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A Framework for Speech Enhancement With
Ad Hoc Microphone Arrays

Vincent Mohammad Tavakoli, Student Member, IEEE, Jesper Rindom Jensen, Member, IEEE,
Mads Græsbøll Christensen, Senior Member, IEEE, and Jacob Benesty

Abstract—Speech enhancement is vital for improved listening
practices. Ad hoc microphone arrays are promising assets for this
purpose. Most well-established enhancement techniques with con-
ventional arrays can be adapted into ad hoc scenarios. Despite
recent efforts to introduce various ad hoc speech enhancement
apparatus, a common framework for integration of conventional
methods into this new scheme is still missing. This paper estab-
lishes such an abstraction based on inter and intra subarray
speech coherencies. Along with measures for signal quality at the
input of subarrays, a measure of coherency is proposed both for
subarray selection in local enhancement approaches, and also for
selecting a proper global reference when more than one subarray
are used. Proposed methods within this framework are evaluated
with regard to quantitative and qualitative measures, including
array gains, the speech distortion ratio, the PESQ measure, and
the STOI intelligibility measure. Major findings in this work are
the observed changes in the superiority of different methods for
certain conditions. When perceptual quality or intelligibility of
the speech are the ultimate goals, there are turning points where
the MVDR and the LCMV are superior to Wiener-based methods.
Also, for certain scenarios, local approaches may be preferred to
global ones.

Index Terms—Speech enhancement, microphone array, noise
reduction, multichannel, pseudo-coherence vector, ad hoc array.

I. INTRODUCTION

N OWADAYS, smartphones and other portable (or even
wearable) devices are pervasively embedded into our

life by exposing their potentials and redefining our personal
needs. Consequently, these devices are becoming the de facto
platform for many emerging signal processing applications
including speech enhancement in noisy, interfered, and rever-
berant environments, which is the target application of this
paper. For this purpose, mobile devices can be used as nodes
of an ad hoc microphone array to improve capturing the
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acoustic environment. Here, both the increased number of
sensors in the wireless acoustic sensor network (WASN) and the
extended spatial coverage potentially improve performance of
the enhancement system. Although, this context can be justified
as an extension to traditional distributed microphone arrays, the
major mutation is the dynamic constellation of nodes which
introduces new challenges that should be overcome in order to
assure reliability of speech enhancement systems.

It is helpful to expound the relationship between the method
of interest of this paper, which is speech enhancement based on
signal pseudo-coherencies, and common approaches in speech
enhancement that take advantage of the spatial selectivity of
microphone arrays. These spatial filtering (beamforming) meth-
ods may be categorized based on the auxiliary parameter
(spatial signature) and/or statistics used in them. A subclass of
beamforming methods use direction of arrival (DOA) of acous-
tic wave-fronts as spatial cue, prior to steering the beampattern
of the array. Fast DOA estimators, such as the broadband DOA
estimator in [1], enables constrained beamforming techniques
to be developed based on Capon’s minimum variance distor-
tionless response (MVDR) [2], [3], and Frost’s linearly con-
strained minimum variance (LCMV) [4], [5]. Recently, noise
reduction performance of the MVDR beamformer is studied
under noisy and reverberant environments in [6], and a broad-
band LCMV beamformer with controllable constraints have
been proposed [7]. Unfortunate for ad hoc arrays, DOA-based
beamforming techniques are based on a restricting assumption,
i.e., known (or even confined) array geometry. Moreover, even
with the known array geometries, the mathematic expressions
for proper beamforming gets more complicated when sources
position in the near-field of the array that is likely probable in
ad hoc arrays.

Acoustic transfer function (ATF) and relative transfer func-
tion (RTF) are other spatial fingerprints which are more useful
in reverberant enclosures, since they can be used for noise
removal and dereverberation, simultaneously. The multichannel
Wiener filter (MWF), the generalized side-lobe canceler (GSC),
and their extensions are common techniques used in ATF-
based and RTF-based beamformers. A realization of speech
distortion weighted multichannel Wiener filter (SDW-MWF)
has been implemented based on the soft output voice activ-
ity detector (VAD) for noise reduction in hearing aids [8]. The
SDW-MWF was generalized in [9] to deal with multiple speak-
ers, and the state-of-the-art nested GSC is presented recently for
joint (parallel) treatment of dereverberation and noise reduction
[10]. An analysis of the SDW-MWF beamformer in reverber-
ant environment can be found in [11]. Unfortunately, ATFs and
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RTFs are normally very long and hard to estimate [12], which
makes more complicated estimation of shorter functions, such
as convolutive transfer function (CTF), inescapable [13].

Instead of directional and spatial cues (DOAs, ATFs, and
RTFs), the enhancing apparatus may be parametrized to form
an optimal filter based on a model of signal (or noise) without
explicitly steering the beampattern of the array; however, with
complex weighting, an implicit beamformer may be assumed.
In a loose sense, methods in this approach are governed by
interpolation and extrapolation of the time series introduced
by Wiener [14] and Kolmogorov [15]. Such an optimal filter
should be updated adaptively to deal with model parameter
changes caused by non-stationary time-series. Various signal-
adaptive filters have been proposed based on different noise
and speech signal characteristics. The performance of meth-
ods based on noise statistics is essentially dependent on the
accuracy of the noise estimator which varies for different
noise colors, types, and stationarities. State-of-the-art noise
estimation methods based on the speech presence probabil-
ity (SPP) [16] and using spatially-sampled noise references
[17] treat some of these challenges; however, SPP may not be
accurate in multi-speaker and interfered scenarios.

For speech enhancement using the speech signal model,
different characteristics may be used. Quasi-periodicity of
speech is a property which has been used for designing single-
channel optimal filters for speech enhancement [18], [19].
For multichannel speech enhancement, a set of inter-sensor
spatial-temporal prediction (STP) transformations have been
defined [20], and a common framework for noise reduction
with spatial prediction (SP) in time-domain has been pro-
posed [21]. A frequency-domain realization of SP method
have been implemented and compared with the SDW-MWF
which showed improved performance [22]. Although, the the-
ory of partial coherence is well-established in optics [23];
just recently coherency of speech and interferences became a
subject of interest in speech enhancement. Beamforming with
trade-off between coherent and incoherent noise was proposed
recently with such a view [24]. A multichannel coherence-
based enhancement approach has been followed in the time-
domain using non-causal filters [25], and pseudo-coherence-
based MVDR filters have been proposed in short-time Fourier
transformation (STFT) domain for ad hoc arrays [26].

Ad hoc microphone arrays impose more challenges than
arrays with fixed geometries. Their potential applications and
core challenges have been comprehensively discussed in [27].
One of such signal processing challenges is to form a robust
microphone subset selection strategy. A clustered approach to
blind beamforming has been developed for ASR systems to
resolve this challenge [28]; however, following such a machine
learning approach imposes computational and networking over-
heads to the ad hoc speech enhancement systems. Distributed
signal processing is a solution to reduce transmission over-
heads by processing signals locally in sub-arrays instead of
transferring all signals to a fusion center. This may also reduce
the computational overheads as most algorithms include matrix
inversion which has higher complexity for bigger matrices in
centralized processing.

