
1416
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.11 NOVEMBER 2023

PAPER
An Efficient Mapping Scheme on Neural Networks for Linear
Massive MIMO Detection

Lin LI†, Member and Jianhao HU††a), Nonmember

SUMMARY For massive multiple-input multiple-output (MIMO) com-
munication systems, simple linear detectors such as zero forcing (ZF) and
minimum mean square error (MMSE) can achieve near-optimal detection
performance with reduced computational complexity. However, such linear
detectors always involve complicated matrix inversion, which will suffer
from high computational overhead in the practical implementation. Due
to the massive parallel-processing and efficient hardware-implementation
nature, the neural network has become a promising approach to signal pro-
cessing for the future wireless communications. In this paper, we first
propose an efficient neural network to calculate the pseudo-inverses for
any type of matrices based on the improved Newton’s method, termed as
the PINN. Through detailed analysis and derivation, the linear massive
MIMO detectors are mapped on PINNs, which can take full advantage
of the research achievements of neural networks in both algorithms and
hardwares. Furthermore, an improved limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) quasi-Newtonmethod is studied as the learning
algorithm of PINNs to achieve a better performance/complexity trade-off.
Simulation results finally validate the efficiency of the proposed scheme.
key words: massive MIMO, linear detector, neural networks, map, improved
Newton’s method, L-BFGS method

1. Introduction

Massive multiple-input multiple-output (MIMO) has been
regarded as a key technology in the fifth generation mo-
bile communication systems (5G) for improving the system
capacity and spectral efficiency by deploying hundreds of an-
tennas at the base station (BS) to simultaneously serve tens
of user equipments (UEs) at the same frequency band [1].
Unfortunately, while the large number of antennas brings
great benefits, it also brings huge computational burden to
the practical implementation [2]. Therefore, how to design
an efficient massive MIMO detector is a challenging issue
for the future communications [3].

The maximum likelihood (ML) detector is considered
to be optimal, but its computational complexity grows ex-
ponentially with the number of the transmitting antennas
and the modulation order, which is not feasible for massive
MIMO systems [4]. In contrast, traditional linear detectors
such as the zero forcing (ZF) detector and the minimum
mean squared error (MMSE) detector, have been proved to
be near-optimal with lower computational complexity, espe-
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ciallywhen theBS-to-user-antenna ratio (BUAR) is large [5].
However, such linear massiveMIMO detectors inevitably in-
volve the high-dimensional matrix inversion, which is com-
putationally expensive to implement in practice [6].

To design an efficient linear massive MIMO detector,
many efforts have been devoted to alleviating the compu-
tational burden of the exact matrix inversion, which can
be roughly divided into the explicit methods (requiring a
separate matrix inversion) and implicit methods (directly
calculating the transmitted vector) [7]–[9]. The major ad-
vantage of the implicit detection methods is the fact that they
require lower computational complexity than the explicit de-
tection methods. However, the linear detectors using the
explicit methods have the following advantages: (1) In the
time-division duplexing (TDD) massive MIMO systems, the
matrix inversion results obtained during the uplink transmis-
sion can be reused to perform precoding and beamforming
for the downlink. (2) In the slow-fading channels or the flat-
fading channels with low-delay spread, the inversion results
can be reused for the consecutive symbols and the adjacent
subcarriers. (3) Some specific calculations such as the LLR
computation and the rapid matrix updating modification re-
quire the separate matrix inversion [10]. Hence, we focus
on the study of the high-accuracy and low-complexity ex-
plicit methods. As one widely-employed explicit detection
method, Neumann series approximation (NSA) which ex-
pands the matrix inversion into the accumulation of matrix-
vector multiplications is proposed to reduce the complexity.
However, NSA converges slowly, and when its term is larger
than 2, the complexity may be higher than exact matrix in-
version [11]. Newton iteration (NI) and Chebyshev iteration
(CI) are proposed successively to accelerate convergence,
whereas their complexity is even higher [12].

As the mainstream algorithm of artificial intelligence
(AI), neural networks have been researched extensively due
to the massive parallel-processing nature, strong learning
ability, and efficient hardware implementation [13]. In addi-
tion, AI hardware accelerators have been developed rapidly,
which achieve higher processing speed and energy efficiency
compared with traditional processors such as CPUs and
GPUs [14]. Thus, deploying neural networks in AI hard-
ware accelerators using AI learning frameworks can be im-
plemented conveniently and cost-efficiently. During recent
decades, neural networks have been widely applied to the
physical layer of wireless communications [15], e.g. chan-
nel estimation [16] and signal detection [17]. Especially for
massiveMIMOdetection, [18] and [19] proposed themodel-
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driven deep neural networks (DNNs) constructed by unfold-
ing existing iterative algorithmswith some adjustable param-
eters to train for excellent detection performance. However,
they ignore the high computational complexity and the hard-
ware implementation difficulty. And the results may not be
effective in realistic environments with the offline training
and online working mode.

