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De novo protein structure determination using sparse NMR data
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Abstract

We describe a method for generating moderate to high-resolution protein structures using limited NMR data com-
bined with the ab initio protein structure prediction method Rosetta. Peptide fragments are selected from proteins
of known structure based on sequence similarity and consistency with chemical shift and NOE data. Models are
built from these fragments by minimizing an energy function that favors hydrophobic burial, strand pairing, and
satisfaction of NOE constraints. Models generated using this procedure with∼1 NOE constraint per residue are in
some cases closer to the corresponding X-ray structures than the published NMR solution structures. The method
requires only the sparse constraints available during initial stages of NMR structure determination, and thus holds
promise for increasing the speed with which protein solution structures can be determined.

Introduction

The accelerated pace of genome sequencing has re-
sulted in an abundance of protein sequence data with
few corresponding protein structures, sparking inter-
est in the development of rapid structure determina-
tion methods and ambitious proposals for genome-
scale structure determination. Traditional experimen-
tal structure determination methods are time- and
labor-intensive processes. NMR solution structure de-
termination requires concentrated samples, extensive
isotope labeling, assignment of backbone and side-
chain resonances, and iterative assignment of NOE
spectra. Upwards of 15 constraints per residue are
typically required to generate high-resolution solu-
tion structures. Using less information, low-resolution
global folds can be obtained for large proteins that can
greatly simplify resonance and constraint assignments
(Venters et al., 1995; Rosen et al., 1996; Gardner et al.,
1997; Battiste and Wagner, 2000).

Recent methods have sought to improve structure
prediction and determination by confining the confor-
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mational search space (Figure 1). The Rosetta ab initio
protein structure prediction method assembles protein
structures with buried hydrophobic cores and paired
beta strands from fragments of known protein struc-
tures with sequences similar to the target protein (Si-
mons et al., 1997, 1999b). Bax and co-workers used
fragment libraries with several hundred dipolar cou-
pling constants to calculate a high-resolution structure
of human ubiquitin (Delaglio et al., 2000). Simpli-
fied protein representations have been combined with
knowledge-based potentials and selected short- and
long-range distance restraints to produce>3 Å mod-
els for proteins as large as 180 residues (Skolnick
et al., 1997; Kolinski and Skolnick, 1998; Debe et al.,
1999; Standley et al., 1999). Despite significant recent
progress, methods developed thus far for rapid struc-
ture determination are unable to consistently generate
and identify high-resolution protein structures (<2 Å)
utilizing small, easily obtained experimental data sets.

Here, we combine the strengths of the methods de-
scribed in the previous paragraph by incorporating into
the Rosetta method data that is typically acquired early
in the NMR structure determination process. Using
this approach, we are able to consistently generate and
identify moderate to high-resolution models for pro-
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Figure 1. Diagram highlighting various experimental approaches
for rapid protein structure determination. Methods include sparse
experimental constraints (G) (Venters et al., 1995; Rosen et al.,
1996; Gardner et al., 1997; Battiste and Wagner, 2000), experimen-
tal constraints combined with fragment libraries (B) (Delaglio et al.,
2000), fragment libraries combined with protein scoring potentials
that favor protein-like structures (R) (Simons et al., 1997, 1999a,
b), and experimental constraints combined with scoring functions
that favor protein-like structures (X) (Skolnick et al., 1997; Kolinski
and Skolnick, 1998; Debe et al., 1999; Standley et al., 1999). The
combined Rosetta/constraint method utilizes all three components:
fragment libraries from the PDB with structural similarity to the
query protein, a scoring potential that favors conformations with
protein-like features, and sparse experimental distance constraints
that can discriminate the native fold (N).

teins as large as 150 residues using≤1 NOE constraint
per residue.

Materials and methods

Generation of fragment libraries
Three and nine residue fragments taken from the Pro-
tein Data Base were given position-specific rankings
as follows. Each fragment residue was scored accord-
ing to its agreement with a multiple sequence align-
ment and a derived probability for theφψ angles given
the chemical shift assignments for the15N, 13Cα, 13C′,
13Cβ, and1Hα nuclei (see following paragraph). The
score for each peptide fragment was the product of
the component residue scores. Additionally, fragments
with gross violation (>2 Å) of short range NOE upper
bound distance constraints were discarded. To ame-
liorate regions where our estimation of theφψ was
either ambiguous or mistaken, we augmented the li-
brary with fragments chosen by agreement with the

multiple sequence alignment and the sequence-based
predicted secondary structure (Simons et al., 1997,
1999b). The final library consisted of the 1000 top
ranked fragments per residue in the query protein; in
generating any given structure, roughly 25% percent
of these are sampled.