There have been several attempts to adapt most of the
aforementioned approaches (with directional or spatial cues)
into distributed and ad hoc microphone arrays. Bertrand et al.
proposed both sequential round robin fusion [29] and simulta-
neous node parameter update [30], which are both suboptimal
to the centralized optimization, and are applicable to deter-
mined situations. For under-determined scenarios, the concept
of geometrically constrained TRINICON has been proposed in
[31], which uses coarse DOA estimations to estimate RTFs.
A distributed GSC is proposed in [32], which perform RTF-
based filtering in local and global stages iteratively. Distributed
algorithms for MVDR beamformer was proposed based on
randomized gossip [33], [34]. Communication overload for
multi-speaker scenarios has also been reduced using local
beamforming and partial transmission channels [35]. The prob-
lem of optimal node selection, which is NP-hard in nature,
has been tackled with a centralized greedy strategy in [36].
Recently, three distributed LCMV beamformers and their close-
ness to the optimal centralized realization have been studied
in [37] in fully connected WASNs. State-of-the-art DOA-based
approaches have also been proposed, for an informed para-
metric spatial filter [38], and for cooperative integrated noise
reduction in fully connected WASNs [39].

Despite all these efforts, a well established framework taking
advantage of the signal (or noise) model for optimal processing
ad hoc microphone arrays is still missing. Such an abstraction
is deduced in this work. The signal model herein is formed
based on pseudo-coherence vectors and matrices, respectively,
for enhancing speech signals in single and multiple speaker sce-
narios. The framework in this paper shares familiar methods
with other common techniques reviewed in this section; how-
ever, this model is more insightful than others since coherency
is a characteristic of the speech signals bearing all required
information for optimal processing.

The rest of this paper is organized as follows. In Section II,
which extends previous works in [26], [40], the theoretical
framework is introduced with signal models based on inter and
intra pseudo-coherence vectors and matrices. The blind estima-
tion of coherencies is not in the scope of this paper; however,
such an approach can be found in [41]. This section contin-
ues with sub-array and reference selection criteria based on
the norm of pseudo-coherence vectors and the input SINR.
Section III starts with derivation of MVDR and SDW-MWF
beamformers within the proposed framework, both for local
and global schemes. A closed-form distributed estimation of
the error covariance matrix which potentially reduces network
overloads is derived here. The section ends with derivation
of pseudo-coherence-based LCMV and SDW-MWF in matrix
form which enables joint restoration of multiple speech sig-
nals within the proposed framework. Experiments regarding
the proposed framework are presented in Section IV. Firstly,
the performance measures are explained, then practicality of
the proposed framework is shown through experiments on
multichannel audio database. The section ends with another
experiment mimicking a teleconferencing set up, to compare
enhancement apparatus without noise or interference estima-
tions. The paper is finalized with conclusions in Section V.
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II. THEORETICAL FRAMEWORK

A. Signal Model and Problem Formulation

We consider the context of an ad hoc microphone array in
which a set of n ∈ {1, . . . , N} randomly positioned sub-arrays
are deployed in a reverberant acoustic environment. Each sub-
array consists of a number of omni-directional sensors, M(n),
within an unknown geometry. At each time index, t, the m-th
microphone of the n-th sub-array captures desired convolved
source signals, xp

n,m(t), each contaminated with interference
signals from all other speech sources, ipn,m(t), and additive
noise, vn,m(t). This can be expressed as

yn,m(t) = xp
n,m(t) + ipn,m(t) + vn,m(t). (1)

For p ∈ {1, . . . , P} distinct speakers, the convoluted desired
and interference signals are defined as

xp
n,m(t) � gpn,m(t) ∗ sp(t),

ipn,m(t) =
P∑

q=1
q �=p

xq
n,m(t) �

P∑
q=1
q �=p

gqn,m(t) ∗ sq(t),

where gpn,m(t) and gqn,m(t), respectively, are the acoustic
impulse responses from the desired source, sp(t), and each
competitive interfering source, sq(t), to the m-th microphone
of the n-th sub-array. We assume that the acoustic impulse
responses are time invariant. We also assume that the signals
xp
n,m(t) and vn,m(t) are zero mean, stationary, real, broad-

band, and mutually uncorrelated. By definition, xq
n,m(t) and

xp
n,m(t), q �= p, are self-coherent across the sub-arrays, but they

are not mutually-coherent since random speeches from differ-
ent sources typically have different pitches and harmonics and
further they do not have constant phase relationship during the
same time index. The noise signal, vn,m(t), is typically only
partially coherent across sub-arrays.

Among all microphones in the n-th sub-array, one specific
microphone, bp-th, captures the best clean (but convoluted)
desired speech signal for speaker p. This node is called the local
reference microphone for the p-th speaker, and the desired sig-
nal captured at this microphone is called the local reference
signal for speaker p at sub-array n, i.e., xp

n,bp(t). From this
point forward, we remove the redundant superscript p for b,
and designate the local reference signal with xp

n,b(t). For each
speaker, a set of N local reference signals exists for the whole
ad hoc array, {xp

1,b(t), x
p
2,b(t), . . . , x

p
N,b(t)}. Then, many ques-

tions arise. Which microphone of each sub-array represents the
best local reference signal? Which one of these local reference
signals should be granted as the global reference signal for the
whole ad hoc array? Which one is the best and in which term?
etc. In the rest, we will try to formulate the problem in the
best way we can in order to be able to answer some of these
fundamental questions.

Using the short-time Fourier transform (STFT), (1) can be
rewritten in the time-frequency domain as

Yn,m(k, l) = Xp
n,m(k, l) + Ipn,m(k, l) + Vn,m(k, l), (2)

where Yn,m(k, l), Xp
n,m(k, l), Ipn,m(k, l), and Vn,m(k, l) are the

STFT-domain representations of yn,m(t), xp
n,m(t), ipn,m(t), and

vn,m(t), respectively, at time frame l and frequency bin k ∈
{0, . . . ,K − 1}. From this point forward, whenever there is no
ambiguity, we omit the time frame and frequency bin indices
for the sake of readability.

Assuming a sufficiently long analysis window, the following
equations hold:

Xp
n,m = Gp

n,m(k)Sp,

Ipn,m =

P∑
q=1
q �=p

Xq
n,m =

P∑
q=1
q �=p

Gq
n,m(k)Sq,

where Gp
n,m(k) is the acoustic transfer function between the

source p and the m-th microphone of sub-array n.
It is more convenient to write the M STFT-domain micro-

phone signals of the n-th sub-array in a vector notation:

yn = xp
n + ipn + vn = dp

n(k)X
p
n,b + epn, (3)

where Xp
n,b is the local reference signal in the STFT-domain,

stacked signals at the n-th sub-array are

yn =
[
Yn,1 Yn,2 · · · Yn,M(n)

]T
,

xp
n =

[
Xp

n,1 Xp
n,2 · · · Xp

n,M

]T
= gp

n(k)S
p,

ipn =
[
Ipn,1 Ipn,2 · · · Ipn,M

]T
=

P∑
q=1
q �=p

xq
n

vn =
[
Vn,1 Vn,2 · · · Vn,M(n)

]T
,

epn = ipn + vn,

the transcript [·]T denotes the transpose operator, and the
stacked acoustic transfer functions for desired and interfering
speech sources are (∀p ∈ {1, . . . , P})

gp
n(k) =

[
Gp

n,1(k) · · · Gp
n,M(n)(k)

]T
.

