurate noise maps [280].

As for green economics, CPS applications can be targeted
for optimizing the energy use. One example is FirstFuel,
which monitors temperature and lightnings inside buildings
by checking the running status of the equipments, such as
fans, heating and cooling units [6]. Powermanagement can be
realized using sensors monitoring the whole building, as well
as using smart meters for electricity consumption measure-
ments. A solution in energy efficient smart meters has been
proposed in [281] using coalition game that maximizes the
pay-off values of smart meters. An approach to predict daily
electricity consumption inside buildings using data analysis
was proposed in [282]. The authors used canonical vari-
ate analysis to group electricity consumption profiles into
clusters in order to identify abnormal energy usage. Energy
efficiency can also be employed in transportation systems
to reduce fuel wastage. One example is [283], where the
authors used electric vehicles (EV) battery model to estimate
the driver’s behaviors and driving range to improve energy
efficiency.

Social media and participatory sensing can also be
used toward greener environments. For instance, in [284],
Qin et al. used social media to optimize smart grid manage-
ment. In [285], participatory sensing was used to implement a
navigation service called GreenGPS to allow drivers to obtain
customized routes that are the most fuel-efficient.

IX. CPS BIG DATA APPLICATIONS
We now present some of the main CPS big data appli-
cations in different fields, such as energy utilization, city
management, and disaster events applications, along with
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FIGURE 6. Big data meet CPS applications (adapted from [286]–[291]).

a public safety case study model. Fig. 6 shows different
CPS applications and their big data generation. For instance,
the intelligent transportation system would generate big data
consisting of driver’s behavior, passenger information, vehi-
cles’ locations, traffic signals management, accidents’ report-
ing, automated fare calculations, and so on. Each one of the
CPS applications generate a large amount of data that need
to be stored, processed and analyzed in order to improve
services and applications’ performance.

A. SMART GRIDS
Smart grids constitute an important aspect of sustainable
energy utilization and are becoming more popular, especially
with the advances in sensing and signal processing technolo-
gies. Automated smart decisions based on millions of data
and control points play an important role in managing the
energy usage patterns, understanding users’ behaviors, reduc-
ing the need to build power plants, and addressing supply
fluctuations by using renewable resources [244]. The large
number of embedded power generator sensors and their com-
munications with different home sensors and appliances are
expected to generate a large amount of data. These advanced

sensing and control technologies used in smart grids are often
limited to a small region such as a city; however they are
envisioned to be deployed on a much larger scale such as the
whole country. This will introduce several challenges, among
which information management, processing and analysis are
the main ones [292]. These big data tasks get even more
complicated with the increasing number of transactions that
need to be processed for millions of customers. For instance,
one smart grid utility is expected to handle two million
customers with 22 gigabytes of data per day [292]. That is
why big data tools from cloud computing [244], mining and
analytics [293], [294], performance optimization [295] and
others have been dedicated for smart grids applications.

Moreover, for reliable power grid, smart grids highly
depend on cyber infrastructure. This poses several chal-
lenges such as exposing the physical operations of smart
grid systems to cyber security attacks [296]. Furthermore,
the collection of users’ energy usage information such as
the types of appliances they use, the eating/sleeping patterns,
and so on, can be very beneficial in optimizing smart grids’
performance; however users’ privacy can also be affected.
In [297], Yassine et al. proposed a game theoretic mechanism
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to balance between users’ private information and the bene-
ficial uses of data. In [298], a big data architecture for smart
grids based on randommatrix theorywas proposed to conduct
high dimensional analysis, identify data correlations, and
manage data and energy flows among utilities. The proposed
architecture not only allows large-scale big data analysis
but also can be used as an anomaly detection tool to detect
security flaws in smart grids.

For security threats that occur in short time, a security
situational awareness techniquewas proposed in [299], which
uses fuzzy cluster analysis based on game theory and rein-
forcement learning to enhance security in smart grids. A big
data computing architecture for smart grids was proposed
in [300] with four main elements: 1) data resource where
smart grids data is generated by different devices, companies
and systems with complex correlated relationship among
them, 2) data storage where only meaningful information is
stored and processed with in stream mode or batch mode,
3) data analysis using demand-side management or load
forecasting for purposes of categorizing the total demand
response in a specific region, and 4) data transmission which
bridges the previous elements together. Using this architec-
ture with energy scheduling scheme based on game theory
and a generic algorithm-based optimization to obtain the
optimal deployment of energy storage devices for each cus-
tomer, the results show a significant reduction in total costs of
consumers over long term. In [301], the combined temporal
encoding, delayed feedback networks (DFNs) reservoir com-
puting (RC) implementation, and a multi-layer perceptron
(MLP) were used to execute effective attack detection for
smart grid networks.

