
REAL-TIME SOFTWARE IMPLEMENTATION OF AN IEEE 802.11A
BASEBAND RECEIVER ON INTEL MULTICORE

Christian R. Berger∗, Volodymyr Arbatov∗, Yevgen Voronenko∗, Franz Franchetti∗, Markus P̈uschel†

∗Dept. of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, USA
†Dept. of Computer Science, ETH Zurich, Switzerland

ABSTRACT

We present a software-only implementation of an IEEE 802.11a
(WiFi) receiver optimized for Intel multicore platforms. The re-
ceiver is about 50 times faster than a straightforward C implemen-
tation, i.e., an implementation that has the same functionality, but
leaves optimization completely to the compiler. Our hand-optimized
implementation achieves real-time for all data rates up to the max-
imum of 54 Mbit/s on a Core i7, clocked at 3.3 GHz, and for up
to 12 Mbit/s on an Atom, clocked at 1.6 GHz, using two cores in
both cases. To achieve this performance we use up to two threads,
up to 16-way vectorization using Intel’s SSE, and various other
optimizations.

1. INTRODUCTION

Current wireless devices commonly implement all baseband digital
signal processing in application specific integrated circuits (ASIC).
This allows sufficiently fast processing with low power but the func-
tionality is fixed and cannot be modified or extended. Software-
defined radio (SDR) [1, 2] aims to overcome this problem by ex-
changing the ASIC with a fully programmable platform. This could
be a field programmable gate array (FPGA), a digital signal proces-
sor (DSP), a full-fledged general purpose processor (GPP), or any
combination of those. While FPGAs can be reconfigured to update
algorithms or add functionality, DSPs and GPPs can furthermore dy-
namically assign computational resources, for example between re-
ceive and transmit algorithms or between multiple supported wire-
less standards that do not run concurrently. This is of interest as
many devices already support a number of wireless standards, but
still are implemented in dedicated hardware.

Available SDR platforms can be roughly divided into two
groups: the first consists of low-power stand-alone boards mainly
based on DSPs and FPGAs (as used in [3–5]), the second is based
on simple radio front-end boards attached to commodity personal
computers (PC), therefore performing the actual computing on a
GPP [6–8].

Contribution. In this paper we present a software implemen-
tation of an IEEE 802.11a (WiFi) receiver optimized for Intel mul-
ticore platforms such as Core or Atom. Our baseline is a straight-
forward C implementation that leaves the optimization completely
to the compiler. Hand-optimizing the code by removing unneces-
sary index computations, avoiding conditional statements, and ex-
tensively using single-instruction multiple-data (SIMD) vectoriza-
tion, we achieve a speedup of about a factor of 30. Parallelization
for two cores yields another 20% on Atom and 60% on Core for a
total speedup of 35–50 times.

The final code achieves real-time for all data rates up to the
maximum of 54 Mbit/s on a Core i7 clocked at 3.3 GHz, and up
to 12 Mbit/s on an Atom clocked at 1.6 GHz.

Related work. Software implementations of IEEE 802.11a on
stand-alone DSP platforms, like the TI TMS320C64x series, have
either considered only the transmitter [3, 4], or are almost 50 times
slower than real-time performance [5].

More recently, there has been work on platforms that have higher
peak performance due to increased parallelism in the form of multi-
ple processor cores and SIMD vector extensions [9, 10]. Reference
[9] presents a software implementation of IEEE 802.16e (WiMAX)
on the Sandbridge Sandblaster platform that consists of four DSP
cores with SIMD arithmetic units. The code achieves real-time for
data rates up to 2.9 Mbit/s in WiMAX, which is functionally simi-
lar to WiFi. The signal-processing on-demand (SODA) architecture
in [10] consists of four SIMD processing elements, a control unit,
and scratchpad memory. Based on hardware simulation the SODA
platform should achieve real-time performance for up to 24 Mbit/s
using a fully software defined receiver.

The combination of commodity PCs and simple radio front-end
boards is especially interesting for academic testbeds (see e.g. [11])
since it enables the testing of new receiver algorithms with limited
(software-only) implementation effort. Still, to date there are few
implementations of IEEE 802.11a or similar complexity physical
layers on academic testbeds.

