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Abstract—This paper presents an improved variable hysteresis-
band current-control in natural frame for a three-phase unity
power rectifier. The proposed control algorithm is based on
three decoupled sliding-mode controllers combined with three
independent Kalman filters. The use of Kalman filters instead
of a non-adaptive state observer improves the quality of the
estimated signals in presence of noise, increasing the immunity of
the control loop in noisy environments. To reduce drastically the
computational load in the Kalman algorithm, a reduced bilinear
model is derived which allows to use a Kalman filter algorithm
instead of an extended Kalman filter. A fast output-voltage con-
trol is also presented which avoids output-voltage variations when
a sudden change in the load or a voltage sag appears. Moreover,
a fixed switching frequency algorithm is proposed which usesa
variable hysteresis-band in combination with a switching decision
algorithm, ensuring a switching spectrum concentrated around
the desired switching frequency. The overall control proposal
has been fully integrated into a digital signal processor. Selected
experimental results are introduced to validate the theoretical
contributions of this paper.

Index Terms—Current control, LCL filter, Sliding Mode Con-
trol, Extended Kalman filter, Voltage sensorless.

I. I NTRODUCTION

T HREE phase rectifiers are commonly used as an interface
between the three-phase system and the ac-line in mostly

electronic equipments which are supplied with a dc-voltage.
Traditionally, ac to dc conversion is achieved using three-phase
diode bridge rectifiers [1]. However these systems exhibits
a low power factor (PF), and inject current harmonics to
the grid. This drawback can cause non-desirable effects such
as the increasing of the power supply voltage distortion,
the damage of the rectifier due to overheating, and a non-
correct working of the equipment. Many solutions have been
reported to improve the power factor and decrease the current
harmonics in single-phase [2], [3], and three-phase rectifiers
[4], [5]. An state-of-the art update about Unity Power Factor
Rectifier (UPFR) can be found in [6], [7] and [8]. The UPFR
are characterized by a high power factor, and a fast dynamic
response can be achieved in the output voltage if a proper
control algorithm is implemented.

Sliding mode control (SMC) is an appropriate way to
control power converters due its inherent characteristicssuch
as robustness, insensitivity to system parameter variation, and
a fast dynamic response [9], [10]. However, a major drawback
of this technique is the variable switching frequency, which is
undesirable in many applications [11]–[13]. In the literature,
some authors have investigated this problem being the digital

hysteretic modulators the commonly given solution [14], [15].
However a high sampling frequency is needed for the correctly
implementation of these digital hysteretic modulators to make
the control algorithm effective. This problem can be solved
if analog hysteretic comparators are used but at expenses of
additional hardware [16]. Other solutions can be adopted by
using predictive control and the DSP timers to decide the
switching time [17].

Anyway, to achieve a current control with fixed switching
frequency in natural frame, the three current controllers must
be decoupled, that is each controller only depends on its
own control variable [16], [18]. Therefore, a difficult on the
implementation in natural frame appears, due to the cross-
coupling through the neutral point voltage. Reference [19],
[20] presents a solution to this problem in a voltage source
inverter, with the disadvantage of the strong dependence with
the filter inductor value. A different solution based on SMC is
presented in [21] but only allows to decouple two of the three
controllers.

Other commonly solutions are based on using transforma-
tions such asαβ-frame [22], [23], dq-frame [24] or using
three independent current controllers which structure hasto
be changed over every60◦ [25], [26] . However, very little
previous works have exploited the SMC technique for three-
phase systems in natural frame due to the cross-coupling
problem.