B. MILITARY APPLICATIONS
Big data can also be exploited to improve military expe-
riences, services, and training. Real-time authentication of
command and control messages in cyber-physical infrastruc-
tures is of high importance for military services to ensure
security. In [302], Yavuz developed a novel broadcast authen-
tication scheme using special digital signatures for faster sig-
nature generation and verification, and packet loss tolerance.
This can be useful to efficiently and rapidly secure mili-
tary communications. In [303], Nguyen et al. used Markov
decision process to propose an approach to identify and
reduce attacks’ cost in military operations in order to pro-
tect important information through obtaining attack poli-
cies. Military satellite communications require being resilient
to ensure missions’ success. This can be achieved using
matrix-based protection assessment approach based on tra-
ditional risk analysis, where an attack can be assessed in
terms of both ease of attack and impact of attack [304].
Mitigating the following five core threats allows the satel-
lite communications to be free from weak vulnerabilities
that can be easily exploited by attackers: waveform, RF
access to enemy, foreign presence, physical access, and traffic
concentration [304].

C. CITY MANAGEMENT
Big data can facilitate daily activities by using smart infras-
tructures and services. With the increasing number of sensors
deployed in in urban environment either indoor or outdoor,
from smart phones, smart cards, on-board vehicle sensors
and so on, the city is faced with a large amount of infor-
mation that need to be exploited to detect different urban
dynamic patterns [305]. For instance, traffic patterns can be
analyzed and routes can be computed to allow people to reach
their destinations faster. In [306], Rathore et al. proposed
to deploy road sensors to obtain information on the overall
traffic, such as speed and location of individual vehicles.
This information is then processed using graph algorithms by
taking advantage of big data tools such as Giraph, Spark and
Hadoop. This helps provide real-time intelligent decisions for
smart efficient transportation. Since wireless sensor networks
(WSN) are the main infrastructures for smart cities to monitor
and gather information from the environment, several works
have focused on extending network’s lifetime. For instance
in [307], de Oliveira and Margi proposed using software-
defined networking (SDN) controller to reduce WSN traffic
and improve decisions making. In [243], compressive sens-
ing and consensus filter were used to reconstruct signals
from fewer sensor nodes, leading to power savings. Sleep
scheduling with renewable energy resources such as solar
harvesting were also suggested in [245] to prolong WSN
lifetime. CPS based big data may also support localization
applications [190], [191].

An IoT-based general architecture for smart cities was
presented in [305], which consists of four different lay-
ers: 1) technologies layer consisting of self-configured and
remotely-controlled sensors and actuators, 2) middleware
layer where data from different sensors are collected to pro-
vide context information, 3) management layer where dif-
ferent data analytic tools are used to extract information,
test hypothesis and draw conclusions, and 4) services layer
consisting of services provided by smart cities based on the
previous layers such as environmental monitoring, energy
efficiency in buildings, intelligent transportation systems an
so on.

Safety systems, such as deploying surveillance systems,
are other city management big data applications. A computer
vision deep learning algorithm for human activity recognition
was proposed in [179]. The model is capable of recognizing
twelve types of human activities with high accuracy and
without the need of prior knowledge, which makes it useful
for security monitoring applications. Crowd detection and
surveillance is another safety system big data application.
A target individual needs to be easily inferred from visual
information. In [231], Zitouni et al. proposed such a frame-
work that can easily detect target location and update the
motion information to improve the detection.

D. MEDICAL APPLICATIONS
CPS health systems are foreseen to shape the future of
tele-medicine in different areas such as cardiology, surgery,
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patients’ health monitoring, which will significantly enhance
the healthcare system by providing timely, efficient and
effective medical decisions for a myriad of health applica-
tions such as diabetes management, blood pressure and heart
rhythm monitoring, elderly support and so on [308]. With
774 million connected health-related devices [309] by 2020,
a large volume of data from small-scale networks, such as e-
health systems or mobile-health systems, needs to be stored,
processed and analyzed to enable timely intervention and
better management of patients’ health.