The popular GNU Radio [6] has only a “miniature version” that
runs at a much reduced data rate on a smaller 8 MHz channel, com-
pared to the full 20 MHz bandwidth with up to 54 Mbit/s. This is
because an early version of the GNU radio front-end board, the Uni-
versal Software Radio Peripheral (USRP), could only transfer data
across a USB2 connection to the host PC. But also on the updated
version (USRP2), which should theoretically support the necessary
throughput via a Gigabit Ethernet connection [6], there is to date no
real-time implementation of an IEEE 802.11a receiver.

Other recent academic development kits include Rice Univer-
sity’s Wireless Open-Access Research Platform (WARP) [7], and
Microsoft Research’s Software Radio (Sora) [8]. To our knowl-
edge, the only other real-time software-only implementation of IEEE
802.11a on a GPP is [8], where the authors use hand-coded assem-
bly and large look-up tables to achieve real-time on the Intel server
processor Core 2 Quad. In contrast, we achieve real-time both on
Intel server processors (Core 2 and Core i7) and mobile processors
(Atom), while performing more computation to minimize lookup ta-
ble sizes to fit Atom’s smaller cache size.

2. WIFI RECEIVER

The IEEE 802.11a (WiFi) orthogonal frequency division multiplex-
ing (OFDM) receiver baseband processing consists of seven major
steps as shown in Fig. 1: i) The cyclic prefix (CP) is removed and
a discrete Fourier transform (DFT) is used to split the orthogonal
subcarriers. ii) The channel effect is equalized via a scalar, complex
multiplication. iii) The complex symbols are demodulated to render



to higher

layer


data de-

scrambler


bit

@
 
N
DBPS
/
T
SYM


Viterbi

decoder


8-bit fixed point

@ 
2
N
DBPS
/
T
SYM


insert

dummies


8-bit fixed point

@ 
N
CBPS
/
T
SYM


data de-

interleaver


8-bit fixed point

@ 
N
CBPS
/
T
SYM


symbol

de-mapper


float

@ 
2
N
DFT
/
T
SYM


equalization


float

@ 
2
N
DFT
/
T
SYM


FFT


from RF


float

@ 
2
N
DFT
/
T
SYM


baseband

samples


frequency

samples


symbols

estimates


soft-bit

estimates


de-

interleaved


bits


de-

punctured


bits

decoded


bits


de-

scrambled


bits


channel

estimates


scrambling

sequence


Fig. 1. The OFDM receiver used in IEEE 802.11a (WiFi) has seven blocks, the arrows and variables indicate the data flow; one OFDM
symbol is processed everyTSYM = 4µs, the DFT is of sizeNDFT = 64, coded- and data-bits per symbol are defined in Table 1.

Data rate Modulation bit/symb. Code Coded bit Data bit
Mbits/s NBPSC rateR NCBPS NDBPS

6 BPSK 1 1/2 48 24
9 BPSK 1 3/4 48 36
12 QPSK 2 1/2 96 48
18 QPSK 2 3/4 96 72
24 16-QAM 4 1/2 192 96
36 16-QAM 4 3/4 192 144
48 64-QAM 6 2/3 288 192
54 64-QAM 6 3/4 288 216

Table 1. Supported data rates in IEEE 802.11a with corresponding
modulation schemes and coding rates.

bit estimates. iv) The data is de-interleaved; and v) punctured bits
are filled with dummy observations. vi) Viterbi decoding determines
the most likely transmitted bit sequence based on the applied convo-
lutional code. vii) The data sequence is de-scrambled using a pseudo
random sequence.

Next, the blocks in Fig. 1 are described in some detail, with fo-
cus on implementation complexity. Performance optimizations for
the x86 architecture including vectorization and threading are dis-
cussed later.