The stacked relative transfer functions, respectively, are

dp
n(k) =

[
Gp

n,1(k)

Gp
n,b(k)

· · ·
Gp

n,M(n)(k)

Gp
n,b(k)

]T
=

gp
n(k)

Gp
n,b(k)

,

where it is assumed that Gp
n,b(k) �= 0.

Expression (3) depends explicitly on the local reference sig-
nal, Xp

n,b, so that it is an appropriate signal model for our
goal. The vector dp

n(k) conveys relative delay and decay among
signals from source p (and its images in a reverberant environ-
ment) captured by sensors in the sub-array n; therefore, may
be regarded as a generalized steering vector for this sub-array
towards the p-th speaker.

It can be verified [40] that a more interesting way to write (3)
is

yn = ρxp
n,X

p
n,b

Xp
n,b + epn, (4)

where

ρxp
n,X

p
n,b

=
E
[
xp
nX

p∗
n,b

]
E

[∣∣∣Xp
n,b

∣∣∣2] ≈ dp
n(k)
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is the intra-array pseudo-coherence vector [of lengthM(n)]
between xp

n and the local reference signal Xp
n,b, with E[·] and

superscript ∗ denoting mathematical expectation and complex
conjugate, respectively. Notice that the component of the vector
ρxp

n,X
p
n,b

corresponding to the reference microphone is always
equal to 1.

Statistically speaking, the equality ρxp
n,X

p
n,b

= dp
n(k) never

holds exactly, unless the STFT analysis window is infinitely
long; however, ρxp

n,X
p
n,b

converges to dp
n(k), through aver-

aging among consequent finite analysis windows, because its
stationarity is determined solely by the geometry and not by
the quasi-stationary nature of speech. Furthermore, (4) is much
more insightful than (3) since the pseudo-coherence vector (as
the quotient of inner product and power spectral density of
speech signals) captures much better the acoustic environment
and provides an auxiliary norm by which sub-arrays can be
ranked in the ad hoc microphone array. Therefore, from now
on, only the model given in (4) will be used.

Let rp be the array index corresponding to the best reference
signal (the global reference for the p-th speaker), i.e., Xp

rp,b.
From this point forward, the redundant superscript p to r, is
removed, and the global reference signal is designated with
Xp

r,b. In theory, it is always possible to write (4) as a function
of this selected reference signal, i.e.,

yn = ρxp
n,X

p
r,b
Xp

r,b + epn, (5)

where

ρxp
n,X

p
r,b

=
E
[
xp
nX

p∗
r,b

]
E

[∣∣∣Xp
r,b

∣∣∣2]

is the inter-array pseudo-coherence vector [of length M(n)]
between xp

n and the global reference signal Xp
r,b.

The covariance matrix of yn can be expressed as

Φyn
= E

[
yny

†
n

]
= Φxp

n
+Φep

n
, (6)

where the transcript † denotes the transpose-conjugate operator,
Φxp

n
is the covariance matrix (whose rank is equal to 1) of xp

n,
and Φep

n
is the covariance matrix of the composition of com-

petitive speeches plus noise, called the error signal, epn. From
(4), we deduce that the covariance matrix of xp

n is

Φxp
n
= φXp

r,b
ρxp

n,X
p
r,b
ρ†
xp
n,X

p
r,b
, (7)

where φXp
r,b

= E

[∣∣∣Xp
r,b

∣∣∣2] is the variance of Xp
r,b. Further-

more, the covariance matrix of epn can be decomposed into

Φep
n
= E

[
epne

p
n
†
]
= Φvn

+Φipn = Φvn
+

P∑
q=1
q �=p

Φxq
n
, (8)

where Φvn
= E

[
vnv

†
n

]
is the covariance matrix [whose rank

is assumed to be equal to M(n)] of vn, and Φxq
n

is the covari-
ance matrix of the q-th interfering speech, xq

n.

Temporal smoothing is required in practice to obtain sta-
tistically valid estimates for covariance matrices in (6)–(8).
For example, the covariance matrix for epn may be recursively
smoothed with a forgetting factor, 0 ≤ γ ≤ 1, as

Φep
n
(l) = (1− γ)Φep

n
(l − 1) + γvn(l)v

†
n(l)

+ γ

P∑
q=1
q �=p

φXq
r,b
(l)ρxq

n,X
q
r,b
ρ†
xq
n,X

q
r,b
, (9)

assuming that pseudo-coherence vectors are independent of
time-frame (for a stationary geometry).

In theory, we can rewrite (4) taking into account pseudo-
coherence vectors for all speech signals, as

yn =
P∑

p=1

ρxp
n,X

p
r,b
Xp

r,b + vn = PnX̄+ vn, (10)

where

Pn =
[
ρx1

n,X
1
r,b

· · · ρxP
n ,XP

r,b

]
is the intra-array pseudo-coherence matrix of size M(n)× P
for the n-th sub-array composed of self-coherence vectors for
all speech signals at this sub-array, and

X̄ =
[
X1

r,b · · · XP
r,b

]T
is the reference vector of length P , which contains global refer-
ence signals for all speakers. Notice that elements of this vector
may not belong to the same sub-array, as the geometric pose of
sub-arrays (proximity, orientation, etc.) are different for distinct
speakers.

By stacking all vectors and matrices for the N sub-arrays,
we can rewrite the signal model suitable for the multi-speaker
ad hoc microphone array with received signal vector of length
Mtot =

∑N
n=1 M(n):

ȳ =
[
yT
1 · · · yT

N

]T
= P X̄+ v̄, (11)

where

P =
[
P T

1 · · · P T
N

]T
=

⎡
⎢⎢⎣
ρx1

1,X
1
r,b

· · · ρxP
1 ,XP

r,b

...
. . .

...
ρx1

N ,X1
r,b

· · · ρxP
N ,XP

r,b

⎤
⎥⎥⎦

is the pseudo-coherence matrix of size Mtot × P for the ad hoc
microphone array, and

v̄ =
[
vT
1 · · · vT

N

]T
is the noise vector of length Mtot composed of late reverberated
sounds, diffused, and sensor noise components.