With e-health systems becoming widely deployed in hos-
pitals and health centers, research has been focused on effi-
ciently deploying medical body area networks (MBANs)
to reduce interference on medical bands from other
devices [310]. In MBANs, biomedical sensors are placed in
the vicinity of patient’s body or even inside her to sense
health-related vital signals using short-range wireless tech-
nologies. The collected data are then multi-hopped to remote
stations, so that medical staff can efficiently monitor patients’
physiological conditions and disease progression [310]. For
instance, in [311], elderly patients’ health tracking appli-
cation was proposed, where a mixed positioning algo-
rithm allows for 24-hour monitoring of patients’ activities
and transmits an alarm to medical staff through SMS,
e-mail or telephone in case of an abnormal event or emer-
gency. However, transmitting this health information in a
timely and energy-efficient manner is of utmost importance
for e-health systems. In [312], a micro Subscription Man-
agement System (µSMS) middleware for e-health systems
was presented. The µSMS platform allows sensor nodes to
exchange information to provide event-driven services with
dynamic memory and variable payload such as GPS coor-
dinates, Home Context and so on. The designed architec-
ture achieves lower memory overhead, lower software com-
ponents load time and lower event propagation time than
other similar proposals, which are all critical requirements
for energy efficiency, reliability and scalability of e-health
systems. The paper [313] proposed locality sensitive hashing
to learn sensor patterns for monitoring health conditions of
dispersed users.

E. DISASTER EVENTS APPLICATIONS
Network resilience and survivability are the utmost require-
ments for public safety networks. In case of a disas-
ter or emergency event, the people who are first on scene are
referred to as first responders, and they include law enforce-
ment, firefighters, medical personnel and others [314]. Some
of the major public safety requirements relate to the necessity
of first responders to exchange information (voice and/or
data) in a timely manner [314]. The big data can be used
to support disaster events, such as analyzing big data from
high resolution maps, floor plans and on-field video trans-
missions to transmit warning messages to authorities [315].
The remote sensing big data can be analyzed using a scalable
hybrid parallelism approach to reduce the analytics execution
time [316]. The large amount of data collected from previous

earthquakes can be used to predict the future service avail-
ability areas, which can improve preparation and response to
such events [317]. A disaster domain-specific search engine
can be constructed using big data to make the understand-
ing and preparation of disaster attacks easier and faster for
authorities [318].

F. A PUBLIC SAFETY CASE STUDY MODEL
Fig. 7 depicts a public safety (PS) model, where the base
station is unavailable due to network failure, indoor or under-
ground communications or cell-edge locations. This fact
necessitates that users form a device-to-device (D2D) net-
work autonomously without assistance of any network infras-
tructure. In this model, each D2D cluster sends its PS-related
data findings such as maps, videos, pictures and so on
to a command center for data analysis. This can be done
through satellites or by raising in the sky a balloon with
attached 4G eNodeB (AeNB) to restore temporarily con-
nectivity (Project ABSOLUTE [319]). LTE is suggested
as a technology enabler for PS communications [320]. LTE
provides high rate and very low latency IP connectivity.
LTE can complement existing Private Mobile Radio (PMR)
networks like TETRA/TETRAPOL/Project25. In terms of
end-to-end latency requirement, messages are expected to
be delivered within 5-10 milliseconds (ms) with a reliability
of 99.99% of packets successfully delivered within a time
window [321], [322]. Moreover, the downlink peak data rates
are expected to be over 50 Mbps with an uplink data rate of
over 25 Mbps [323]. The command center should be able to
analyze different data types and then transmit timely, useful
and accurate dynamic messages to each D2D cluster head.
The command center can transmit information such as assess-
ment of the level of assistance needed, emergency notification
messages, emergency service providers coordination, and so
on. Each D2D cluster head in turn multicasts this information
to its members for decision making. This poses a challenge:
some users might be far away from the multicast transmit-
ter or their link quality suffers, which would decrease the
coverage probability of the receiver and might require several
re-transmissions to send themessage successfully. Obviously,
there is a trade-off between throughput (or end-to-end delay)
and reliability due to the random transmission errors caused
by the unpredictable behavior of the wireless channel. It is
evident that we need to minimize delay, while maintaining
some good degree of reliability. In what follows, we briefly
derive the end-to-end delay and reliability for public safety
networks.