An effective model-based solution using a Kalman filter is
proposed in this paper to solve the axis-coupling problem. This
technique is based on the estimation of the inductors currents.
Besides, the estimated variables can be used also in the
hysteresis current control (HCC) to reduce the switching noise
and improving the switching frequency spectrum. It is well
know that the Extended Kalman filter is the best solution in
noisy environments but the principal drawback is the important
computational load required for the algorithm. This paper tries
to solve the problems previously mentioned and proposes a
control algorithm for the UPFC with the following features:
1) the control system is based on SMC in natural frame,
2) a reduced bilinear model is derived which allows to use
a Kalman filter (KF) instead of an extended Kalman filter
(EKF) reducing drastically the computational load. Moreover
a sensor-reduction can be achieved by eliminating the voltage
sensors, increasing the system reliability, 3) the decoupling
among controllers is based on the system model, 4) the
variables used in the sliding surface are estimated and free
of noise, improving the sliding-motion, 5) a digital implemen-



tation of hysteretic modulators are designed to achieve fixed
frequency, avoiding additional analog hardware in the system,
6) a robust feedforward current control is introduced, which
provides a linear dynamics to the output voltage and robustness
against load changes and voltage sags.

The main contributions of this paper are: 1) The controllers
decoupling is based on the system model, allowing three
independent current controllers with a fast dynamic response,
2) a feedforward current control which linearizes the output
voltage and provides robustness against load changes and
voltage sags, 3) a fixed switching frequency algorithm is
proposed using a variable hysteresis-band in combination with
a switching decision algorithm (SDA), ensuring a switching
spectrum concentrated around the desired switching frequency.
This control proposal is a fully digital implementation, pro-
grammed in a digital signal processor. The paper is organized
as follows. In section II a non-linear model of the UPFR is
presented. Section III introduces the problem formulation. In
section IV the axis-decoupling approach based on an estimator
is introduced. Section V presents the proposed control system,
and the different blocks in the control algorithm will be
explained in detail. Experimental results are reported in section
VI. Finally, section VII concludes the paper.

II. N ON-L INEAR MODEL OF THE UPFR

A circuit scheme of an UPFR is depicted in Fig.1. An
equivalent circuit for each phase-legi, with i ∈ {a, b, c},
is shown in Fig.2. From this circuit, the three-phase system
equations can be written as
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wherevn is the neutral point voltage,i = [ia ib ic]
T is the

inductor current vector,v = [va vb vc]
T is the grid voltage

vector,u = [ua ub uc]
T is the control variables vector with
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III. PROBLEM FORMULATION

The main control objective in a UPRF is to guarantee
sinusoidal input currents in phase with the grid voltages. A
simple sliding surfaces for this purposes can be used

S = i∗ − i (10)

wherei∗ = kv = [i∗a i∗b i∗c ]
T , is the reference current vector.

Using (1), (3) and (10) the dynamics for each sliding surface
is represented by the following expressions:
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The aforementioned expressions exhibit a cross-coupling
term introduced by the neutral point voltage (3). This term
can produce changes on the slopes of the sliding surfaces,
depending on the discrete values of the control variables,
ua, ub anduc. This phenomena is depicted in Fig.3 where it
can seen that the slope of each sliding surface is affected bythe
three control variables. The procedure to achieve a decoupling
among each phase-leg controller will be introduced in section
IV.

The second objective is to achieve fixed switching fre-
quency. Once the controllers are decoupled a variable hys-
teresis band can be used for this purpose. The problem of this
method is the error in the desired switching frequency pro-
voked by the samples which can appear out of the hysteresis
bands. A switching decision algorithm will be introduced to
solve this problem. The method will be explained in subsection
V-C.

The third objective is to make the system robust against load
changes and voltage sags. This will be achieved by an output-
current feedforward control which also linearize the output-
voltage dynamics.

The contributions of this paper are associated to each of the
proposed solutions for the above mentioned control objectives.

IV. A XIS-DECOUPLINGBASED ON AN ESTIMATOR

In this section a linear simplified model is deduced to
be used in the KF algorithm. This model is based on the
axis-decoupling approach which purpose is to remove the
dependence of the neutral point voltage from the control
dynamics shown in (11)-(13). Besides this state space model
is augmented in two additional states,vi and viq , in order to
estimate the grid voltages by means a KF algorithm.
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Fig. 3: Simulation result of cross-coupled sliding-mode con-
trollers.