FFT and equalization. The input at the receiver is typically as-
sumed to consist of complex baseband samples, arriving at the sam-
pling frequency of 20 MHz. During one OFDM symbol duration,
TSY M = 4 µs, 80 samples arrive, of which the firstNCP = 16 con-
tain the cyclic prefix (which is discarded), and the latterNDFT =
64 are fed into a DFT implemented using a fast Fourier transform
(FFT). The output contains frequency samples, which are equalized
using the channel frequency response (that we assume has been es-
timated previously) to attain estimates of the transmitted symbols,
which are drawn from one of the modulation schemes listed in Ta-
ble 1.

On DSP boards typically a fixed point format is used to reduce
complexity. On an x86 architecture this will not lead to any gains,
since efficient floating point arithmetic units are available. Instead
the data ordering is relevant for optimal cache usage. An implemen-
tation choice here is interleaved vs. split complex format, where
in the former each baseband sample’s real and imaginary part are
stored adjacently, while in the latter all real parts are followed by all
imaginary parts.

Symbol de-mapper. The symbol estimates can be found us-
ing the minimum-distance receiver (the log-likelihood corresponds
to the Euclidean distance). This step is generally of high complex-
ity, since finding the individual bit likelihoods requires combining
all symbol likelihoods with matching bits. To reduce complexity a
look-up table can be used [8].

Due to the regular structure of the constellations, the bit likeli-
hoods can be also calculated with few arithmetic operations. First,

in-phase and quadrature can be handled separately, meaning that
one QPSK symbol can be decomposed into two BPSK symbols, 16-
QAM into 4-PAM, and 64-QAM into 8-PAM. Furthermore, approx-
imate bit log-likelihoods can be easily calculated due to symmetries
in the constellations.

To reduce complexity, the symbol estimates are quantized. Due
to the available data structures on an x86 architecture, we choose
8 bit fixed point format (which incurs negligible distortion).

Data de-interleaver. This stage simply reorders the bit esti-
mates. While in ASIC or FPGA implementations this is achieved by
connecting the corresponding wires of block inputs and outputs, in
software this corresponds to reading from and writing to memory.

Insert dummies. The convolutional codes of rate 2/3 and 3/4
are implemented by modifying the rate 1/2 code using puncturing,
which changes the effective rate of a code while avoiding any modifi-
cation of the encoding/decoding scheme. In practice this means that
some encoded bits are not transmitted, and at the receiver dummy
observations (log-likelihood of zero) are inserted into the received
data stream to keep the appearance of the original coding scheme.
This approach is deemed advantageous for hardware implementa-
tions.

Viterbi decoder. The Viterbi decoder is of constraint length 7
with generating polynomials 133 and 171 (in octal representation).
The associated 64 states are updated using 32 add-compare-select
(ACS) steps. The cost of the forward-path is 14 operations per ACS,
which includes calculating the cost metrics, updating the paths, and
choosing the minimum.

Data de-scrambler. The decoded bits are XORed with the
scrambling sequence. The pseudo-random scrambling bit sequence
is periodic with a period of27 − 1 = 127, and is generated in
hardware using a length 7 shift register.

3. PARALLELIZATION

3.1. Overview and Minimizing Operations Count

First, we performed some basic optimizations that reduce the opera-
tions count and simplify data accesses:

• index computations are simplified to few additions using
pointer arithmetic or loop induction counters,

• conditional statements are avoided,

• stages that only reorder data are merged with the adjacent
computation,

• compact data types are chosen, e.g., final bit decisions are
packed densely.

As explained next, we optimized for parallelism, which on Intel plat-
forms comes in two forms: SIMD vector extensions and thread level
parallelism.



3.2. SIMD Vector Extensions

Current SIMD extensions on x86 platforms are called SSE (stream-
ing SIMD extensions) and offer data types and instructions to op-
erate in parallel on 128 bit data types. These include vectors of
four single-precision floating point numbers, or vectors of sixteen
bytes. The so-called intrinsics interface enables the programmer to
use these instructions directly in C. The challenge is in minimizing
loads and stores and in-register vector shuffle operations. In the fol-
lowing, we briefly explain how the receiver is efficiently vectorized.

FFT. For the FFT we use code generated and vectorized by our
Spiral program generation system [12, 13]. The code is among the
fastest ones available on Intel platforms.