Let δi be the indicator variable defined as:

δi =

{
1 if packet is successfully received by node i
0 otherwise.

The set of nodes that have received successfully in the jth

round of multicasting can be defined as:

N ?j = {i | δi = 1}. (1)
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FIGURE 7. A public safety model for CPS.

In order to minimize the total delay, D, for distributing the
data to all nodes, L − 1 (L is the total number of nodes),
we need to select node k?j to multicast in the jth round of
multicasting such that:

k?j = argmax
i∈N ?j
{min
l /∈N ?j

Ri,l}, (2)

where Ri,l is the transmission rate between nodes i and l.
Define the set of unvisited nodes as 5u and the set of the
visited nodes as 5v Initially, we have 5v = 1, 5u = L − 1,
and D = 0. In the jth round of multicasting by node k?j , D
gets updated by adding to it the time of last node receiving
the packet successfully as:

D = D+max
i∈N̄j

ti, (3)

where N̄j = {i ∈ 5u|δi = 0}, and ti is the minimum access
time of node i. The multicasting rounds continue until either
i) all unvisited nodes become visited, i.e., 5u = 5v, or ii)
When D exceeds a threshold θD, in that case the packet is
dropped.

Reliability can be defined as the ability of the network to
perform its required functions for a certain period of time
without service interruption. A link breakage can occur due
to the following reasons:
• The receiver is outside of the transmission range of the
transmitter

• The packet is lost due to channel errors
• The packet is lost due to total delay D exceeding thresh-
old θD.

Assuming users are not moving, as in [324], each D2D
receiver is randomly and independently located around

its corresponding transmitter with isotropic direction and
Rayleigh distributed distance with probability density func-
tion (PDF):

fD(r) = 2πλre−λπr
2
, r ≥ 0. (4)

The probability that a user is outside the transmis-
sion range R of the transmitter can be calculated as
pR = 1−

∫ R
0 fD(r)dr = e−πλR

2
.

Considering log-normal shadow fading, the signal fades:
(1) deterministically with a path-loss exponent α, and (2)
stochastically represented by a random variable with zero
mean and a variance σ . Therefore, the probability pe that a
packet is not lost due to channel errors is given in [325]:

pe = 1−
1
2
+

1
2
erf
(
βth − α × 10 log(r)

√
2σ

)
, (5)

where βth is the minimum threshold required to deliver a
packet between nodes.

Finally, we combine what we have discussed to get the link
reliability as:

RL = pe + pR + pdrop. (6)

where pdrop = P (D > θD).

X. BIG DATA CHALLENGES AND OPEN ISSUES FOR CPS
While ongoing research is focusing on CPS enterprise devel-
opment and applications, effective solutions to combat secu-
rity flaws have not received the enough attention, which
places question marks on the foreseen integration of CPS in
critical infrastructures. This matter is made worse with CPS
devices having i) computational challenges in ensuring data
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confidentiality and privacy protection; ii) the semi- or fully-
autonomous security management [326]; and iii) the high
computational costs of employing cryptography [327]. Low-
complexity and lightweight ciphers such as PRESENT [328]
have been developed; however research efforts should go
beyond cryptography, especially that such solutions can
be costly in terms of i) latency, ii) power consumption,
and iii) key management complexity [329], [330]. Fur-
thermore, different CPS applications might have different
security perimeters with a multitude of interactions among
devices. This complicates further the access control deci-
sions, the trustworthiness of entities, and their authentication
management. Therefore, there is a high need to define secure
interoperation protocols and strategies for dynamic CPS,
where devices from different applications interact together to
complete specific tasks [331].

Privacy preserving is an important aspect of big data
analytics and mining. Homomorphic encryption techniques,
as mentioned in Section VII-B, have been suggested to per-
form analysis on encrypted data in cloud. However, they
turned out to be impractical and inefficient in terms of com-
putational time and overhead for large amount of datasets.
Although anonymization techniques constitute a more effi-
cient solution for privacy protection big data analytics, further
research efforts are needed to determine their applicability
for different big data types, and their performance evalua-
tion and endurance in different mining techniques as out-
lined in Section VI-A. Moreover, future solutions should
be based on the hierarchy property of many CPS big data
applications [222]. This means that future research should
be directed towards proposing integrated privacy preserving
protocols in themodules of the CPS hierarchical structure that
can perform analytical processes on encrypted variety of big
data types in a time- and cost-efficient manner.