The first objective is to achieve three sliding surfacesSa,
Sb andSc which only depends on its control variableua, ub

anduc respectively, and which dynamics are
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Fig.4 shows the sliding surfaces and the control actions. As
it can be seen the switching surfaces slopes are synchronized
with their corresponding control variables. A linear simplified
model used in a Kalman estimator will be used for this
purpose.

In order to derive this model, some considerations must be
taken into account. The first one is to ensure that the model
is a decoupled model (i.e. each phase only depends on its
own control variable) and second, the model must be linear,
accurate, and simple to reduce the computational time. For
these reasons the following assumptions are done:
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Fig. 4: Simulation result of decoupled sliding-mode controllers
operating at fixed frequency.

1) a value ofvn = 0 is taken in the converter model used in
the KF, with this consideration the cross-coupling is removed.

2) the output capacitor is usually large and the output
voltage has a slow dynamic. Hence, the state variablevo
can be assumed constant between different sampling instants
of the same switching period. Besides, since this variable is
measured, it can be considered as a parameter and its dynamics
can be neglected. With this consideration, the new space state
model for each phase-legi could be considered linear in a
switching period [27].

The second objective is to reduce the number of sensors.
With this aim in mind, the state space model will be incre-
mented with two additional states,vi and its quadratureviq,
in order to estimate the grid voltages [28]. These voltages
will be used in the sliding surfaces and in the hysteresis band
expressions in subsection V-C.

With this considerations, the new differential equations for



each phase-legi are:
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which can be represented by the following reduced bilinear
state-space model:
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
 (24)
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[
−

1

2L
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The control algorithm does not use grid voltage sensors. Hence
the value of the output matrixC can be defined as:

C = [1 0 0] (26)

which yields to the following observability matrix

O = [C CA CA2]T . (27)

Moreover the controllability matrixΓ is given by

Γ = [B AB A2B] (28)

MatricesO and Γ are both of full-rank, (i.e.rank{O} =
rank{Γ} = 3), so that the system is controllable and can be
observed using only the measured currentii.

V. PROPOSEDCONTROL SYSTEM

The control diagram for phase-lega is depicted in Fig.5
which consists on four blocks. The output voltage control
computes the value of the gaink. This gain and the estimated
variables obtained from the KF block are used to obtain the
sliding mode surfaces. The SMC block uses a hysteresis band
generator, and a SDA algorithm to improve the switching
frequency spectrum. In next subsections these four control
blocks will be explained in detail.

A. Kalman Filter

Since the system is clearly nonlinear an EKF should be
used, with the drawback of the high computational time needed
for the algorithm. This time can be drastically reduced if the
model defined by (20)-(21) is used for each phase-leg. This
model can be considered linear in a switching period, and a
KF can be used instead of an EKF, leading to an important

computational load reduction with similar results, as shown
below.

The main features provided by the KF in this application
can be sumarized as follows:

• The three controllers can be decoupled since the model
defined by (20)-(21) is used.

• All the variables used in the control algorithm are esti-
mated and free of noise. The Kalman estimators produce
a filtered version of the inductor currents providing an
improved sliding motion.

• The grid voltages can be estimated, so the number of
measurement sensors is reduced.

For the digital KF implementation, the state space model
(20) is discretized. The discrete model and measurement
equations are given by the following expressions:

xik+1
= Adxik +Bdvokuik + ηik (29)

yik = Cxik +wik (30)

where

Ad = eATs ∼= I+ATs =



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0 −ωoTs 1


 (31)

Bd =
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0

BeAλdλ ∼= BTs =

[
−
Ts

2L
0 0

]T
(32)

beingI the identity matrix andTs the sampling time. Here it
is assumed thatvok is a constant between samples of the same
switching period, so thatvok+1

∼= vok , and the discrete model
can be considered linear over the same switching period.