B. Subarray/Reference Selection Criteria

1) The Norm of Pseudo-Coherence Vector: In the previous
section, we mentioned that for the p-th speaker, N distinct
local references exist: Xp

1,b, X
p
2,b, . . . , X

p
N,b. It is important to
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be able to choose one desired reference signal within this set in
order to estimate it correctly using a local beamformer. For the
sake of comparability, we use this best local reference signal
also in global beamformers, and denote it the global reference
signal, Xp

r,b.
The intra-array pseudo-coherence vector, ρxp

n,X
p
n,b

, tells us

how much Xp
n,b is coherent with the other convolved desired

signals, Xp
n,m, m = {1 : M(n)} \ {b}, of the n-th sub-array.

Let us define the intra-array quantity:

ℵp
n =

∣∣∣∣∣∣ρxp
n,X

p
n,b

∣∣∣∣∣∣2
2
= ρ†

xp
n,X

p
n,b

ρxp
n,X

p
n,b

. (12)

We select b to be the closest microphone in the n-th sub-array
to the p-th speaker, i.e.,

bp = argmax
m

|Xp
n,m|. (13)

Then, we always have 1 ≤ ℵp
n ≤ M(n). The worst scenario

is when ℵp
n is close to 1, which means that the sub-array n

captures almost no desired speech.
It is clear that for two sub-arrays i and j, a value of ℵp

i

greater than a value of ℵp
j means that the desired speech signal

is captured better by the sub-array i than the sub-array j. There
are several geometric reasons for this, including proximity to
the desired speaker, better orientation, number of nodes within
sub-array, physical extent of the sub-array, etc. As a result, we
should try to recover Xp

i,b rather than Xp
j,b.

A global optimum selection is obtained when we estimate
or recover Xp

r,b, where rp is chosen to maximize the norm of
intra-array pseudo-coherence vector, ℵp

n, such that

rp = argmax
n

ℵp
n. (14)

In other words, Xp
r,b is our global reference signal that we will

try to estimate with a beamforming algorithm.
Now that we have the global desired signal, it is of great

importance to quantify how much the sub-arrays (other than
the one containing the global reference signal, i.e., rp) can
contribute to noise reduction. For that, we can define the
inter-sub-array quantity

ℵp
n|r =

∣∣∣∣∣∣ρxp
n,X

p
r,b

∣∣∣∣∣∣2
2
. (15)

We always have

0 ≤ ℵp
n|r ≤ ℵp

r .

The worst scenario is when ℵp
n,b is close to zero, which means

that array n will have little or no positive contribution in the
estimation of Xp

r,b. The measure in (12) tells us how much array
n can “hear” the reference signal, Xp

r,b.
2) The Input SINR: One fundamental measure in speech

enhancement is the averaged (narrowband) input signal-to-
interference-plus-noise ratio (SINR) for the p-th speaker at the
n-th sub-array with a local reference, using (8):

iSINRp
n =

tr
[
Φxp

n

]
tr
[
Φep

n

] =
ℵp
nφXp

n,b

P∑
q=1
q �=p

tr
[
Φxq

n

]
+ tr [Φvn

]

, (16)

where tr[· ] denotes the trace of a square matrix.
Another interesting way to choose the global reference signal

is the following:

r′p = argmax
n

iSINRp
n. (17)

In this case, we estimate Xp
r′, b. The ideal case is when rp = r′p,

which means that both criteria are fulfilled, but in general, rp �=
r′p, and it is not clear at this point which criterion should be
used to find the desired signal.

Theoretically speaking, (16) can also be recalculated with
respect to the global reference for speaker p as

iSINRp
n|r′ =

ℵp
n|r′φXp

r′, b
P∑

q=1
q �=p

tr
[
Φxq

n

]
+ tr [Φvn

]

, (18)

where φXp
r,b

is the variance of Xp
r,b, and

0 ≤ iSINRp
n ≤ iSINRp

n|r′ .

The averaged (narrowband) input SINR with all the dis-
tributed arrays is defined as

iSINRp =

N∑
n=1

ℵnφXp
n,b

N∑
n=1

tr
[
Φep

n

] . (19)

It can be shown that

0 ≤ iSINRp ≤ iSINRp
n.

III. ENHANCEMENT TECHNIQUES

A. Pseudo-Coherence-Based MVDR Beamforming

In this section, we consider the concept of the MVDR beam-
forming [2], [42] for noise reduction with ad hoc microphone
arrays in the presented framework. We establish two local
schemes with best input SINR and best output SINR, and for-
mulate the global scheme, which in theory is superior to both
local schemes. Single speaker scenarios have been introduced
in [26]; therefore, we complement the subsection with argu-
ments and techniques, such as round-robin error covariance
matrix update for multi-speaker scenario.

1) Best Input SINR Subarray: The easiest way to recover
a desired signal, Xp

r′, b, with an ad hoc microphone array is to
select the sub-array with the best input SINR, indexed with r′p
obtained in (17), and subsequently ignoring all other sub-arrays.
In this case, the beamformer output for the p-th speech signal is

Zp = hp†
r′ yr′p ,

where hp
r′ is a complex filter of length M(n) containing all the

complex gains applied to the microphone outputs of the array
r′p at each time-frequency bin.
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Distortionless noise reduction for the p-th speech signal can
be obtained by minimizing the variance of the beamformer out-
put, Zp, constrained with the preservation of the desired (refer-
ence) signal, Xp

r′, b, subject to the narrowband weights, hp
r′ . This

can be formulated in the following constrained optimization
problem:

min
hp

r′
hp†
r′ Φyr′ph

p
r′ s.t. hp†

r′ ρxp

r′ ,X
p

r′, b
= 1,

Using the method of Lagrange multipliers, it is trivial to show
that the MVDR optimal filter is equal to

hp
r′ =

Φ−1
yr′p

ρxp

r′ ,X
p

r′, b

ρ†
xp
r ,X

p

r′, b
Φ−1

yr′pρxp

r′ ,X
p

r′, b

. (20)

The explicit dependence of the above filter on ρxp

r′ ,X
p

r′, b
can be

eliminated to obtain

hp
r′ =

Φ−1
yr′p

Φxp

r′

tr
[
Φ−1

yr′pΦxp

r′

]cpM,b =
CM −Φ−1

yr′p
Φep

r′

M − tr
[
Φ−1

yr′pΦep

r′

]cpM,b

=

CM −
P∑

q=1
q �=p

Φ−1
yr′p

Φxq

r′
−Φ−1

yr′p
Φvp

r′

M −
P∑

q=1
q �=p

tr
[
Φ−1

yr′p
Φxq

r′

]
− tr

[
Φ−1

yr′p
Φvp

r′

]cpM,b,

(21)

where cpM,b is the bp-th column of the M(n)×M(n) identity
matrix, CM , corresponding to the reference microphone.

If Φyr′p (full rank) is temporally smoothed such that

Φyr′p (l) = (1− γ)Φyr′p (l − 1) + γyr′p(l)y
†
r′p(l),

the following Theorem would be useful in calculating Φ−1
yr′p

.
Theorem 1 (The Sherman-Morrison Formula): Suppose that

W is an invertible square matrix and u, v are vectors. Suppose
furthermore that 1 + v†W−1u �= 0. Then

(W + u⊗ v)−1 = W−1 − W−1(u⊗ v)W−1

1 + λ

= W−1 − (W−1u)⊗ (vW−1)

1 + λ
,

where λ = v†W−1u, and u⊗ v is the outer product of two
vectors u and v.

