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Torben Bach Pedersen
Department of Computer Science
Aalborg University
Denmark
tbp@cs.aau.dk

Abstract—The recent spread of distributed renewable energy
sources and smart IoT devices offer exciting new possibilities
for the use of energy flexibility, opening a new era of the so-
called bottom-up or cellular energy systems. In order to harness
the full potential of flexibility, flexibility has to be modeled
and represented in a manner that can be efficiently managed,
manipulated, and traded on a market. In this paper, we provide
a comprehensive overview of the FlexOffer concept, which offers
an effective way of modeling and managing energy demand
and supply flexibilities from a wide range of flexible resources
and their aggregates. First, we define the basic concept and
present the different phases of the FlexOffer life-cycle. Then, we
discuss more advanced internal FlexOffer constraints as well as
algorithms for FlexOffer generation, aggregation, disaggregation,
and pricing that can significantly reduce energy management
and trading complexities and increase overall efficiency. Finally,
we present a general decentralized system architecture for
trading flexibility (FlexOffers) in existing and new markets. QOur
experimental results show that (1) FlexOffers can be extracted
with up to 98% accuracy, (2) aggregation and disaggregation can
scale to 1000K FlexOffers and more, and (3) flexibility can be
traded in the NordPool flexi order market while providing up to
89.9% (of optimal) reduction in the energy cost.

I. INTRODUCTION

Recently, there has been a great focus on a new so-called
bottom-up or cellular energy system. A cellular system is an
energy system where significant energy production is occur-
ring at lower levels of the grid, and energy market roles such
as “producers” and “market operators” have new opportunities
at the lower levels of the grid. Each grid level may possess
most of the functions present at higher levels. Each portion of
a system that contains a minimal set of roles may be called a
cell. In the future energy system, such cells may very well sit
within other cells in a manner similar to nesting dolls. This
cellular approach to arranging the energy system is well suited
to incorporating distributed sources of renewable energy. A
group of actors capable of meeting their own energy needs can
trade energy and flexibility with each other and form their own
cell. The cellular system works bottom-up: the smallest cells
(subsystems) are commercial and residential buildings, houses
and industry plants (e.g. performing as micro-grids). The next
level typically correspond to distribution grids and the third
level to transmission grids. Flexibility enables an individual
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cell to dynamically maintain the demand and supply balance
locally. However, to be able to exchange information about
energy flexibility among different actors within a cell, there
is a need for a common representation of flexible loads. The
European project MIRABEL proposed a format to encode this
information, called a FlexOffer (FO) [2], [3], [5], [8], [16].

The remainder of the paper is organized as follows. Sec-
tion II presents the FO concept. Section III presents the
life-cycle of FO from generation to execution. Section IV
presents various FO constraints. Section V presents the general
FO generation architecture. Section VI presents details on
aggregation and disaggregation of individual FOs into larger
FO(s) and vice-versa. Section VII presents the detail on pricing
FO. Section VIII presents how the various system components
are interfaced. Section IX present the experimental results
to demonstrate the viability of FO based flexibility market.
Section X provides a discussion on the overall FO approach,
including pros and cons. Finally, Section XI concludes the
paper and provides directions for future research.

II. FLEXOFFER CONCEPT OVERVIEW
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Fig. 1. A visual representation of the simple FlexOffer.

A visual representation of a simple FO is shown in Fig. 1.
Each bar in the graph corresponds to a time slice of energy
consumption, with the lower part representing the minimum
amount of energy that a flexible resource needs to provide
its service, and the upper part an interval within which it
can adjust its consumption, while still satisfying functional
constraints (e.g., comfort temperature). This is called amount



(energy) flexibility. Another type of flexibility is time flexibil-
ity also shown in Fig. 1. Time flexibility is provided when an
energy load can be shifted within a time interval, defined by
an earliest start time at which the flexible resource can start
its consumption, and a latest end time at which it should be
done.