The process and the measurement noise vectors areηk and
wk respectively with covariance matrices are given by:

Qik =E{ηikη
T
ik
}. (33)

Rik =E{wikw
T
ik
} (34)

The recursive Kalman algorithm computation is divided in two
parts: 1) time updating and 2) measurement updating. The
following equations show the recursive steps:

1) The time update step predicts the state ahead and the
error covariance ahead using (35) and (36) respectively

x̂−

ik
= Adx̂

−

ik−1
(35)

P−

ik
= AdPik−1

AT
d +Qik (36)

2) In the measurement update step an update for the
predicted values are made using the Kalman gain which is
computed using (37)

Lik = P−

ik
CT (CP−

ik
CT +Rik)

−1 (37)

This gain is calculated recursively in order to minimize the
mean square error between the measured values and the pre-
dicted ones for the system states. When the gain is computed,
the state estimation and the error covariance can be updated
using (38) and (39) respectively

x̂ik = x̂−

ik
+ Lk(iik − î−ik) (38)

Pik = (I− LikC)P−

ik
. (39)
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Fig. 5: Proposed control system for phase-lega of the UPFR

TABLE I:
SYSTEM PARAMETERS

Symbol Description Value
L Filter input inductance 5 mH
C Output capacitor 340µF
Vdc dc-link voltage 250 V
fs Sampling frequency 40 kHz
fsw Switching frequency 4 kHz
fgrid Grid frequency 60 Hz
Vgrid Grid voltage 50 Vrms
kp Proportional gain 0.03
ki Integral gain 2
RL Load 135Ω
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Fig. 6: Simulations results for the output voltage using an EKF
and a KF with a load step change from 460 to 920 W.

From (38)x̂ik = [̂ii v̂i v̂iq] is obtained.
In order to validate the proposed reduced bilinear model

(20)-(21) used in KF versus the exact nonlinear model (4)-(5)
with an EKF, the following simulations results are presented.

Fig.6 and Fig.7 show the simulation transient response of
the output voltage and inductor currents to a load step change
from 460 to 920 W, using the system parameters listed in Table
I. As it can be seen the output voltage and inductor current
transient response are practically identical using eitherKF or
EKF algorithms, which proves the validity of our proposal.

1) Practical Considerations: Election of Q and R matrices:
For the correct implementation of the Kalman algorithm,
matricesRik andQik must be calculated. MatrixRik , which
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Fig. 7: Simulation results for inductor currents with a load
step change from 460 to 920 W using (a) EKF and (b) KF.

dimension is equal to the dimension of the productCP−

ik
CT

can be estimated from measures. According to (26) and with
the consideration thatP−

ik
is a square matrix,Rik is reduced

to an scalar. Hence,Rik can be estimated using the unbiased
mean power estimator

Rik =
1

NTs

N−1∑

k=0

|wik |
2 (40)

wherewik is an additive white gaussian noise sample at time
k, in phase-legi, andN is the number of samples.

To obtainwik , a reference dc-voltage used in the sensing
systemVrefk , is employed. This voltage is connected at one
analog input of the DSP and is contaminated with the system
noise when the rectifier is switching. The noise samples can
be obtained by subtracting fromVref measures, the exact



value,V ∗

ref (i.e. the value when the rectifier is not switching),
yielding

Rik =
1

NTs

N−1∑

k=0

|Vrefk − V ∗

ref |
2 (41)

The value obtained in this estimation wasRik
∼=0.2.

Matrix Qik is more difficult to estimate and usually a tuning
method is used. In this applicationQik is a diagonal matrix
of dimension 3 and its value has been obtained by means of
simulations. In the simulation results an approximate value of
Q = 0.005I3 has been obtained, whereI3 is a 3-dimensional
identity matrix. All the conditions in the Kalman algorithm
are initialized to zero except for the covariance matrix which
is initialized to the identity matrix.