Proof: A proof of the Sherman-Morisson Formula using
the power series expansion can be found in [43]. �

The computational complexity of Φ−1
yr′p

(l) can be reduced
from O(M(n)3) to O(M(n)2) using

Φ−1
yr′p

(l) = (1− γ)−1Φ−1
yr′p

(l − 1)

− γΦ−1
yr′p

(l − 1)yr′p(l)y
†
r′p(l)Φ

−1
yr′p

(l − 1)

(1− γ)2 + γ(1− γ)y†
r′p(l)Φ

−1
yr′p (l − 1)yr′p(l)

.

Another way to derive the MVDR beamformer is by min-
imizing the variance of the error signal for the p-th speech

signal, epr′ , constrained with the preservation of the desired (ref-
erence) signal, Xp

r′, b, subject to the narrowband weights, hp
r′ .

Then, the constrained optimization problem would be

min
hp

r′
hp
r′Φep

r′
hp
r′ s.t. hp†

r′ ρxp

r′ ,X
p

r′, b
= 1,

which yields the closed form solution to optimal weights as

hp
r′ =

Φ−1
ep

r′
ρxp

r′ ,X
p

r′, b

ρ†
xp

r′ ,X
p

r′, b
Φ−1

ep

r′
ρxp

r′ ,X
p

r′, b

=
Φ−1

ep

r′
Φyr′p −CM

tr
[
Φ−1

ep

r′
Φyr′p

]
−M

cpM,b

=

⎛
⎜⎜⎝

P∑
q=1
q �=p

Φxq

r′
+Φvp

r′

⎞
⎟⎟⎠

−1

Φyr′p −CM

tr

⎡
⎢⎢⎣
⎛
⎜⎜⎝

P∑
q=1
q �=p

Φxq

r′
+Φvp

r′

⎞
⎟⎟⎠

−1

Φyr′p

⎤
⎥⎥⎦−M

cpM,b. (22)

Assuming that Φxq

r′
have all rank 1, and |Φvp

r′
| �= 0, then the

following theorem is useful in calculating Φ−1
ep

r′
:

Theorem 2: Let A and A+B be nonsingular matrices, and
let B have rank P − 1 > 0. Let B = B1 + · · ·+BP−1, where
each Bq has rank 1, and each Wq+1 = A+B1 + · · ·+Bq is
nonsingular. Setting W1 = A, then

W−1
q+1 = W−1

q − gqW
−1
q BqW

−1
q ,

where

gq =
1

1 + tr
[
W−1

q Bq

] .
Proof: A proof of this theorem can be found in [44]. �

By putting A = Φvr′p and

B1 = Φx1
r′
, · · · ,Bp−1 = Φxp−1

r′
,

Bp = Φxp+1

r′
, · · · ,BP−1 = ΦxP

r′
,

then the inverse of the covariance matrix for the error signal for
the p-th speech signal is found recursively as

Φ−1
ep

r′
= WP .

Theorem 2 can be used in a round robin manner by propagat-
ing the intermediate states of error covariance matrix along all
other nodes, and updating them with correction terms.

The constrained optimization problems, introduced in this
subsection, are independently feasible, yet it is possible to per-
form them simultaneously to obtain a weight matrix, of size
M(n)× P in which each column corresponds to a desired
source.

2) Complete Ad Hoc Microphone Array: If, from previous
criteria, we consider that all the distributed arrays can contribute
to noise reduction, then they should all be used in beamforming
and this solution is the optimal one. It is assumed that Xp

r,b is
found to be the best reference signal.
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The beamformer output is now

Zp = h̄p†ȳ,

where h̄p† is a complex filter (of length Mtot) containing all the
complex gains applied to the microphone outputs of all arrays
at frequency bin k and

ȳ = x̄p + ēp = ρx̄p,Xp
r,b
Xp

r,b + ēp, (23)

with

ρx̄p
n,X

p
r,b

=
E
[
x̄p
nX

p∗
r,b

]
E

[∣∣∣Xp
r,b

∣∣∣2]

being the pseudo-coherence vector (of length Mtot) between x̄p

and Xp
r,b.

The minimization of the variance of Z with distortionless
constraint, h̄†ρx̄p

n,X
p
r,b

= 1, leads to the MVDR filter:

h̄p =
Φ−1

ȳ ρx̄p,Xp
r,b

ρ†
x̄p,Xp

r,b
Φ−1

ȳ ρx̄p,Xp
r,b

=
Φ−1

ē ρx̄p,Xp
r,b

ρ†
x̄p,Xp

r,b
Φ−1

ē ρx̄p,Xp
r,b

,

(24)

where Φȳ is the covariance matrix of ȳ, and Φē is the covari-
ance matrix of ē. In light of discussions in Section III-A1, it is
possible to calculate inverse of the global covariance matrix in
a distributed manner, as proposed in [45].

3) Best Output SINR Subarray: The third way to recover
a desired signal, Xp

r′, b, with an ad hoc microphone array is to
select the sub-array with the best output SINR. Firstly, we need
to obtain the output SINR for the p-th speech signal for N inde-
pendent sub-arrays. In this case, the n-th beamformer output for
the p-th speech is

Zp
n = hp†

n yn,

where hp†
n is a complex filter of length M(n) containing all the

complex gains applied to the microphone outputs of the n-th
sub-array at each time-frequency bin.

The MVDR filter is similar to the one derived in the
Subsection III-A1, i.e.,

hp
n =

Φ−1
yn

ρxp
n,X

p
n,b

ρ†
xp
n,X

p
n,b

Φ−1
ynρxp

n,X
p
n,b

=
Φ−1

ep
n
ρxp

n,X
p
n,b

ρ†
xp
n,X

p
n,b

Φ−1
ep
n
ρxp

n,X
p
n,b

.

(25)

and the (narrowband) output SNR corresponding to hn is

oSINR [hp
n] =

φXp
n,b

hp†
n Φep

n
hp
n

.

Maximizing the output SNR with respect to the array index,

r′′p = argmax
n

oSINR [hp
n], (26)

gives us the solution we are looking for, i.e., hp
r , which is also

a bound to the solution with best input SINR scheme.

B. Pseudo-Coherence-Based SDW-MWF Beamforming

In this section, we extract the pseudo-coherence-based
SDW-MWF beamformers equivalents to those for the pseudo-
coherence-based MVDR beamformers.

1) Best Input SINR Subarray: With the same assumptions
in III-A, the optimization problem for enhancing the p-th
desired speech signal using the SDW-MWF beamformer for the
ad hoc microphone array can be formulated as

min
hp

r′
hp†
r′ Φyn

hp
r′

s.t.