Definition 1: A FlexOffer f is a tuple f = ([tes, tis], D),

where [?.s, #;s] is the start time flexibility interval and p is the
amount profile. The time is discretized into equal-sized units,
e.g., 15 minute intervals. Thus, we use t.; € NN to specify the
earliest start time and ¢;s € N to specify the latest start time.
The p is a sequence of slices (s;, ..., sq), where a slice s;
is a continuous range [emin, €mas| defined by the minimum
€min and maximum e, , energy bounds, and d is the number
of slices in p.
Once created, a FO is assigned a baseline schedule that
corresponds to the consumption pattern that the associated
flexible resource prefers to follow. Updated schedules can be
assigned to the FOs to modify the consumption behavior of
the flexible resource, utilizing its provided flexibility. Fig. 1
exemplifies the energy demand for a single charging event of
an electric vehicle (EV) along with the flexibility. The FO
in the figure states that the EV could be charged starting
anytime between 4 PM and 12 AM. The FO has an energy
profile with five consecutive slices, where the light-shaded
area represents the base demand and the dark-shaded area
represents the flexible demand. The time flexibility of the FO
is the difference between LST and EST. Similarly, the total
amount flexibility is given by the sum of the dark-shaded area
of all slices. More advanced forms of the FO exist, and will be
discussed later. In the next section, we describe the complete
FO life-cycle.

III. FLEXOFFER LIFE CYCLE

A FO goes through several phases during its life-cycle as
depicted in Fig. 2 and described below:

1) Data collection: The first phase involves collection
and storage of energy consumption data from flexible
devices (e.g., washing machine, dishwasher, EV, etc.).
Cheap off-the-shelf Smart plugs may be used to collect
data at device level granularity, whereas energy meters
may be deployed to collect data at lower granularity
(e.g., entire house).

2) Preprocessing: The collected energy data may contain
outliers caused by abnormal device behavior. It may
also suffer from missing data caused by errors during
data collection, or users mistakenly interrupting device
operation. The outliers and missing data can have an
adverse effect on the quality of the FO. Therefore, the
purpose of the preprocessing step is to remove outliers
and handle missing data.

3) Predictive model building and demand prognosis: A
FO basically contains the future energy and time flexi-
bility information, which requires that the future energy
demand and the associated flexibility to be predicted
beforehand. Thus, we need to develop Machine Learning

(ML) models to analyze user behavior and predict future
energy demand to generate FOs [10].

4) FlexOffer generation: In this phase, the predicted en-
ergy demand and the associated flexibility data is used
to generate FOs that are used to exchange flexibility
information between different entities.

5) FlexOffer aggregation/disaggregation: Here, individ-
ual FOs are combined into large aggregated FOs to make
them more useful and computationally tractable [12],
[14]. Details are provided in Section VI.

6) FlexOffer trading: Aggregated FOs are traded on the
market. The market returns aggregated schedules in
response to accepted FOs.

7) Schedule execution: Aggregated schedules are disag-
gregated and forwarded to the corresponding flexible
loads.

Until now, we have discussed a simple FO. However, a FO can
take a complex form, which we will discuss in next section.

IV. MODELING FLEXOFFER CONSTRAINTS

To cover a wide range of flexible resources, a FO identifies
different types of flexibilities and uses specialized constraints
to characterize each type of flexibility — see Fig. 4. A FO in
a simple form (Fig. 1) activates the following types of con-
straints to capture start time and energy amount flexibilities:

o Start time constraint — it is a range defined by the two
parameters: startAfterTime (t.s), startBeforeTime (t;s) —
see Fig. 1.

o Energy amount constraint — for every discrete (e.g.,
15min) interval of an active device operation, energy
amount flexibility is characterized by a range with ener-
gyConstraint.lower and energyConstraint.upper as lower
and upper bounds, respectively — see Fig. 1.

However, some flexible resources might require additional
more advanced (flexibility) constraints to be enabled in a FO
to model its flexibility or data exchange flow more accurately:

o Total energy constraint — it is a range [fotalEner-
gyConstraint.lower, totalEnergyConstraint.upper] which
bounds the total energy amount requested or offered
within the full active operation of a flexible resource.

o Dependent energy amount constraint — like the energy

amount constraint, this constraint captures the minimum
and maximum energy amounts at a discrete interval ¢
depending on the total energy consumed at the intervals
1:¢— 1. A dependent energy amount constraint for a
specific discrete time interval ¢ is given as 2D energy
flexibility polygon — see Fig. 3. This constraint should be
used for the most advanced forms of flexible resources
(e.g., heat-pumps), where the flexibility changes over
time and is dependent on an internal system state (e.g.,
temperature).
Definition 2: A dependency-based FlexOffer (DFO) is a
series of polyhedrons (polygons) in R2, P;, P, ..., Pr,
which permit the series of energy amounts at 7T
consecutive time intervals, ej,es,...,er, such that
(Ef;i e;,er) € Py foreachte1:T.
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Fig. 2. FlexOffer life-cycle: process view.
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Fig. 3. An example of a FlexOffer with dependent energy amount constraints.
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Fig. 4. Complexity of load flexibility patterns supported by FlexOffers.