Equalization. In the WiFi standard the data organization as-
sumed is the complex interleaved format, which is not favorable for
vectorization, as neighboring values need to be combined. Instead
we use the split format (all real followed by all imaginary parts),
which enables better vectorization.

Symbol de-mapper. The split format carries through from the
previous stage; accordingly after the symbol de-mapper the output
bit estimates are shuffled by a stride permutation compared to the
normal data flow.

Data de-interleaver. The data de-interleaver cannot be vector-
ized easily, but the reordering of the data in the previous step can be
undone by modifying the interleaver. Also we fuse the puncturing
with this operation, reducing the number of passes through the data.

Viterbi decoder. Our implementation follows closely [14],
which completely sixteen-way vectorizes the Viterbi forward pass
using a byte data type. The path metrics in this case are prone to
overflow, which has to be addressed. We solve this by reducing the
soft-information to 6-bit (although the data type stays the same) and
by rescaling the path metrics every four bit. To minimize overhead,
the rescaling is merged into the ACS steps. Besides the regular ACS,
there is a modified version that subtracts a constant from all path
metrics (ACS-write), and a version that determines the minimum
path metric across all states (ACS-read). One cycle is ACS, ACS,
ACS-read, ACS-write.

The Viterbi trace-back can only be run after the Viterbi for-
ward pass has finished processing all OFDM symbols to minimize
overhead. This makes the final bit decisions only available after all
OFDM symbols have been received and takes a significant amount
of memory (still easily fits into most L2 caches). Alternatively, the
traceback can run on overlapping segments.

Data de-scrambler. The data de-scrambler is easily vectorized,
except for calculating the scrambling sequence. To vectorize we
therefore choose to precompute eight cyclic repetitions plus eight
bits taking up 128 byte storage. The data is stored eight bit packed
into one byte, bit-wise operations are used instead of SSE instruc-
tions:

3.3. Thread Level Parallelism

Thread level parallelism allows several cores to work on the same
task. Current Intel CPUs already have two, four and more cores, and
the communication between threads is achieved through a shared
memory architecture. The main limiting factor is the communica-
tion/synchronization overhead if inter-thread dependencies exist.

The maximal throughput of the receiver is limited by the Viterbi
decoder’s forward pass, which, for each OFDM symbol needs the
final path metric of the previous symbol as input. Parallelizing
the forward pass is possible but unpractical due to the small work-
load. Hence we use a different approach using only two threads
that operate as a software pipeline as shown in Fig. 2. While one

Viterbi decoder

symbol 1

Pre

Vit.

Pre

Vit.
Thread 1

Thread 2

!me

Post

Vit.

Viterbi decoder

symbol 2

Pre

Vit.

Post

Vit.

Viterbi decoder

symbol 3

Post

Vit.

Fig. 2. Threading is done via pipelining using two threads.

thread will run the Viterbi decoder, the other will do “Viterbi post-
processing” of its previous OFDM symbol (Viterbi traceback and
data de-scrambling) and “Viterbi pre-processing” of its next OFDM
symbol (FFT, equalization, de-modulation, and de-interleaving).

4. EXPERIMENTAL RESULTS

We benchmark our implementations on both an Intel Atom N270
with 1.6 GHz and a Core i7 with 3.3 GHz (see [15] for more details
on multicore platforms), compiled with the Intel C compiler icc 11.
We plot the throughput versus the data rate; i.e., if we measure a time
of t micro seconds to receive 25 OFDM symbols then the throughput
is (25NDBPS)/t bit/s and the data rate isNDBPS/TSYM.

We consider the following four code versions in our bench-
marks; the difference is in the degree of optimization:

1. pretty C: a straightforward implementation in C that neither
optimizes index computations nor minimizes passes through
the data. The code is easy to read and the optimization is left
completely to the compiler.

2. optimized scalar: ANSI C code that minimizes the operations
count, merges as many parts of the interleaver and puncturing
with neighboring stages, and uses a highly optimized scalar
FFT function generated by the SPIRAL tool [12].