For each residue, we used the TALOS (Cornilescu
et al., 1999) algorithm to select a set of likelyφψ pairs
and corresponding quality scores based on the chemi-
cal shift and sequence information. We converted this
discrete output into an estimator of the angular prob-
ability distribution about the meanφ and ψ angles.
A simple, unimodal distribution function was selected
to optimally utilize the TALOS prediction while not
underestimating its error or overtraining on its data-
base. If there was a large scatter in the angles of
the top 10 predictions (σφSD), or if their TALOS-
derived quality scores varied greatly (Zscore), then a
large error bar was assigned to the angular predic-
tion. Empirically, we found these errors bars to be
well fit by φerr = 3.4∗ (σφSD∗Zscore)0.67, ψerr =
3.2∗ (σψSD∗Zscore)0.81. Moreover, the observed dis-
tribution (1φ,1ψ) between the TALOS-derived mean
angle pair and the correct value in the database had
infrequent but large deviations beyond these error bars
and was represented well as two independent Poisson
distributions (rather than a gaussian): Prob(1φ,1ψ)∝
exp(−1φ/φerr) exp(−1ψ/ψerr).

Experimental NOE constraints (HN-HN, HN-Hα,
and Hα-Hα) and chemical shift assignments were
taken from the PDB and Biomagnetic Resonance Bank
(BMRB) or were generously provided by individual
NMR laboratories. Constraint sets were then paired
randomlyuntil the number of constraints was equal
to the number of residues. For Rosetta fragment selec-
tion and structure calculation, upper bound distance
constraints were used without further alteration.

Alternatively, artificial backbone upper bound
NOE constraints were generated for all query proteins
using a conservative protocol. All1H-1H distances
less than 5.0 Å in the query protein were identified.
This set was stochastically paired to be consistent
with the empirical distance dependent frequency with
which NOEs of neighboring atoms areunobserved
due to solvent exchange, resonance degeneracy, or
rapid relaxation processes (Doreleijers et al., 1999).
This data set was further pairedrandomlyuntil the
number of constraints was equal to the number of
residues. Distance constraints were then grouped into
bins of <3.0 Å, <4.5 Å, and<5.5 Å. Constraints
falling within 0.2 Å of a bin boundary were conser-
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vatively moved to the next higher bin. Artificial data
sets contained 0.7–1.0 constraints/residue while ex-
perimental data sets ranged in size from 0.14 to 1.0
constraints/residue.

Generation of folded proteins
Starting from an extended chain, model proteins were
generated by substituting backbone angle sets from
the fragment library using a Monte Carlo/simulated
annealing protocol (Simons et al., 1997, 1999b). The
scoring function is identical to that used in the ab initio
application of Rosetta (except as noted below), and
its components and derivation have been described in
detail previously (Simons et al., 1997, 1999b). Very
briefly, the function was derived from a Bayesian treat-
ment of the residue distributions in known protein
structures and includes a residue environment term
which represents primarily solvation effects (notably
hydrophobic burial), a specific pair interaction term
(primarily electrostatics), and terms favoring strand
pairing, overall compactness, and other features of na-
tive protein structures. A NOE score, calculated as the
sum of upper bound distance violations, was added
to the previously described potential function. To re-
duce the extent to which the conformational search
was constrained by the presence of long range NOEs,
the NOE scoring term was cycled on and off in the
early phase of each simulation. This proved necessary
because efficient fragment insertion in torsion-space
tended to be hindered by long range NOE constraints.
Compact structures with<1 Å error per constraint
were further optimized with a scoring function that
incorporated a full atom Lennard-Jones (LJ) attrac-
tive and repulsive term. Upon each fragment insertion,
a Monte Carlo/simulated annealing search of a Dun-
brack rotamer library was used to identify a low energy
set of side-chain conformers for that backbone struc-
ture (Kuhlman and Baker, 2000), from which LJ
energies were then calculated.