Correctness of CPS is another research area under the
spotlight of attention. Due to dynamic nature of physical
environment, CPS need to constantly be adapted to new
situations while operating and functioning properly with lit-
tle or no human supervision [332]. The use of models can
allow the early detection of failures by simulating different
components of complex designs to verify the integration of
the whole system [333], [334]. CPS components verifica-
tion to ensure they are working properly or that they meet
execution time requirements is another approach to ensure
correctness [335]–[337]. Future research shall focus on creat-
ing robust real-time anomaly detection and correctness tech-
niques that have low overhead and implementation costs.

With CPS being employed on a large scale, data access,
routing, transmissions, and processing might consume a sig-
nificant amount of time, leading to real obstacles in the
way of realizing ultra-reliable and low latency communi-
cations (URLLC), a key feature for emerging 5G tech-
nologies. In URLLC, stringent requirements are placed on
latency, throughput, and availability. Future research should
be directed towards faster data access from the clouds with
fewer data re-transmissions in order to free up resources

and reduce latency. Obviously, there is a trade-off between
throughput (or end-to-end delay) and reliability due to trans-
mission errors that might be caused by links failure, secu-
rity policies, caching misses, scarcity of resources and so
on. For instance, cross-layer designs protocols between dif-
ferent CPS layers (sensing, middleware, transmission, man-
agement and services layers) can be used in a similar way
to the wireless communication protocols to help optimize
different parameters from latency to reliability and security.
An example would be the transmission layer communicating
with the sensing layer about integrating data filtering aimed
at prioritizing the sensed data in the case of too many re-
transmissions.

For faster data collection, research efforts need to shift
towards devices that do not need to preconfigure to a net-
work with dynamic on-the-fly D2D connectivity, and with-
out the need of controllers or infrastructure deployment.
Furthermore, to extend the communication range among
devices, incentivized devices with tokens will replace ded-
icated relays [338]. In terms of CPS computing, research
directions should shift towards faster data processing via
moving data processing closer to the sources and speeding-
up big data handling. For a faster and efficient CPS analysis,
research activities need to be further conducted on infor-
mation fusion techniques, especially that information origi-
nates from heterogeneous devices with varying capabilities.
Through perfecting the fusion algorithms, related informa-
tion can be aggregated for analysis leading to higher quality
information [339].

As mentioned in this survey, big data analytics is one
of the most important aspects of CPS, as it helps to pave
the way for new opportunities and services, in addition to
enhancing or even optimizing systems’ performance. How-
ever, as discussed in Section III, the sensed data can originate
from a variety of sources with unstructured formats. Merging
these different data types into single homogeneous structures
is vital to ease and speed up the analysis process so meaning-
ful conclusions can be drawn and automated decisions can
be made [340]. How to homogenize different data sources
remains an open research issue for CPS. Moreover, differ-
ent CPS applications might need to collaborate together to
achieve a specific mission. For instance, the mobile-health
application might need to collaborate with the transportation
system to get an ambulance as fast as possible in the case of
patient’s biomedical sensors revealing an emergency situa-
tion. In such scenarios, data analytics becomes a challenging
task as it requires to be able to put the different analysis frag-
ments from different CPS applications together to provide
broader conclusions and decisions making.

XI. CONCLUSION
The emerging CPS technologies mutually benefit the tech-
nological advancements in big data processing and anal-
ysis. When combined with artificial intelligence, machine
learning, and neuromorphic computing techniques, CPS will
bring about new applications, services and opportunities, all
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envisioned to be automated with little or without human
intervention. This will help revolutionize the ‘‘smart planet’’
concept, where smarter water management, smarter health-
care, smarter transportation, smarter energy, and smarter food
will create a radical shift in our lives. In this survey paper,
we have provided a broad overview of CPS big data collec-
tion, storage, access, caching, routing, processing, and anal-
ysis to support understanding and discovering the challenges
facing CPS, the existing proposed solutions, and the open
issues that are yet to be addressed. Then, we have discussed
the security vulnerabilities of CPS and the different security
solutions, as well as how big data meet green challenges
for CPS systems to address sustainability and environmental
concerns. Finally, some challenges and open issues for CPS
have been addressed.
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