3. vectorized: SIMD vectorized code using intrinsics as outlined
in Section 3. In particular the FFT, equalizer, and demodula-
tor use four-way floating point SIMD instructions, while the
Viterbi forward pass uses 16-way 8-bit SIMD instructions.

4. threaded: This code uses in addition two threads to parallelize
the Viterbi forward pass with the other blocks as explained in
Section 3.3.

Fig. 3 shows the performance of these implementations for dif-
ferent data rates. Higher is better in these plots, and all implementa-
tion above the shown real-time bound achieve real-time.

We find that the optimized scalar code is about 4x faster than the
naive implementation, while vectorization yields an additional 10x
on both Core and Atom.

Two-way threading yields about another 1.6x speed-up on the
Core, which comes close to the maximum predicted speed-up con-
sidering the fraction of runtime taken up by the Viterbi forward-pass,
see Fig. 3 (right). While for Atom the relative improvements of the
optimized scalar and vectorized implementations are the same (al-
though on a 5x lower level) as on Core, the threading gain is sig-
nificantly less, especially at high data rates. This is likely related
to the Atom N270’s special microarchitecture in which the so-called
hyper-threads share functional units.

Our implementation runs in real-time for all data rates on the
Core i7 using a single thread, while on the lower power Atom real-
time is achieved only up to 12 Mbit/s using both threads.

We now focus on the data rate of 54 Mbit/s and further analyze
the block-by-block improvement achieved by single-threaded code
variants (Table 2). Although all blocks benefit significantly from the



0

2

4

6

8

10

12

14

16

18

20

6 12 18 24 30 36 42 48 54

WiFi Receiver on Intel Atom
Throughput [Mbit/s] vs. Data rate [Mbit/s]

threaded

vectorized

op!mized scalarpre"y C

real-!me bound

0

20

40

60

80

100

120

6 12 18 24 30 36 42 48 54

WiFi Receiver on Intel Core i7
Throughput [Mbit/s] vs. Data rate [Mbit/s]

threaded

vectorized

op!mized scalarpre"y C

real-!me bound

0

0.5

1

1.5

2

2.5

3

3.5

6 9 12 18 24 36 48 54

WiFi Receiver per Symbol on Core i7
Run !me [micro sec] vs. Data rate [Mbit/s]

FFT and 
equaliza!on

symbol
de-mapper

data de-
interleaver

Viterbi
forward pass

Viterbi
traceback

data de-
scrambler

real-�me = 4 μs

Fig. 3. Throughput measurements on Intel Atom and Core (left and middle respectively), and receiver computation profile for vectorized
single-threaded code on Core i7 (right).

Core i7: 54 Mbit/s pretty C optimized scalar vectorized

FFT and equalization 1.66µs 0.37µs 0.18µs
symbol de-mapper 1.35µs 1.73µs 0.13µs
data de-interleaver 3.54µs 0.16µs 0.19µs
Viterbi forward pass 86.04µs 23.74µs 2.01µs
Viterbi traceback 2.96µs 1.92µs 0.70µs
data de-scrambler 1.35µs 0.03µs 0.02µs

total 97.09µs 28.04µs 3.29µs

Table 2. Per symbol timing of individual blocks of 54 Mbit/s mode
for three code versions on a 3.3 GHz Core i7.

optimizations, it is obvious that the complexity of the Viterbi for-
ward pass dominates the runtime. A 4x improvement in the Viterbi
forward pass is achieved in the optimized scalar code, mainly by
formulating the ACS step without any conditional statements. The
16-way vectorization leads to an additional speedup of more than
10x. We do not achieve the full 16x due to the necessary rescaling
overhead as discussed in Section 3.2.

Finally we provide a performance profile of the single-threaded
vectorized implementation across data rates in Fig. 3 (right). While
the runtime per OFDM symbol of the FFT stays constant (there is
always one FFT per symbol), we see that the runtime of all other
blocks increases (approximately) linear with the data rate, as the op-
erations count is mostly linear inNDBPS.