Ten structures for each protein data set were cho-
sen using a non-parametric selection scheme that first
removes the structures with poor composite Rosetta
scores (ab initio, NOE distance constraints, and LJ
terms), followed by those structures with poor in-
dividual score components (LJ attractive, radius of
gyration, NOE constraint score). The remaining struc-
tures were then ranked by their composite Rosetta
score.

Global-fold determination
Protein global folds were generated for each NOE con-
straint set using the program X-PLOR and standard
NMR substructure embedding and distance geome-
try/simulated annealing protocols (dg_sub_em bed.inp
/ dgsa.inp / refine.inp) (Brünger, 1992). Upper bound
distance constraints were combined with lower dis-
tance bounds of 1.8 Å for all X-PLOR runs. Dihedral
angle constraints derived from TALOSφψ predictions
were also used without further alteration. Boundaries
for the angle constraints were set as three times the
standard deviation of the top 10 TALOS predicted an-
gles. Square well potentials were used for both NOE
and dihedral constraints. Ten structures were gener-
ated using the real or synthetic NOE constraint sets as
well as angle constraints, having no NOE violations
>0.5 Å, dihedral-angle constraint violations>5◦, de-
viations from ideal bond length>0.03◦, or deviations
from ideal bond geometry>3 Å. Final vdW radii were
set to 0.8 of their full CHARMM value.

Results and discussion

The Rosetta method is composed of two distinct com-
ponents: selection of a library of protein fragments
likely to resemble the query protein at each residue
position and assembly of the fragments to produce
models with features similar to those of known pro-
tein structures (Simons et al., 1997, 1999a, b). As
illustrated in the CASP3 protein structure prediction
experiment, Rosetta can in some cases produce quite
reasonable low resolution structures for proteins of up
to∼100 residues in length from sequence information
alone (Simons et al., 1997, 1999a, b). We conjectured
that the addition of sparse NMR experimental data to
improve selection of a fragment basis set and to bet-
ter identify structures consistent with the native fold
would enable Rosetta to generate and identify high-
resolution structures (Figure 1, N). With the goal of
developing a technique suitable to a high through-
put experimental approach, we selected experimental
constraints derived from NMR data that could be col-
lected with minimal effort: backbone HN-HN NOE
distance constraints and chemical shifts. The fragment
selection strategy combined backbone chemical shift
information and local NOE constraints with profiles
from multiple sequence alignments and predicted sec-
ondary structure information (Simons et al., 1997).
Torsion angles (φ, ψ) were predicted by matching
the sequence and chemical shifts of the query protein
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to the sequence and chemical shifts of a set of pro-
teins with known structures (Cornilescu et al., 1999),
and the predictions were then used in the fragment
selection process. The combination of fragment li-
braries derived from different sources of information
(chemical shifts, amino acid sequence profiles, se-
quence based secondary structure predictions) insures
that Rosetta is resistant to large errors in any one pre-
diction method. As our goal is to improve de novo
structure determination, no fragments were taken from
proteins with homology to the protein being folded.
The fragment insertion/simulated annealing process
was guided by the addition of an NOE constraint score
to the scoring function used in ab initio calculations
(Simons et al., 1997, 1999a, b).

Backbone NOE data sets were abstracted from the
literature and distances were used without further al-
teration. These data sets, however, varied in coverage
from 0.16 to 1 constraint per residue, making the re-
sults for different proteins difficult to compare. To
facilitate comparison, we also calculated models for
each protein using synthetic backbone NOE data sets
with a coverage of∼1 constraint per residue. Artificial
NOE constraint sets were generated to be consistent
with the observed completeness of experimental NOE
data in NMR structure determinations as well as to re-
flect the natural abundance of local and non-local NOE
(Doreleijers et al., 1999).

To test the Rosetta/NMR constraint approach, we
selected nine proteins ranging in size from 52 to 152
residues with varied secondary structure and topology
(Table 1). For each protein, a thousand structures were
generated using real or artificial NOE constraint sets.
The Rosetta algorithm ranks these structures without
knowledge of the native structure, and we summa-
rize these rankings with two performance metrics. In
Table 1, we report the root mean square deviation
(RMSD) to native of the top ranked Rosetta struc-
ture (best score) and the lowest RMSD to native ob-
served in the 10 best scoring structures (best RMSD).
The first metric measures the combined performance
of the search algorithm and the discrimination func-
tion, while the second assesses the search algorithm
undiminished by an imperfect discriminator.