e Acceptance time constraint — defined by the parameter
acceptanceBeforeTime, this constraint sets the deadline
on when a FO receiving party (e.g., Balance Responsible
Party (BRP)) should acknowledge successful acceptance
or rejection of the FO. A FO rejection may occur if, e. g.,
FO constraints or other metadata (e.g., prices) are invalid
or inappropriate (e.g., quantities are too small, prices are
too high).

Assignment time constraint — defined by the param-
eters assignmentBeforeTime and assignmentBeforeDura-
tionSeconds, this constraint sets the deadlines on when
FO schedule update (assignment) is allowed to be sent
by the FO receiving party (BRP) to a FO issuing
party (flexible resource). A deadline can be an absolute
timestamp (assignmentBeforeTime) or a relative duration
(assignmentBefore — DurationSeconds) with respect to

the scheduled operation activation time. For all these FO
constraint types, scalable aggregation and disaggregation
techniques have been developed [4], [6], [13]-[15].

V. FLEXOFFER GENERATION

Due to a difference in operating behavior of devices, the
flexibility available from their operation is also different, e.g.,
dishwasher might only provide time flexibility, heat-pump only
amount flexibility, and EV could provide both time and amount
flexibility. Hence, a FO generator model should be modular
enough to be able to extract flexibility from all device types
[11]. Fig. 5 shows a general architecture of the FO generation
model. The FO generation process starts with the gathering of
the energy demand time series and available context informa-
tion such as the description of house occupants, house insula-
tion parameters, etc. The next step includes the preprocessing
of the raw information into a format required for analyzing and
predicting timestamps and values for the actions captured by
FOs. The Model Parameter Estimation and Forecasting step
includes the application of forecast models required for the
generation of FOs. Specifically, Model Parameter Estimation
and Forecasting step includes two modules i) Time Flexibility
Extraction and ii) Amount Flexibility Extraction. Depending
on the device type, either both modules get executed or only
one of them is executed. For example, to generate FOs from a
dishwasher, only time flexibility extraction module is required.
As discussed before, FOs are generated well before the actual
production and consumption of energy takes place. Hence,
each flexibility extraction module, depends on the forecasting
component to get a prognosis of future energy demand, asso-
ciated flexibility, and timestamps. For example, to extract time
flexibility from a dishwasher, the Time Flexibility Extraction
module uses prediction component to get an estimation of
earliest and latest start time of the dishwasher operation.
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Fig. 5. A generic FlexOffer generation model.

Further, the flexibility extraction module may also require
weather and temperature data for estimating amount flexibility
from Thermostatically Controlled Loads (TCL), e.g., boilers,
heat-pumps, etc. The final step combines the outputs of the two
modules to generate FOs for the forecasted device operations.

VI. FLEXOFFER AGGREGATION AND DISAGGREGATION
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Fig. 6. FlexOffer aggregation, scheduling, and disaggregation process.

In general, the FO representation makes it practical to
exchange flexibility information between different entities.
However, FOs from individual flexible resources (e.g., heat-
pumps, electric vehicles) typically represent small flexible
loads. Thus, a single (small) FO has low impact and is of little
interest for electricity trading, peak shaving, and balancing
demand and supply on the grid, where the required balancing
capacities are much higher. At the same time, optimizing
energy loads based on a large number of FOs is a compu-
tationally hard problem, which requires dealing with many
decision variables and constraints originating from many FOs.
By utilizing FO aggregation [14], [19], [20], flexibilities from
individual appliances can be combined and thus offered in a
more useful and effective aggregated form. Such aggregated
flexibility can again be represented as FOs — but with much
larger energy amounts and flexibility margins. Aggregation is
typically performed by BRPs, system operators, and/or entities
called Aggregators. They receive FOs from individual flexible
resources and then aggregate these FOs. The flexibility of
aggregated FOs tends to be lower than the joint flexibility
of the FOs that compose them. This reduction in flexibility
is, however, unavoidable in order to reduce FO scheduling

complexity and to increase their value (e.g., on the flexibility
market). After aggregation, schedules are typically assigned
to the aggregated FOs (e.g., based on energy sold on the
market). By respecting all inherent aggregated FO constraints,
a schedule specifies exact start times and aggregated energy
amounts be assigned to the underlying flexible resources. Such
schedules are disaggregated to schedules for each individual
FO it is composed of. This operation is denoted by FO
disaggregation. Disaggregated schedules are finally forwarded
to the flexible resources which initially offered flexibility.
This FO aggregation, scheduling, and disaggregation process
is illustrated in Fig. 6.