2) Practical Considerations: Computational Load Reduc-
tion: A high computational load is usually a drawback in an
EKF algorithm implementation. The first important reduction
has been achieved when a KF with a reduced model have
been used instead of the EKF with the nonlinear model. The
possibility to reduce even more the time used in the com-
putation will be an important improvement in the controller
design. Specially, (37) contains a matrix inversion which needs
an important computational load. Using the simplified model
(24) instead of (7) only one measurement per phase can be
used, and the matrix inversion of (37) is reduced to an scalar
inversion. Moreover the noiseRik can be considered so similar
in each phases (i.e.Lak

∼= Lbk
∼= Lck ), and the Kalman gain

(37) is computed only for one phase. With these considerations
the total time employed for the algorithm is around 4.9µs
which makes the algorithm feasible.

B. Sliding-Mode Control

The conventional UPFR control scheme consist on a fast-
inner input-current loop which ensures sinusoidal input cur-
rents in phase with the line voltages,i = kv, and a slow-outer
loop usually a PI controller, which main task is to regulate the
output voltage, modifying the input-current amplitudes.

In this work a control design methodology is proposed to
guarantee unity power factor and also provides a regulated
output dc-voltage with fast dynamics response against sudden
changes in the load. Besides, the amplitude controlk is
conceived in order to linearize the output voltage dynamics.

1) Inner Control Loop: The current controllers can be
derived using the following switching surfaces

Sa = kv̂a − îa (42)

Sb = kv̂b − îb (43)

Sc = kv̂c − îc (44)

wherev̂ = [v̂a v̂b v̂c] and î = [̂ia îb îc] are the estimated
grid voltages and inductor currents.

In the ideal case of sliding motion, that is, infinite switching
frequency, the average value ofu is known as equivalent
control,ueq. The equivalent control is deduced by imposing
the sliding regime conditioṅS = 0. Using (17) and (42)-(44),
we can obtain:

ueqi =
2

vo

(
v̂i − kL

dv̂i
dt

− Lv̂i
dk

dt

)
(45)

whereueqi is the equivalent control for each phase-legi.
The main requirement in the design of SMC is to satisfy

the reaching conditions, and also guarantee the existence of
a sliding regime in the switching surfacesS = 0. The most
often used reaching conditions for each phase-legi are given
by

SiṠi < 0 (46)

which allows us to determine the switching action

ui =

{
1 if Si > 0
−1 if Si < 0

(47)

2) Outer Control Loop: In this work, the outer control
loop is designed to exhibit a slow dynamics behavior to avoid
input currents distortion, but with a fast dynamics response
when a sudden change in the load appears. To achieve this,
an appropriate control of the input current amplitudek is
proposed. This control has to two parts, the first one is a
slow PI control which is the responsible to regulate the output
voltage, and the second one is an output-current feedforward
control which ensures a very fast response when a step change
in the load is produced. The amplitude controlk is also
conceived in order to linearize in a large signal sense the
output voltage dynamics. Next, the control design procedure
is described.

The zero dynamics concept [29] is used to design the
outer loop. The zero dynamics analyzes the dynamics ofvo,
assuming that the control objectivei = kv is achieved. The
output-voltage differential equation in sliding regime can be
found by using (45) in (2)

C
dvo
dt

=
k

vo
(v̂2a + v̂2b + v̂2c )−

kL

vo

dk

dt
(v̂2a + v̂2b + v̂2c )−

−
k2L

vo

(
v̂a

dv̂a
dt

+ v̂b
dv̂b
dt

+ v̂c
dv̂c
dt

)
− io.