For comparison, 10 distance geometry (DG) struc-
tures were generated using standard X-PLOR NMR
structure determination protocols and potentials with
the same experimental NMR constraint data used in
the Rosetta calculations. Because the DG structures
satisfied the distance constraints, the composite X-
PLOR score was unable to distinguish the model with

the best RMSD; we report the RMSD range spanned
by the 10 DG models in Table 1.

The combined Rosetta and NOE constraint ap-
proach (referred to as Rosetta below) is substantially
better than DG (Table 1) for calculating accurate pro-
tein structures. For proteins of less than 125 residues,
Rosetta generates and identifies protein structures with
RMSD values of 1–3 Å to the reference structure for
either real or artificial constraint data (Table 1 and
Figure 2). Structures generated using real or artifi-
cial constraint sets of comparable size had comparable
RMSDs from the native structures (Table 1), suggest-
ing that the synthetic data sets are representative of
typical experimental data sets of the same size. Fig-
ures 2 and 3 show ribbon diagrams for protein struc-
tures generated by full experimental X-ray and NMR
methods, Rosetta using sparse constraints, and DG us-
ing sparse constraints. The illustrations demonstrate
that comparing RMSDs of structures generated by DG
and Rosetta does not fully capture the improvements
in local secondary structure and overall topology in the
Rosetta structures. The results for specific proteins are
summarized in Table 1 and are discussed below.

Proteins 1poh, 1ubq and 1acf contain mixedαβ

topologies with a moderate proportion of long-range
backbone NOE constraints, providing a good test case
for both the Rosetta and DG procedures. In addi-
tion, the 1poh, 1ubq and 1acf sequences have both
published NMR solution and X-ray crystal structures,
allowing us to benchmark the accuracy of the Rosetta
and full NMR solution structures relative to the high-
resolution X-ray crystal structures (Figure 2). All of
the top 10 1poh and 1ubq structures were nearly iden-
tical with accuracies spanning a narrow range of 1.09–
1.58 Å RMSD to the corresponding X-ray structures.
Likewise, the published complete NMR solution struc-
ture determinations for 1poh, utilizing 10–20 con-
straints per residue, had an RMSD of 0.98 Å from the
corresponding X-ray structure. The published 1ubq
solution structure (1d3z) achieved a small 0.33 Å de-
viation from the reference X-ray structure (vs. 1.09 Å
for Rosetta), but was calculated with>20 constraints
per residue including several hundred dipolar coupling
constraints. The best score and best RMSD Rosetta
structures for 1acf, a larger 125-residue protein, varied
slightly more, having RMSDs of 3.09 Å and 2.08 Å,
respectively. This still compares favorably with the
published solution structure which had an RMSD of
2.36 Å to the X-ray reference. Our results indicate
that protein structures with accuracy (as measured by
backbone RMSD match to the corresponding X-ray
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Table 1. RMS deviation (Å) from reference structure

Proteina #Res Constraintb Best RMSD Best score Distance X-ray vs.