∣∣∣∣(cpM,b − hp
r′

)†
ρxp,Xp

r′, b

∣∣∣∣
2

≤ σ2
pφ

−2
Xp

r′, b
,

where cpM,b is defined in Subsection III-A, εp = σpφ
−1
Xp

r′, b
is

the fraction of allowed narrowband distortion, and σp is the
allowed amount for the narrowband distortion power at each
time-frequency bin. A reasonable upper bound for σp is φXp

r′, b
,

where we have the maximum allowed distortion. σp = 0 yields
the same constraint as in the MVDR beamformer.

Then the optimal SDW-MWF weights are:

hp
r′ =

(
Φyr′p + λpρxp

r′ ,X
p

r′, b
ρ†
xp
r ,X

p

r′, b

)−1

ρxp

r′X
p

r′, b
,

which can be simplified using the Sherman-Morrison formula
for matrix inversion as

hp
r′ =

λpΦ
−1
yr′p

ρxp

r′ ,X
p

r′, b

1 + λpρ
†
xp
r ,X

p

r′, b
Φ−1

yr′pρxp

r′ ,X
p

r′, b

. (27)

The real positive parameter, λp, controls the trade-off
between noise reduction and speech distortion.

To find a relation between λp and σp, we put the filter weights
into the constraint, so that we can write

0 ≤ 1

1 + λpρ
†
xp
r ,X

p

r′, b
Φ−1

yr′pρxp

r′ ,X
p

r′, b

≤ εp ≤ 1,

which can be solved for λp (for the worse case) as

λp =
1− εp
κpεp

,

where κp = ρ†
xp
r ,X

p

r′, b
Φ−1

yr′p
ρxp

r′ ,X
p

r′, b
. The filter approaches the

MVDR as λp → ∞, i.e., εp → 0. The filter simplifies to the
non-causal multichannel Wiener filter (MWF) if λp = φXp

r′, b
.

If the desired fraction of narrowband distortion at all time-
frequency bins are equal to a broadband fraction, εbb, then the
weights of the SDW-MWF filter are obtained from

hp
r′ =

(
1− εbb

κp

)
Φ−1

yr′p
ρxp

r′ ,X
p

r′, b
.

However, the narrowband distortion power equal to a broad-
band limit, σbb, for all time-frequency bins is more desired,
which yields
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hp
r′ =

⎛
⎝1− σbbφ

−1
Xp

r′, b

κp

⎞
⎠Φ−1

yr′p
ρxp

r′ ,X
p

r′, b
.

Alternatively, the SDW-MWF beamformer can be obtained
by minimizing the residual noise power constrained with the
amount of speech distortion. The optimal weights for this
problem are

hp
r′ =

Φ−1
ep

r′
ρxp

r′ ,X
p

r′, b

ρ†
xp
r ,X

p

r′, b
Φ−1

ep

r′
ρxp

r′ ,X
p

r′, b
+ μpφ

−1
Xp

r′, b

, (28)

where μp = λ−1
p φXp

r′, b
= κpσbb(1− εbb)

−1. For μp = 1, the

conventional multichannel wiener filter is obtained.
2) Complete Ad Hoc Microphone Array and Best Output

SINR Subarray: The SDW-MWF formulations obtained for
the best input SINR sub-array can be extended to other spans,
i.e., the complete ad hoc microphone array and the best out-
put SINR sub-array, by substituting the appropriate covariance
matrices and calculating weights respectively.

C. Multiple Speaker Enhancement Techniques

1) Pseudo-Coherence-Based M-LCMV Beamforming: In
this section, we expand the pseudo-coherence-based beam-
forming scheme to form a pseudo-coherence-based LCMV fil-
ter for multi-speaker scenarios. We begin with the matrix-form
signal model in (11) to establish the optimization problem.

The M-LCMV filter output vector, of length p, is

z̄ =
[
z1 · · · zP

]T
= HT ȳ,

where

H =
[
h̄1 · · · h̄P

]
=

⎡
⎢⎣
h1
1 · · · hP

1
...

. . .
...

h1
N · · · hP

N

⎤
⎥⎦

is the matrix of complex filter weights of size, Mtot × P ,

hp
n =

[
Hp

n,1 · · · Hp
n,M

]T
, ∀p ∈ {1, . . . , P}

is the complex weighting vector, of length M(n), for the n-th
sub-array to contribute in enhancing the p-th desired signal, and
h̄p is the the p-th column of H, with length of Mtot.

The M-LCMV filter is enhancing the p-th signal of interest
by nulling the other speech signals and minimizing the variance
of the p-th element in z̄. This can be written as a multi-objective
constraint optimization problem, indeed a quadratic program
(QP), as

min
H

tr
[
H†ΦȳH

]
s.t. H†P = C,

where C is the P × P identity matrix, corresponding to
M-LCMV constraints, and

Φȳ = E
[
yny

†
n

]
= PΦX̄P † +Φv̄, (29)

where ΦX̄ is the covariance matrix of X̄, and Φv̄ is the covari-
ance matrix of the noise, v̄. Since Φȳ ∈ S+, i.e., positive

semidefinite, the objective is convex quadratic which is min-
imized over a polyhedron. Moreover, if Φȳ ∈ S++, i.e., pos-
itive definite, the feasibility region of the above optimization
problem is intersection of p ellipsoids.

The Lagrange function for this optimization problem can be
written as

L (H,Λ) = H†ΦȳH+
(
C−H†P

)
Λ
(
C−H†P

)†
,

where Λ is the diagonal matrix, diag(λ1, . . . , λP ), where each
λp is the Lagrange multiplier for the constraint governing the
p-th signal of interest, i.e., the p-th column of

(
C−H†P

)
.

Hence, (if the solution is feasible, i.e., P ≤ Mtot) the solution
for the M-LCMV beamformer in matrix format is

H = Φ−1
ȳ P

(
P †Φ−1

ȳ P
)−1

. (30)

Similar to the above, the M-LCMV filter for the ad hoc
microphone array can be found by minimizing the variance
of noise at the filter output; in this case, the multi-objective
constraint optimization problem is

min
H

tr
[
H†Φv̄H

]
s.t. H†P = C.

Following a similar approach to the above, the M-LCMV filter
is found by

H = Φ−1
v̄ P

(
P †Φ−1

v̄ P
)−1

. (31)

2) Pseudo-Coherence-Based M-SDW-MWF Beamforming:
In this section, we will derive a pseudo-coherence-based
multi-speaker SDW-MWF beamformer for speech enhance-
ment. We start with the same assumption in Section III-C1,
however, here we form an inequality constrained optimization,
more precisely a quadratically constrained quadratic program
(QCQP), which is

min
H

tr
[
H†ΦȳH

]
s.t.

(
C−H†P

)
ΦX̄

(
C−H†P

)† ≤ Σ,

where

Σ = diag
(
σ2
1 σ2

2 · · · σ2
P

)
is controlling the amount of distortion for each desired signal.
Since ΦX̄ ∈ S+, i.e., positive semidefinite, the objective and
the set of p constraints are convex quadratic. Moreover, if
ΦX̄ ∈ S++, i.e., positive definite, the feasibility region of the
above optimization problem is intersection of p ellipsoids.