(48)

where the grid voltages have a sinusoidal waveform defined
by:

v̂a = Vp cos(ωot) (49)

v̂b = Vp cos(ωot−
2π

3
) (50)

v̂c = Vp cos(ωot−
4π

3
) (51)

beingVp the grid-voltage peak-value. Using (49)-(51) in (48),
the following equation is deduced:

C
dvo
dt

=
3V 2

p k

2vo

(
1− L

dk

dt

)
− io. (52)

As shown in [30], [31] the termdk/dt can be neglected since
the energy stored in the inductor is smaller than the energy
stored in the capacitor. For a detailed demonstration, please
see [30]. As a consequence 52 can be approximated by:

C
dvo
dt

≃
3V 2

p k

2vo
− io. (53)

The output-voltage differential equation (53) is clearly non-
linear, and the output-voltage dynamics depends on a proper



design ofk. In order to linearize the output voltage dynamics,
the following nonlinear control ofk is proposed:

k =
2vo
3V 2

p

[
ki

∫ t

−∞

(v∗o − vo)dτ + kp(v
∗

o − vo) + k0io

]
(54)

where kp and ki are the proportional and integral gains
respectively andk0 can take the values 0 or 1. Now, by
replacing (54) in (53) yields

C
dvo
dt

=

[
ki

∫ t

−∞

(v∗o − vo)dτ + kp(v
∗

o − vo)− (1− k0)io

]
.

(55)

The dynamics ofvo can be obtained by taking the time
derivative of (55), which in the case of resistive load takes
the following form:

C
d2vo
dt2

+

(
kp +

(1− k0)

RL

)
dvo
dt

+ kivo = kiv
∗

o . (56)

The last equation is a linear differential equation, which
dependence on the load value can be removed by taking the
value k0 = 1. In this case a current feedforward term is
introduced and the system will be robust against sudden load
variations. In the other case, if only a PI controller is used
(i.e. k0 = 0) the output voltage dynamics will be affected
by the output current variations producing an output voltage
drop, (see Fig.6). The stability can be assured ifkp andki are
chosen as positive values. It must be noted that, to obtain this
controller unlike others controllers presented in the literature
[32], [33], the use of small-signal models are not required.

C. Output Voltage dynamics under Asymmetrical Fault

The estimated grid voltage can be separated into positive
and negative sequence components. The positive and negative
sequence voltages as a function of time can be represented as:

v̂a = aVp cos(ωot) + bVp cos(ωot+ φ) (57)

v̂b = aVp cos(ωot−
2π

3
) + bVp cos(ωot+

2π

3
+ φ) (58)

v̂c = aVp cos(ωot−
4π

3
) + bVp cos(ωot+

4π

3
+ φ) (59)

whereφ is the phase angle of the negative sequence relative
to the positive sequence and the parametersa and b specify
the degree of imbalance. For example, a balanced three-phase
voltage is an special case of (57)-(59), wherea=1 andb=0.

Using (57)-(59) and (48), the following expression for the
output voltage dynamics, in presence of a voltage sag, can be
found:

C
dvo
dt

=
3k

2vo

(
(aVp)

2 + (bVp)
2 + 2(aVp)(bVp) cos(2ωot+ φ)

)
+

+
3K2Lωo

vo
(aVp)(bVp)sen(2ωot+ φ)− io.

(60)

The previous expression shows that a ripple frequency compo-
nent of 2ωo appears in the output voltage when an asymmetri-
cal fault occurs. The first step to obtain an appropriate voltage
control robust against voltage sags, is to derive an averaged

hi

−hi

tk tk+j

tα tβ

TsTs

Ts/2 Ts/2

Switch here

Switch
here

Fig. 8: Hysteresis band with the switching surface.

dynamic model. By averaging (60) in a half grid period the
following expression can be deduced:

C
d〈vo〉

dt
=

3k

2〈vo〉

(
(aVp)

2 + (bVp)
2
)
− 〈io〉 (61)

where the symbol〈〉 means average value. It is worth to
mention that the above expression coincides with (53) with
a=1 andb=0, (i.e. in absence of voltage sag). With the aim
of linearize the output voltage dynamics when a voltage sag
appears, the controlk (54) is modified as follows:

k =
2vo

3 ((aVp)2 + (bVp)2)
[ki

∫ t

−∞

(v∗o − vo)dτ+

+ kp(v
∗

o − vo) + k0io]

(62)

The positive and negative sequence amplitude can be obtained
using a sequence detector [34], [35].