Rosettac Rosettad geometrye NMRf

1bw5 52 Art. 52/0 1.34 2.60 >13.0

1ubq(∼2000) 76 Real 33/22 1.37 1.53 3.3–7.7 0.33i

1ubq(∼2000) 76 Art. 39/38 1.09 1.52 2.8–6.5 0.33i

1poh(∼1500) 85 Art. 49/37 1.31 1.58 4.7–5.6 0.98h

1imq(1172) 86 Real 84/5 2.52 3.01 8.3–13.1

1imq(1172) 86 Art. 51/7 1.96 1.96 5.7–13.0

1ck2(1418) 107 Art. 67/41 3.06 3.06 5.4–10.6

1acf 125 Art. 77/49 2.09 3.08 6.0–13.5 2.36f

1cfe(1701) 135 Real 65/41 5.72 5.72 10.8–14.7

1cfe(1701) 135 Art. 83/53 3.48 3.48 8.1–15.3

1ulo(1928) 152 Real 16/35 6.97 6.97 10.8–13.6

1ulo(1928) 152 Art. 19/141 3.90 3.90 5.7–11.1

1cmz 152 Real 22/0 5.79 9.47 >15.0

1cmz 152 Art. 105/1 7.98 12.1 >15.0

apdb code for the reference X-ray or NMR structure used to calculate RMSD values. Proteins used
include insulin gene enhancer protein Isl-1 (1bw5), human ubiquitin (1ubq), histidine-containing
phosphocarrier protein (1poh), colicin E9 immunity protein Im9 (1imq), ribosomal protein L30
(1ck2), actin-binding protein profilin (1acf), pathogenesis-related protein P14a (1cfe), N-terminal
cellulose-binding domain (1ulo), and Gα interacting protein (1cmz). In parentheses, the number of
constraints used in the full experimental NMR solution structure determination.
bNumber of real or artificial constraints used: number of short|(i − j)| ≤ 5 and long|(i − j)| > 5
range NOE constraints used in the Rosetta and X-Plor structure determinations.
cBest RMSD (C′,Cα, N nuclei in regular secondary structure) Rosetta structure amongst the top 10
scoring structures.
dThe best scoring Rosetta structure.
eBest and worst of 10 X-Plor structures satisfying all NOE constraints, ideal bond lengths, ideal
covalent geometry, and vdW contacts.
fComparison of NMR solution and X-ray crystal structures.
g,h,iNMR solution structures of 2prf, 1hdn, 1d3z.

structure) roughly equivalent to full NMR solution
structure determinations can be generated using data
sets with 1 constraint per residue in combination with
the Rosetta fragment libraries and scoring potential.

The native structures of 1bw5 (52 residues), 1imq
(86 residues), and 1cmz (152 residues) are allα-helical
bundles and represent a more difficult test case for
our combined approach. Because the distance between
amide protons in adjacent packedα-helices is almost
always >7 Å, few long-range backbone–backbone
NOE constraints are observed in the experimental
or synthetic constraint sets for these proteins. Not
surprisingly, the real and artificial constraint DG struc-
tures for 1bw5, 1imq, and 1cmz have large RMSD
values to their reference structures and lack both na-
tive topology and secondary structure. Despite the
dearth of long-range constraints in the 1bw5 or 1imq
data sets, high-resolution structures were generated
and identified in each case using the Rosetta proto-

col, with best RMSD values of 1.34 Å (1bw5) and
1.96 Å (1imq) (Table 1). For 1cmz, a much larger
protein, Rosetta was able to generate a 5.8 Å struc-
ture using the small experimental data set, containing
only 22 local and 0 long-range NOE constraints (0.14
constraints/residue). While among the poorest in the
set of proteins studied here, it is still substantially bet-
ter than the corresponding distance geometry structure
(Figure 3 and Table 1). The synthetic data set, which
contained a single long range constraint, performed
worse than the smaller experimental data set contain-
ing no long range constraints, presumably due to a
combination of the more conservative upper bounds
used in the artificial data set and sensitivity to which
key constraints are included or excluded.

Rosetta, in combination with sparse constraints,
was also able to dramatically improve the accuracy of
structures calculated for the larger and more complex
proteins compared to those calculated using global-
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Figure 2. Comparison of Rosetta and DG results forαβ proteins. From top to bottom: proteins 1acf, 1poh, and 1ubq. From left to right: the
reference X-ray crystal structure, the reference NMR solution structure, the best scoring Rosetta/limited constraint structure, and the best RMSD
distance geometry structure (of 10 structures). Structures generated by Rosetta often reproduce the subtle structural details of experimentally
determined protein structures, such as sharply defined secondary structure, sheet rolls, and helix bends. These features are particularly evident
when comparing the Rosetta and DG structures for 1acf. The main variation in tertiary structure between the 1poh X-ray and Rosetta models
occurs in only two of the loops. In fact, the published NMR structure (1hdn) itself differs from the X-ray (1poh) structure in this area as well.
The Rosetta and DG structures were determined using artificial (∼1 constraint/residue) NOE data sets. The coloring scheme traces the protein
backbone from the N (violet) to the C (red) terminus. Figures were created using the program MOLSCRIPT and rendered by Raster3D (Kraulis,
1991; Merritt and Murphy, 1994).

fold techniques. For these proteins, Rosetta does not
efficiently generate compact structures satisfying the
constraints, when starting from an extended chain
conformation. As the structures produced by distance
geometry satisfy nearly all of the constraints, we found
it more efficient to use the Rosetta algorithm with
constraints to refine the DG models.