The resulting M-SDW-MWF filter is

H =
(
PΛΦX̄P † +Φȳ

)−1
PΛΦX̄. (32)

From the fact that both Λ and Φ are diagonal, we can
simplify the weights matrix further

H =

(
P∑

p=1

λpφXp
r,b
ρx̄p,Xp

r,b
ρ†
x̄p,Xp

r,b
+Φȳ

)−1

PΛΦX̄,

(33)

where ρx̄p,Xp
r,b

is the p-th column of P .
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Fig. 1. Ad hoc constellations produced from SMARD.

Similar to the above, the M-SDW-MWF beamformer is
obtained by minimizing the noise power at the output of
beamformer with the similar constraint set. The resulting
M-SDW-MWF filter is

H =
(
PΛΦX̄P † +Φv̄

)−1
PΛΦX̄

=

(
P∑

p=1

λpφXp
r,b
ρx̄p,Xp

r,b
ρ†
x̄p,Xp

r,b
+Φv̄

)−1

PΛΦX̄,

(34)

which controls the trade-off between the noise reduction and
speech distortion.

IV. EXPERIMENTS

In this section, we study the proposed framework with exper-
iments. Our aim is to understand more clearly the pros and
cons of the framework and to compare different techniques
formulated in Section III. For this reason, quantitative mea-
sures are defined in Subsection IV-A. Perceptual evaluation of
speech quality (PESQ) [46] and short-time objective intelli-
gibility measure (STOI) [47] are also used to evaluate the
quality and intelligibility of the output speech signals, which are
the ultimate objectives of speech enhancement. The true error
covariances are used in Subsection IV-A, while the received sig-
nal covariances are used in Subsection IV-B, that give the upper
and the lower bounds for the measures, respectively.

Through the rest of this section, we use recorded signals
from SMARD [48] complemented with simulated data using
room impulse responses obtained by the image method [49]. In
our experiments, signals are down-sampled to 8000 Hz. The
STFT representations are obtained using time-frames of 512
samples with 64-sample hops. As SMARD was recorded for
one source at a time, its received signals in similar configura-
tions are superposed, assuming linear response in microphones
and persistent medium, i.e. fixed temperature for superposed
recordings. From this, 8 constellations are obtained with 4 sets
of orthogonal-linear sub-arrays, and 4 sets of linear and cir-
cular sub-arrays. Then, a subset of microphones available in
each constellation is picked to form 3 sub-arrays, each con-
tains 3 microphones, as shown in Fig. 1 with colored dots for
microphones (G.R.A.S. 40AZ) and circles for superposed loud
speakers (Brüel & Kjær OmniPower 4296). More details on
exact locations and directions can be found in [48].

A. Performance Comparison on SMARD Constellations

By calculating the pseudo-coherence vectors, it is possi-
ble to implement and compare the enhancement techniques
introduced in Section III. Blind estimation of inter and intra
pseudo-coherence vectors is not in the scope of this paper, so
that they are calculated from clean signals in accordance with
formulations in Section II; however, we have proposed such a
blind estimation approach in [41]. In practice, it is mandatory to
impose limitation on time-frequency bins using a voice activity
detector (VAD) for correct calculation of the norms, especially
for reverberant rooms and unideal equipments, for which the
signals are diminished at certain frequencies.

It is also important to take into account rank (invertibility) of
the estimated error covariance matrices. To make implemented
formulas from Section III robust against rank deficiencies, diag-
onal loading is used, which is equivalent to Tikhonov regular-
ization in respective optimization problems. In this experiment,
frequency-dependent regularization factors are used, which are
equal to a small fraction (0.1%) of the long-term expected value
for power spectral densities, added to the fixed level of 10−7 for
frequencies which are heavily diminished.

The methods under study in this experiment are MVDR,
MWF, and SDW-MWF (with μ = 5) implemented for local
and global approaches plus the global LCMV, which are
respectively labeled by L-MVDR, L-MWF, L-SDW-MWF,
G-MVDR, G-SDW-MWF, G-SDW-MWF, and G-LCMV. As a
result of the insufficient degree of freedom, the local LCMV
method fails, and is excluded.

Here, recordings for male, female, and child speakers in dif-
ferent constellations are used to obtain smooth charts from
which reasonable conclusions can be deduced. One sample (3-
5 seconds) for each speaker type is used from TSP speech
audio recordings available in SMARD. SMARD constellations
make it possible to compare two source positions with rela-
tively different signal-to-interference-ratios; therefore, the free
parameter in the this experiment is decided to be the amount of
noise power added to the recordings at each microphone. This
makes the averaging of the results be a valid approach at fixed
noise levels.

1) Noise Reduction, the Output SNR: The (narrow-
band) output SNR of a beamformer is defined for speaker
p as

oSNR [hp
r ] =

hp
r
HΦxp

r
hp
r

hp
r
H
Φvr

hp
r

.

For distortionless methods, the output SNR would be

oSNR [hp
r ] =

φXp
r,b

hp
r
H
Φvr

hp
r

.

We deduce that the (narrowband) array gain for speaker p is

ASNR[h
p
r ] =

oSNR[hp
r ]

iSNRp
r

. (35)

It can be shown that A[hp
r ] ≥ 1. The fullband SNR array

gains are obtained by firstly accumulating over all time-
frequency bins and then calculating the ratio of the filtered
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Fig. 2. Quantitative measures for enhancement method are shown in (a), (b), (c), and (d). Qualitative measures for these methods are shown in (e) and (f).

desired signal and the filtered noise. This measure is further
averaged over all available geometries, and the results are
shown in Fig. 2a. As expected, global Wiener-based methods
are on top, while the local MVDR shows poor performance.
The linear trend with slope less than one for all methods sug-
gests that all beamformers are able to remove a portion (about
50%) of the excessive spatially white noise.

2) Interference Suppression, the Output SIR: Sometimes,
the main objective of the enhancement algorithm is to suppress
interferences, i.e., competitive speech signals. In such cases, the
noise removal can be deliberately omitted if its effect on speech
quality or ineligibility is negligible, or noise suppression can
be performed as part of a separate stage, e.g., with a post fil-
ter. Then, the output SIR is the desirable quantitative measure,
which is defined for speaker p as

oSIR [hp
r ] =

hp
r
HΦxp

r
hp
r

hp
r
H
Φiprh

p
r

=
hp
r
HΦxp

r
hp
r

P∑
q=1
q �=p

hp
r
HΦxq

r
hp
r

.

The (narrowband) array gains for interference suppression is

ASIR[h
p
r ] =

oSIR[hp
r ]

iSIRp
r

. (36)

The fullband SIR array gains are calculated for different meth-
ods in a similar manner to fullband SNR array gains. The results
are shown in Fig. 2b. Here, the trend in array gains for inter-
ference suppression is decreasing as the noise level increases,
suggesting that leaving the noise for a post filter has a risk
of increased residual interferences. Notably, the global LCMV
shows better performance than the global MVDR, which is
expected from the constraint imposed on it.