VII. FLEXOFFER PRICING

In addition to flexibility, a FO may capture related infor-
mation such as price. Each FO may define, a deviation price,
which has to be paid to flexibility provider (e.g., Prosumer)
by a flexibility consumer (e.g., BRP), for requesting a 1kWh
deviation from the baseline (preferred schedule) which was
initially reported by the flexibility provider see Fig. 1. This
yields a number of V-shaped price curves (in the linear
case) associated to each discrete time interval of an active
device operation — see Fig. 7. The deviation price is paid for
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Fig. 7. Pricing of flexibility based on FlexOffer contracts.

the successful activation of flexibility (a deviation from the
baseline). Alternatively, flexibility may be treated as an asset
and priced in the explicit form (e.g., monthly). For this, the
flexibility provider (a flexible resource) may get rewarded by
the flexibility consumer (e.g., BRP) based on the number of
FOs, total time and energy amount flexibility, etc. offered, see
Fig. 8.

Customer: amowhead lift
Item Value Price
Number of flexoffers 2

Fixed reward for all flexoffers 10.00 DKK

Total Time Flexibility 0 time units (15 min) 0.00 DKK

Total Energy Flexibility 68.83 kWh 6.88 DKK

Number of default schedule deviations 0 0.00 DKK

The sum of stat time scheduling deviations with respect to the default schedule 0 time units (15 min) 0.00 DKK

The sum of energy deviations with respect to the default schedule 0.00 kWh 0.00 DKK

Total Reward 16.88 DKK

Fig. 8. An example of a FlexOffer with associated deviation prices.



VIII. SYSTEMS INTEGRATION

FlexOffer collection, management, and trading is typically
realized using the decentralized platform shown in Fig. 9.

The FlexOffer Agent allows all kinds of energy consumers
and/or producers offering flexibility in the form of FOs. It pro-
visions individual FOs, delivers FOs to the FlexOffer Manager,
receives disaggregated schedules from the FlexOffer Manager,
and activates the corresponding flexible loads according the
received schedules.

The FlexOffer Manager allows energy market players such
as aggregators, suppliers, and balance responsible parties
managing flexibilities (FlexOffers) offered by FlexOffer Agent
users. In simple cases, FlexOffer Manager may operate in
isolation and offer efficient FlexOffer aggregation and energy
optimization functionalities, e.g., for demand-supply balanc-
ing, congestion management. In more advanced cases, the
FlexOffer Manager may first aggregate flexibility (FlexOffers)
from many small loads (e.g., household appliances, EVs)
and then trade FOs on one or more markets. In such cases,
the FlexOffer Manager is also responsible for disaggregation
of the schedules received from the market. The FlexOffer
Manager may support direct trading (e.g., local, national, or
regional markets like NordPool ') or indirect trading through
an existing market entities such as aggregators or market
operators (TotalFlex, Arrowhead, GOFLEX). Flexibility can
be traded in day-ahead, intra-day, or intra-hour.
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Fig. 9. Interfacing of flexibility market components.

IX. EXPERIMENTAL RESULTS

In this section, we summarize the experimental results from
our previous papers with a focus on quantifying flexibility
potential of household TLC and non-TLC devices, evaluating
accuracy of FOs generation method, scalability of the FOs
aggregation, and the financial benefits of FOs.

1) Flexibility Potential: In [9], we analyze device-level energy
consumption data from 6 different households [7]. A data
aggregation based on device flexibility types, i.e., fully-flexible
(e.g., EV, heat-pump, dishwasher), semi-flexible (e.g., oven),
and non-flexible (e.g., lights) devices, demonstrate that on
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average 50% of the energy demand from the household comes
from flexible devices.