1ulo, a 152-residueβ-sheet sandwich with large
numbers of non-local contacts and complex topology,
is a difficult test case for the Rosetta method because
of the large fraction of non-local interactions. The
best RMSD DG structure generated using simulated
(1 constraint per residue) and real (0.33 constraint per
residue) data sets had RMSDs of 5.7 Å and 10.6 Å,
respectively. Rosetta refined these to 3.9 and 7.0 Å
(Figure 3). Similar results were observed for 1cfe,
a 135-residue protein with mixedαβ topology. The
artificial and real constraint DG structures had best

RMSD structures of 10.6 Å and 8.1 Å resolution, re-
spectively. These were refined by Rosetta to 5.7 Å
(0.7 constraints/residue) and 3.5 Å RMSD (1.0 con-
straints/residue), relative to the NMR solution struc-
ture (Figure 3). In both cases, the combined Rosetta
method dramatically improved the DG structures, but
high-resolution structures were not obtained.

While the results described above are quite promis-
ing, it is likely that still better results could be obtained
by improving the basic methodology and by using ad-
ditional NMR data or information from homologous
structures. Rosetta best scoring and best RMSD struc-
turesdo not completely satisfy the long range NOE
constraints, with average distance violations rang-
ing from 0.1–0.8 Å per constraint. It is likely that
the conformational search strategy could be consid-
erably improved: experimental constraint violations
could be used to direct fragment insertion (a stochas-
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Figure 3. Comparison of Rosetta and DG results for 1ulo, 1cmz, and 1cfe (top to bottom). From left to right: the reference NMR solution
structure, the best scoring and best RMSD Rosetta structures, and the best RMSD X-PLOR structure (of 10 structures). Because the 1cmz
experimental data set contains no long range constraints, the best DG structure does not form a compact folded structure and does not fit
entirely within the figure frame. Despite the absence of long range constraint information, Rosetta generates a best RMSD structure with
secondary structure and topology quite similar to the native fold (5.9 Å). Synthetic NOE constraint sets (∼1 constraint per residue) were used
to calculate the 1ulo Rosetta and DG structures, whereas experimental (real) NOE constraint sets were used to determine the 1cfe and 1cmz
Rosetta and DG structures shown in the figure. Note that the best scoring and best RMSD structures for 1cfe and 1ulo are the same structure.

tic process in the current Rosetta method) and NMR
data such as dipolar coupling lends itself to targeted
searches of conformational space (Clore et al., 1999;
Delaglio et al., 2000). Additional NMR data, such as
HN-methyl and methyl-methyl NOEs (Gardner et al.,
1997) and residual dipolar couplings, could improve
the resolution of the structures considerably. More-
over, including fragments of homologous structures
where available would considerably increase the ac-
curacy of the model proteins. Fragments derived from
proteins with greater than 25% sequence similarity to
the query protein were removed in this de novo study
to avoid biasing our results. With the inclusion of such
fragments, the method is able to produce and identify
models with<1.0 Å accuracy for some of the proteins
in our study.

Our methodology combines the strengths of previ-
ous approaches (Skolnick et al., 1997; Kolinski and
Skolnick, 1998; Debe et al., 1999; Standley et al.,

1999; Delaglio et al., 2000). NMR data is used to
improve the search of conformational space in two
ways: the fragment libraries from which structures are
built are made to be consistent with chemical shift and
local NOE information, and a sparse NOE constraint
score added to the composite Rosetta scoring function
enhances identification of structures that closely re-
semble the native fold (Figure 1, N). The combined
Rosetta method could be easily adapted to incorporate
constraints derived from other experimental sources
such as mass spectrometry cross-linking data (Young
et al., 2000), metal binding, disulfide bonds, chem-
ical shift perturbation and line-broadening data from
spin-label NMR experiments. Distance constraints de-
rived from sequence homologs of known structure
could also be adapted for this approach. Because the
method allows structures to be generated for pro-
teins without collecting and assigning large constraint
sets, the Rosetta method represents a reasonable av-
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enue towards genome-scale structure determination
using distance constraints collected using automated
techniques (Young et al., 2000). Increased resonance
degeneracy, line broadening, and the need to col-
lect large constraint sets severely complicate NMR
structure determination of large proteins. By rapidly
providing moderate resolution structures using small
constraint sets, Rosetta promises to speed up the as-
signment and high-resolution structure determination
of large proteins.

Rosetta
Please contact David Baker at dabaker@u.washington.
edu for access to the Rosetta algorithm for use in
structure determination.
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