3) Combined Measure, the Output SINR: Inclusively, the
signal-to-interference-plus-noise-ratio is defined as

oSINR [hp
r ] =

hp
r
HΦxp

r
hp
r

hp
r
H
Φep

r
hp
r

=
hp
r
HΦxp

r
hp
r

hp
r
H
Φvr

hp
r +

P∑
q=1
q �=p

hp
r
HΦxq

r
hp
r

,

and the narrowband array gains with regard to signal-to-
interference-plus-noise-ratio is

ASINR[h
p
r ] =

oSINR[hp
r ]

iSINRp
r

. (37)

The fullband combined array gains for SINR are calculated
through dividing the accumulated filtered desired signal by the
accumulated interference plus noise over all time-frequency
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bins, and then smoothed over different geometries. As can be
seen in Fig. 2c for combined fullband SINR array gains, the
global Wiener-based methods are again superior to all other
compared methods. Unlike for the SIR gain, the MVDR acts
better than LCMV for SINR gain, and all distortionless meth-
ods perform equally the same (flat trend) for different levels of
spatially white noise.

4) Waveform Preservation, Speech Distortion Ratio:
Besides the comparison w.r.t the fullband array gains, it is
essential for speech enhancement to study the speech distortion.
For this, the fullband multichannel distortion index defined in
[50] is reformulated in terms of the pseudo-coherence vector
and complex filter weights as

FBSDp =

∑
l

∑
k

φXp
r,b

∥∥∥(ū− h̄p
r

)†
ρx̄p,Xp

r,b

∥∥∥2
∑
l

∑
k

φXp
r,b

, (38)

where ū is a vector with only one nonzero element at index rp

with value one.
The fullband speech distortion ratios are shown in Fig. 2d.

The results contradict theoretical expectations.
The distortionless methods did not reach much lower FBSD

ratios than the Wiener-based; indeed, the global LCMV shows
worse distortion than the global MWF. There are two reasons
for these contradictions. Firstly, the diagonal loading impose a
lower bound of −30 dB. Secondly, there is an amount of mutual
coherency among different speech signals which distorts the
desired signal. However, the nature of distortion in Wiener-
based methods is different, so that its impact on the quality and
intelligibility of speech is more, as studies confirm.

5) Perception and Intelligibility: Quantitative comparison
of enhancement techniques is useful to attach a best method to a
practical problem; however, it cannot assure the improvement in
perception of speech or its intelligibility. Perceptual Evaluation
of Speech Quality (PESQ) is a well-established measure using
segmental SNRs [51] which is mapped into the range of [0,5]
with the higher value predicting better perception. In this exper-
iment, the amount of PESQ improvement in calculated from
differences between PESQ measures at the input and output of
the enhancement techniques. As shown in Fig. 2e, there is no
unique algorithm being superior to all others for all noise lev-
els; however, it can be deduced that the global MWF method is
the best among compared methods when noise level is higher
while global MVDR and LCMV methods are better approaches
for lower noise level, make them perceptually better meth-
ods when the objective is to remove geometrically constrained
interferences in low noise environments.

PESQ measure may still be seen as a quantitative measure
rather than a qualitative one w.r.t. the intelligibility of speech, as
there is no direct mapping available. Speech intelligibility can
be measured with STOI in a more tangible manner. The STOI
measure can vary in the range [0,1], where the higher repre-
sents the better intelligibility. The Auditory Modeling Toolbox
is used here to calculate STOI measures [52]. Different methods
are compared w.r.t. STOI improvement defined as the difference
between STOI at the input of enhancement apparatus to the

Fig. 3. Performance of enhancement methods without the error covariance.

STOI at its output. As Fig. 2f shows, the STOI improvement
does neither map linearly to the PESQ improvement nor to
any quantitative measure. Possibly, the most important obser-
vation here is that distortionless techniques, global MVDR
and LCMV methods, are superior to Wiener-based techniques
(MWF) almost for every noise level. This confirms the argu-
mentation in the previous subsection regarding the nature of
distortion in different methods.
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B. Pseudo-Coherence Enhancement Without Noise Estimation

It is time to look into the problem from a different point of
view. In this experiment, the geometrical setup in [26] is repro-
duced with a desired speaker, two interfering speakers, and
a spatially-constrained white Gaussian noise source. Three 3-
element sub-arrays are available at the scene, among which one
is positioned at different places from the neighborhood of the
desired speaker towards the heavily noisy and interfered zone.
Speech signals from TSP database are down-sampled to 8000
[Hz]. Same sentence spoken by a male, a female, and a child, is
used for speakers iterated around the table. 48 Monte-Carlo iter-
ations are used to obtain statistically valid predictions. No prior
knowledge on the error covariance matrix, Φep

r
, is assumed, and

the received signal covariance matrix is used instead, as given
in (6) for Φyp

r
.

Fig. 3 compares the results from local and global approaches
for this set up. The x-axis shows position of the moving sub-
array (while its role is changed from being the best input SINR
sub-array to the worst one). The y-axes in this figure are the
same as defined in Section IV-A. As observed in Fig. 3a, SINR
array gains are lower compared to the experiment conducted in
Section IV-A, and generally local methods show superiority to
global ones. Speech distortions are complying with our expec-
tations, as shown in Fig. 3b. For PESQ and STOI, as shown
in Fig. 3c and Fig. 3d, global methods become closer to local
ones or even get better when the moving sub-array gets further
away from the desired source. The turning point for local and
global MVDR w.r.t STOI is the point where all sub-arrays have
approximately equal input SINRs.

V. CONCLUSION

In this work, a framework for speech enhancement with
ad hoc microphone arrays is introduced based on the con-
cept of pseudo-coherency. Various beamforming techniques
are derived w.r.t. inter and intra sub-array pseudo-coherence
vectors. This work extends the state-of-the-art time-domain
techniques by establishing broadband beamformers. In addi-
tion, it uses the concept of speech coherency to formulate the
enhancement problem for multiple speakers and deriving var-
ious beamforming techniques. Furthermore, both quantitative
and qualitative measures are used in experimental studies to
compare the performance of implemented methods.

According to the experimental results, the followings are
concluded. Firstly, pseudo-coherence-based enhancement tech-
niques yield performance gain w.r.t. qualitative and quantitative
measures. As shown for real-life recordings, an average SINR
array gain of above 40 dB is achieved using the global SDW-
MWF beamformer for 9-node ad hoc arrays, while the same
measure for global MVDR and LCMV beamformers is about
25 dB. It is also shown how the PESQ improvement of up to
2 levels is achieved for different noise levels. Secondly, the
MVDR shows better performance w.r.t. the speech intelligibil-
ity measure (STOI); however, if another performance measure
is the ultimate goal, e.g., the SIR gain, other methods may be
superior. In essence, selection of the beamforming approach

and decision on using whole or parts of it is a matter of the
performance measure we grant as the ultimate goal. Finally, the
norm of the pseudo-coherence-vector is a robust measure which
can be used, alongside the input SINR, to partition the ad hoc
microphone array into local and global beamformers, and to
select global and local reference microphones.
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