D. Hysteresis Band Generator with SDA

It is well known that the SMC is characterized by a variable
switching frequency which is usually not desired in most
industry applications. The aim of this section is to design
a fully digital hysteresis modulator that fixes the switching
frequency modifying the hysteresis band. In analog hysteretic
control, the expression of the hysteresis band is given by [16]

hi =
vo

8Lfsw

[
1−

(
2v̂i
vo

)2
]

(63)

wherefsw is the switching frequency.
While the sliding surface is moving inside the hysteresis

bands±hi, the switching frequencyfsw will remain constant.
If a digital control is used, an error in the switching frequency
is produced due to the sampling process. Fig.8 shows this
phenomena, where some samples can be out of the hysteresis
bands and the switching frequency obtained will be lower than
the desired one. To eliminate this error and concentrate the
switching frequency spectrum around the desired frequency, a
switching decision algorithm has been implemented.

Assuming the hysteresis band has a slow variation in a
sampling period,hi(tk) ≃ hi(tk+1), the algorithm can be
implemented with the following steps:

1) When a sample is acquired, the time between the sample
and the hysteresis band is calculated as follows:
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Fig. 9: Experimental control signalsua, ub anduc with sliding
surfacesSa, Sb andSc

If the sample is in the increasing slope of the switching
surface,m1, where:

m1 =
1

L

(
v̂i +

vo
2

)
(64)

the timetα can be computed as:

tα = m1[hi − Si(tk)] (65)

otherwise, if the sample is in the decreasing slope of the
switching surface,m2, where:

m2 = −
1

L

(vo
2

− v̂i

)
(66)

the timetβ can be computed as:

tβ = −m2[Si(tk+j) + hi] (67)

beingSi is the switching surface for the phase-legi.
2) When the estimated times,tα andtβ are known, the SDA

is as follows:
In the case of increasing slope:
- If tα < Ts

2
, the switching is done, otherwise a new sample

is taken.
In the case of decreasing slope:
- If tβ < Ts

2
, the switching is done, otherwise a new sample

is taken.
This procedure is done recursively for each sampling period.

VI. EXPERIMENTAL RESULTS

An experimental three-phase rectifier prototype was built us-
ing a 4.5-kVA SEMIKRON full-bridge as the power converter
and a TMS320F28M36 floating-poin digital signal processor
(DSP) as the control platform with a sampling frequency of 40
kHz. The grid voltages have been generated using a PACIFIC
360-AMX source. The system parameters are listed in Table
I. The proposed control scheme was shown in Fig.5.

Fig.9 shows the control signalsua, ub and uc and their
corresponding switching surfaces,Sa, Sb and Sc in the case
of decoupled controllers. As it can be seen the result obtained

Fig. 10: Experimental inductor-current (5A/div) and grid-
voltage (20V/div) for phase-lega.
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Fig. 11: (a) Experimental results for output voltage (50V/div)
and three inductor currents (5A/div) without feedforward term
with a load step change from 460 to 920 W, (b)k value.

is similar to the simulated one in Fig.4. Therefore we can
conclude that the proposed control provides a perfect axis-
decoupling with a fixed switching frequency, as expected.

Fig.10 shows the inductor current from phase-lega and the
grid voltageva. The two signals are in phase providing a unity
PF, as desired.

With the aim to analyze the effect of the feedforward term
in the output voltage control two cases are presented.