In this paper, we aim to fully leverage the advan-
tages of neural networks to design a high-accuracy and low-
complexity linear signal detector with explicit matrix inver-
sion for massive MIMO. A single-layer feedforward neural
network with improved Newton’s method is first proposed to
calculate pseudo-inverses of matrices, termed as the PINN.
Thenwemap the classical linearmassiveMIMOdetectors on
the PINN, which is the first work to combine the linear detec-
tion with the proposed neural network model to the authors’
best knowledge. Through the mapping, we can give full play
to the advantage and potential of both AI learning algorithms
and hardware accelerators for more efficient detectors. To
achieve a better trade-off between performance and complex-
ity, the limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) quasi-Newton method is further studied. Sim-
ulation results show that the proposed scheme can closely
approach to the exact MMSE accuracy with lower complex-
ity than the existing explicit linear detectors.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the system model and linear
detection. Section 3 presents the PINN with improved New-
ton’s method, the mapping scheme and the L-BFGS method
for PINNs. Numerical simulation is discussed in Sect. 4.
Section 5 concludes the entire paper.

Notations: The bold uppercase and lowercase denote
the matrix and vector, respectively. The conjugate trans-
pose, transpose, inverse, and pseudo-inverse of a matrix are
denoted by [·]H , [·]T , [·]−1, and [·]+, respectively. R and C
represent the set of real and complex numbers, respectively.
E{·}, <{·} and ={·} denote the expectation of a random
variable, the real and imaginary part of a complex argument,
respectively. CN (·, ·) represents the complex Gaussian dis-
tribution with the two arguments being the mean and covari-
ance matrix, respectively. ‖ · ‖2 and ‖ · ‖F denotes the 2-norm
of a vector and Frobenius norm of a matrix, respectively. For
any matrix A, Ai refers to the ith column of A, and ai j refers
to the (i, j)th entry of A. In denotes the n×n identity matrix.

2. Preliminaries

2.1 System Model

We consider an uplink massive MIMO system equipped
with Nr antennas at the BS, which simultaneously serves
Nt single-antenna UEs (Nr ≤ Nt ). The received signal
y ∈ CNr×1 is

y = Hs + n, (1)

where H ∈ CNr×Nt denotes the Rayleigh fading channel

matrix, whose entry is the independent and identically dis-
tributed (i.i.d) Gaussian random variable with zero mean
and unit variance. Without losing generality, we assume
H can be perfectly known at the BS. s ∈ CNt×1 denotes
the transmitted symbol vector with E

{
s sH

}
= INt /Nt .

n ∈ CNr×1 ∼ CN
(
0, σ2

n̄INr

)
denotes the additive white

Gaussian noise (AWGN) vector with σ2
n̄ being the average

noise power. The signal-to-noise ratio (SNR) in this circum-
stance is defined as 1/σ2

n̄ .
For convenience in subsequent discussion, given N =

2Nr and K = 2Nt , the complex-valued system model can

be converted to the real domain by y =
[
<{y}
={y}

]
∈ RN×1,

s =
[
<{s}
={s}

]
∈ RK×1, n =

[
<{n}
={n}

]
∈ RN×1, and

H =
[
<{H} −={H}
={H} <{H}

]
∈ RN×K .

Thus the real-valued model can be expressed as

y = Hs + n. (2)

2.2 Linear Detectors

The linear detector estimates the transmitted signal ŝ by mul-
tiplying the received signal y with a filter matrix G, which
can be expressed as

ŝ = Gy. (3)

Specifically, the ZF filter matrix can be written as

GZF =
(
HTH

)−1
HT . (4)

The ZF detector can eliminate the interference among the
received signals, but it suffers from the noise amplification
problem.

To address this problem, the noise item is included in
the MMSE filter matrix, which can be expressed as

GMMSE =
(
HTH + σ2

nIK
)−1

HT , (5)

where σ2
n = 1/2σ2

n̄ . The MMSE detector can achieve a
good trade-off between the noise amplification and inference
suppression.

As can be seen from (4) and (5), the linear detectors
require the matrix inversion with the exact computational
complexity being O

(
K3) .

3. Methodology

3.1 PINN Model

The structure of the PINN is shown in Fig. 1. Suppose
the input vector Xi = [x1i, x2i, · · · , xni]T , output vector Yi =
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Fig. 1 The structure of PINN.

[y1i, y2i, · · · , ymi]
T , andW is theweightmatrix, which is also

often written in the vector form w = [w11, w12, · · · , wmn]
T .

Set the activation function as the linear identity function,
and the threshold vector as the zero vector. The forward
propagation can be expressed as

Yi =WXi . (6)

Given a training set
{
(X1,D1) , . . . ,

(
Xp,Dp

)}
, where

Di is the expected output vector and p is the sample number.
The mean squared error is defined as the cost function:

C(W) =
1

2p

p∑
i=1
‖Di − Yi ‖2

2. (7)

It is well known that matrix inversion can be trans-
formed into an optimization problem as to minimize

C(W) = ‖I −WX‖F 2. (8)

And the optimal approximation W∗ is proved to be the
pseudo-inverse of X [20].

Referred to the PINN, we set the column vector of the
identity matrix Im as the desired output, and the column
vector ofX to be inversed as the input vector with the number
of columns being the number of samples. The cost function
can be expressed as

C(W) =
1

2m

m∑
i=1
‖Ii −WXi ‖2

2

=
1

2m
‖I −WX‖F 2.