5. CONCLUSION

A real-time WiFi baseband receiver requires considerable compu-
tational performance that is finally within reach on modern general
purpose processors due to both SIMD parallelism and multiple cores.
Leveraging this parallelism, however, requires a very careful restruc-
turing of the computation. The corresponding implementation leaves
standard C and requires vector intrinsics and threading directives.
Thus, equally important as the results shown are the techniques used,
which will apply across a wide range of modern parallel processors.

6. REFERENCES

[1] Wayne Wolf, “Building the software radio,”Computer, vol. 38, no. 3,
pp. 87–89, Mar. 2005.

[2] P. Koch and R. Prasad, “The universal handset,”IEEE Spectrum, vol.
46, no. 4, pp. 36–41, Apr. 2009.

[3] M. J. Meeuwsen, O. Sattari, and B.M. Baas, “A full-rate software
implementation of an IEEE 802.11a compliant digital baseband trans-
mitter,” in Proc. IEEE Workshop Signal Processing Systems (SIPS),
Austin, TX, Oct. 2004.

[4] Yiyan Tang, Lie Qian, and Yuke Wang, “Optimized software im-
plementation of a full-rate IEEE 802.11a compliant digital baseband
transmitter on a digital signal processor,” inProc. of Global Telecom-
munications Conf., St. Louis, MO, Nov. 2005.

[5] A. L. Cinquino and Y. R. Shayan, “A real-time software implemen-
tation of an OFDM modem suitable for software defined radios,”in
Proc. Canadian Conf. Electrical and Computer Engineering, Niagara
Falls, Canada, May 2004.

[6] GNU Radio, [online] http://gnuradio.org/.
[7] WARP: Wireless Open-Access Research Platform,

[online] http://warp.rice.edu/.
[8] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang, Y. Zhang, H. Wu,

W. Wang, and G. Voelke, “Sora: High performance software radio us-
ing general purpose multi-core processors,” inProc. 6th USENIX Sym-
posium on Networked Systems Design and Implementation, Boston,
MA, Apr. 2009.

[9] D. Iancu, H. Ye, E. Surducan, M. Senthilvelan, J. Glossner, V. Surdu-
can, V. Kotlyar, A. Iancu, G. Nacer, and J. Takala, “Softwareimple-
mentation of WiMAX on the Sandbridge SandBlaster platform,”Em-
bedded Computer Systems: Architectures, Modeling, and Simulation,
vol. LNCS 4017, pp. 435–446, 2006.

[10] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,
C. Chakrabarti, and K. Flautner, “SODA: A high-performance DSP
architecture for software-defined radio,”IEEE Micro, vol. 27, no. 1,
pp. 114–123, Jan. 2007.

[11] Michael L. Dickens, Brian P. Dunn, and J. Nicholas Laneman, “Design
and implementation of a portable software radio,”IEEE Communica-
tions Magazine, vol. 46, no. 8, pp. 58–66, Aug. 2008.

[12] M. Püschel, J.M.F. Moura, J.R. Johnson, D. Padua, M.M. Veloso, B.W.
Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R.W.
Johnson, and N. Rizzolo, “SPIRAL: Code generation for DSP trans-
forms,” Proc. of the IEEE, vol. 93, no. 2, pp. 232–275, 2005.

[13] Franz Franchetti, Markus Püschel, Yevgen Voronenko, Srinivas Chel-
lappa, and Jośe M. F. Moura, “Discrete Fourier transform on multi-
core,” IEEE Signal Processing Magazine, vol. 26, no. 2, pp. 90–102,
Dec. 2009.

[14] Fréd́eric de Mesmay, Srinivas Chellappa, Franz Franchetti, and Markus
Püschel, “Computer generation of efficient software Viterbi decoders,”
in Proc. Intl. Conf. High Performance Embedded Architecturesand
Compilers (HiPEAC), Pisa, Italy, Jan. 2010.

[15] Geoffrey Blake, Ronald G. Dreslinski, and Trevor Mudge, “A survey
of multicore processors,”IEEE Signal Processing Magazine, vol. 26,
no. 2, pp. 26–37, Dec. 2009.