1) In Fig.11 the output voltage, the inductor-currents and
k are depicted, without using the feedforward term(k0 = 0).
Fig.11(a) shows the dynamics of the output voltage (56) and
the three-phase inductor currents. An important voltage drop
appears in the output voltage, when a sudden load change
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Fig. 12: (a) Experimental results for output voltage and three
inductor currents with feedforward term with a load step
change from 460 to 920 W, (b)k value.

from 460 W to 920 W is produced. Fig.11(b) shows thek
parameter. As it can be deduced from the figure, the settling
time is around 0.08s due the slow dynamics of the conventional
PI controller.

2) The same waveforms are shown in Fig.12 but using
the feedforward term(k0 = 1). The dynamics ofvo is now
independent of the load change as it is shown Fig.12(a). In
this case the settling time of thek parameter is drastically
reduced, being the voltage drop inappreciable.

Fig.13(a) shows the output voltage and the grid voltages
during an asymmetrical grid fault. The control amplitudek is
calculated by (54) and in this case a voltage drop appears in
the output voltage, similar as in Fig.11(a). Note that a ripple
frequency component of 2ωo appears in the output voltage as
expected .

In Fig.13(b) the output voltage and the three-phase currents
are shown. As it can be seen the currents tracks the grid
asymmetrical voltages during the sag.

The same waveforms are shown in Fig.14 but in this case
using the control amplitudek expressed in (62). Fig.14(a) and
14(b) show that the voltage drop is insignificant. As expected
the ripple of 2ωo is maintained.

The hysteresis band with its switching surface of phase-leg
a are shown in Fig.15. If an hysteresis band without the SDA
algorithm is used, an error on the desired switching frequency
appears. In Fig.15(a) this problem can be clearly seen, where
several samples are out of the hysteresis limits provoking an
error in the desired switching frequency. The problem is solved
using the SDA algorithm presented in section IV-C. Fig.15(b)
shows how the number of samples that are out of bounds of

(a)

(b)

Fig. 13: (a) Output voltage (50V/div) and three phase voltage
waveforms (20V/div) with asymmetrical fault (a=0.65,b=0.15)
using (54). (b) Output voltage and three phase currents wave-
forms (5A/div).

the hysteresis limits have been reduced using this algorithm,
and the error is solved as it will be seen in the next results.

Finally, the spectrum of the switching frequency is shown in
the following figures. In Fig.16(a), the spectrum of the control
signal is depicted without the use of estimated currents. Inthis
case the switching frequency is concentrated between 8kHz
and 10kHz. Fig.16(b) shows the spectrum using estimated
currents but without the hysteresis modulator. As it can be seen
the switching frequency is incremented, starting at 11kHz to
20kHz. The use of the KF increments the switching speed but
with a spread spectrum. Fig.16 (c) shows the switching spec-
trum with hysteresis bands but without the SDA algorithm. The
spectrum is concentrated around a fixed switching frequencyof
3kHz but with an error, since the desired switching frequency
is 4kHz. This problem is overcome using the SDA algorithm,
and the result is depicted on Fig.16(d), where the switching
frequency is now around 4kHz.

VII. CONCLUSIONS

In this paper a hysteresis current control algorithm for a
three-phase UPFR have been designed and tested. The control
algorithm uses a SMC in combination with a KF to control
the input currents achieving a high PF. The reference current



(a)

(b)

Fig. 14: (a) Output voltage (50V/div) and three phase voltage
waveforms (20V/div) with asymmetrical fault (a=0.65,b=0.15)
using (62). (b) Output voltage and three phase currents wave-
forms (5A/div).

is generated by means of a voltage control, which provides an
adaptive value ofk that apart of calculate the correct amplitude
of the reference current, provides a linear dynamics to the
output voltage with a fast dynamics response. The hysteretic
modulator obtains the adequate hysteresis band which in
combination with an SDA algorithm concentres the spectrum
of the SMC around a desired switching frequency improving
the switching spectrum. The features of the proposed control
are validated experimentally.
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