2) Flex-offer Generation: In [11], we analyze the perfor-
mance of the FO generation model in terms of quantity and
quality of extracted flexibilities and generated FOs. The distri-
bution of time and amount flexibilities extracted from 50 heat-
pumps, 30 dishwashers, and 100 EVs, using the FO generation
model presented in Section V, is shown in Fig. 10. The
result demonstrates that on average wet-devices (dishwashers,
washer dryer, etc.) and EVs provide 15.31 and 7 hours of
time flexibility, respectively. Similarly, heat-pumps and EVs
provide 33kWh and 5.7kWh of amount flexibility, during
winter and summer, respectively. The accuracy of the proposed
FO generation model for extracting flexibilities is illustrated in
Fig. 11. The figure illustrates that the FO generation model can
extract time and amount flexibility with up to 98% and 79%
accuracy, respectively. The regularity in energy consumption
pattern for EVs resulted in higher accuracy for extracted
flexibilities. On the other hand, uncertainty in usage pattern for
wet-devices lowers the accuracy, which has been investigated
in [10]. Nevertheless, even with a very low traditional accuracy
measure, the proposed FO generation model can still give
a good utility, i.e., positive financial benefits to a market.
Hence, the achieved accuracy is sufficient to increase market
confidence in utilizing FOs for balancing the deviations in the
portfolio [10], [11].

3) Aggregation and Disaggregation: In [14], we evaluate
the strategies for aggregation and disaggregation of FOs
while retaining flexibility. To evaluate the performance and
scalability of FO compression, a number of experiments are
performed with a varying number of FOs, i.e., aggregation
and disaggregation are performed with FOs ranging from
50 to 1000k. Aggregation is performed using two different
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and disaggregation time

Earliest Start Time Tolerance (EST) and Time Flexibility
Tolerance (TFT) parameter values: EST equal to 0 or 250,
and TFT equal to O or 6. Disaggregation is executed with
randomly generated instances of aggregated FOs. Fig. 12
and 13 illustrate that different parameters lead to different
compression factors (ratio of normal FOs to aggregated FOs)
and aggregation times 2. Fig. 13 demonstrates that small
FOs can be efficiently aggregated into larger FOs in linear
time complexity. Fig. 14 demonstrate that disaggregation is
approximately two times faster than aggregation regardless of
the FOs count and parameter values. The experiments were
conducted on a standard laptop.

We also considered an energy planing scenario where an ag-
gregator aggregates, schedules (optimizes), and disaggregates
10K heat-pump-like loads, modeled as approximate standard
FOs (see Definition 1) and dependency-based FOs (see Def-
inition 2) as well as exact linear time-invariant state space
models (LTT) and multi-dimensional polyhedrons (POLY) [13].
As seen in Fig. 15, the complete planning task (aggregation,
scheduling, and disaggregation) takes less than 10 minutes
to complete for the time horizon of 24 hours when standard
FOs are used. However, standard FOs loose up to 85% of the
flexibility (load scheduling potential), compared to the exact
models (LTIs and POLYs). 10K dependency-based flex-offers
(DFOs) covering 24 hour time intervals can be aggregated,
scheduled, and disaggregated in less than 20 minutes, retaining
50-70% of the load flexibility of the exact models. In contrast,
when 10K exact LTI models are used, scheduling of loads
based on linear programming becomes infeasible (in more than
1 hour of execution) even for very short time horizons (7'=3)
due to the excessive number of decision variables and con-
straints (problem complexity). Similarly, the aggregation and
disaggregation of 10K polyhedrons (POLYs) is infeasible (in
1 hour of execution) even for very short time horizons (17'=3),
due to the expensive Minkowski sum operation and disaggre-
gation problem solving. Therefore, standard or dependency-
based FOs make this task computationally feasible, while
offering different levels of trade-off between performance and
flexibility loss.

4) Flexibility Trading: In [17], [18], We investigated a
market-based FO aggregation and trading using the FO model
to capture flexible charging loads from EVs. The flexibility

2In Fig. 12 and 13, the term flex-objects is used to represent FOs.
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from the EVs are aggregated based on a market requirement
and are traded in the market as a flexible order — a special order
(bid) type of NordPool market [1]. A flexible order is a block
order with a fixed price limit and fixed volume with duration of
1 hour. The actual activation of the order is not determined by
a user but is automatically decided by the algorithm. Further,
we also evaluate the reduction in the cost of charging that
can be achieved by various aggregation techniques. Namely,
i) Longest Profile (LP), ii) Dynamic Profile (DP), iii) Dynamic
Time Flexibility (DTF), iv) Start Alignment (SA) - baseline
model, and v) Start-Alignment Grouping (SAG) — see [18] for
details. Fig. 16 illustrates the average percentage of energy
traded in the market with respect to the size of the aggregated
FOs. An aggregated FO can have a very high variance in
power assigned to the slices. Since, the flexibility market
(flexible order) requires a flat power profile, the power of the
highest slice need to be considered for the whole profile of
the aggregated FO.

SA positions FOs at their earliest start time (¢.5) generating
one large aggregated FO. Since flexible orders are traded at
the highest power of the FO slices, SA aggregation technique
results in 2.5 times the energy captured by the aggregated FO
to be traded. In particular, SA trades 1.52 times more energy
than needed to charge the EVs. Thus, the surplus energy is
traded in the regulation market, which results in losses for a
BRP (see a negative cost reduction in Fig. 17). On the other
hand, LP technique focuses on producing aggregated FOs with
many slices, making it difficult to fulfill the flexible order
amount requirements, especially, the required slice amount
equality. DP excludes the FOs with extremely large profiles
from aggregation, giving a shorter and balanced aggregated
FOs. Hence, DP achieves 88.9% (of the optimal) reduction in
the charging cost, with almost 97.5% of energy captured by
FOs traded in the market [17], [18].

X. DISCUSSION

In this section, we will discuss the pros and cons of
modeling and managing flexibility using FOs, and discuss
implementation challenges.

Pros:
¢ FOs enable unified modeling of flexibilities from a va-
riety of loads. Unlike for example polytopes, FOs are
messages to communicate flexibility across two parties,
with associated techniques for generation, aggregation,
optimization, etc.



o FOs enables efficient and scalable generation, aggrega-
tion, and optimization of flexibilities from a large number
of heterogeneous sources.

e FOs can be used in with different time granularities,
ranging from coarse-grained (1 hour and up) to fine-
grained (15 mins).

Cons:

e FO defines flexibility at consecutive fixed-length time
intervals and has a small latency between generation to
final execution, hence FO is not suitable for true real-time
market (that operates in msec resolution).

o Some flexibility is inevitably lost during FO encoding and
aggregation.

o FOs specify energy amounts and do not directly consider
active/reactive power and other real-time parameters such
as voltage, frequency, etc.

Challenges:

o Encoding flexibility for long time horizons requires in-
creasing the number of FO slices or their durations, thus
lowering overall performance or optimization accuracy.

o FO defines energy flexibility as a continuous range of
options. Other forms of FOs are still being explored -
those with discrete energy amount combinations, raising
aggregation complexity.

XI. CONCLUSION AND FUTURE WORK

This paper presents a comprehensive overview of model-
ing and managing of energy demand and supply flexibili-
ties utilizing FlexOffers. Specifically, it presents general and
constraints-based FlexOffers models and their life-cycle from
generation to execution. It introduces various constraints to
characterize flexibility for a wide range of flexible resources.
The paper discusses the FlexOffer generation model along with
the required input data and information. Further, it elaborates
the need and benefits of aggregating smaller FlexOffers into
larger FlexOffer-s, especially in terms of reduced complexity
and trading. Thereafter, it discusses FlexOffer pricing mecha-
nism and integration of the FlexOffer system to existing and
new energy markets. The experimental results show that heat-
pumps and EVs provide significant amount flexibility and
the FO generation model can capture flexibility with up to
98% accuracy. The FOs can be efficiently aggregated into
larger FOs with a small flexibility loss and high compression
ratio. The FO algorithms (aggregation and disaggregation) are
highly scalable and can easily scale to 1000K FOs. Further,
we demonstrate that 10K dependency-based flex-offers can
be aggregated, scheduled, and disaggregated in less than 20
minutes, retaining 50-70% of the load flexibility. Further, FOs
can be effectively traded in the various energy markets. The
experiments on the NoodPool flexibility market shows that
FOs can provide up to 89.9% (of optimal) reduction in the
energy cost.

In our future work, we will further explore the flex-offer
based modeling of flexibility, along with enriching our tech-
niques for various tasks such as demand prognosis, aggrega-

tion, etc. Furthermore, we will deploy and validate the concept
in a real-world implementation. 3
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