(9)

Thus, we relate the calculation of pseudo-inverses to PINNs,
and X+ can be obtained from the converged weight matrix
W. The key to solve pseudo-inverse problems becomes the
training process of PINNs.

3.2 Training Strategy

Gradient descent (GD) method is often utilized as the learn-
ing algorithmof PINNs to train theweights [21]. Its updating
formula of w can be expressed as

w(k + 1) = w(k) − µ
∂C
∂w

, (10)

where µ is the step length, and k is the k-th iteration. The
advantage of the GD method is that it’s very simple in cal-
culations, only involving the multiplication and addition.
However, it converges slowly, which is unsuitable for the
real-time applications.

To overcome the shortcomings of the GDmethod, New-
ton’s method leverage the second-order information is inves-
tigated and improved as the learning algorithm of the PINN
for the first time in our work. The derivation and computa-
tion process of Newton’s method applied to the PINN will
be detailed below.

We define the error matrix E = D − Y, and the error
vector e = [e11, e12, · · · , emm]

T for the constructed PINN.
Thus the cost function can be calculated as

C(W) =
1

2m
eT ∗ e. (11)

Subsequently, the key step is to calculate Jacobian ma-
trix, and the calculation process is as below

J =



∂e11
∂w11

∂e11
∂w12

· · ·
∂e11
∂wmn

∂e12
∂w11

∂e12
∂w12

· · ·
∂e12
∂wmn

...
...

. . .
...

∂emm

∂w11
∂emm

∂w12
· · ·

∂emm

∂wmn


= −


XT . . . 0
...

. . .
...

0 · · · XT

mm×mn

.

(12)

It can be seen that Jacobian matrix can be directly ob-
tained from the input matrix X for PINNs without the com-
plex calculation and massive storage space.

In the following, we calculate the gradient.

g =
[

∂C
∂w11

∂C
∂w12

· · · ∂C
∂wmn

]T
=

1
m

JT e. (13)

To simplify the calculation, we rewrite the gradient in
the matrix form as

G =


∂C
∂w11

∂C
∂w12

· · · ∂C
∂w1n

∂C
∂w21

∂C
∂w22

· · · ∂C
∂w2n

...
...

. . .
...

∂C
∂wm1

∂C
∂wm2

· · · ∂C
∂wmn


= −

1
m

EXT .

(14)

Hessian matrix composed of the second-order partial
derivatives of a multivariate function can be calculated as

F =



∂2C
∂w11∂w11

∂2C
∂w11∂w12

· · · ∂2C
∂w11∂wmn

∂2C
∂w12∂w11

∂2C
∂w12∂w12

· · · ∂2C
∂w12∂wmn

...
...

. . .
...

∂2C
∂wmn∂w11

∂2C
∂wmn∂w12

· · · ∂2C
∂wmn∂wmn


=

1
m


XXT . . . 0
...

. . .
...

0 . . . XXT

mn×mn
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=
1
m

JTJ. (15)

We find out that Hessian matrix for PINNs can also
be obtained directly from X unlike the other cases where
Hessian matrix is particularly difficult to calculate.

Newton’s method is considered the most fundamental
in the second-order learning algorithms due to the fact that
many other efficient second-order algorithms can be derived
from it [22]. Its algebraic principle is to use Taylor expan-
sion to find the approximate solution. The weight updating
formula with Newton’s method can be expressed as

w(k + 1) = w(k) − F−1g. (16)

According to the previous calculation results above, (16) can
easily be calculated as

w(k + 1) = w(k) −
(
JTJ

)−1
JT e. (17)

Obviously, for PINNs, Newton’s method is identical to the
Gauss-Newton method [23].

Referring to (17), we improve Newton’s method from
two aspects. The first is to reduce the redundant computa-
tional complexity caused by the high-dimensional Jacobian
matrix J. In order to simplify the calculation, we modify the
updating formula of the weight vector to the matrix form,
and (17) can be deduced as

W(k + 1) =W(k) −G
(

1
m

XXT

)−1
. (18)

By further processing, (18) can be expressed as

W(k + 1) =W(k) + EXT
(
XXT

)−1
. (19)

This is an important achievement of our work and will
be analyzed in the sequel for different types of X.

Assuming that X is a nonsingular square or row full-
rank rectangular matrix, then H is the positive definite ma-
trix. Thus, the cost function is quadratic, and the constructed
PINN can achieve global convergence by one epoch with
Newton’s method.

If X is a column full-rank rectangular matrix, XT is row
full-rank, which can be set as the input matrix. Then (19)
can be changed to

W(k + 1) =W(k) + EX
(
XTX

)−1
. (20)

Its transpose can be written as

WT (k + 1) =WT (k) +
(
XTX

)−1
XTE. (21)

In the case of that X is rank deficient, H is the positive
semi-definite matrix. We need to further improve Newton’s
method by introducing a positive definite diagonal matrix to
guarantee the convergence, which can be expressed as:

W(k + 1) =W(k) + EXT
(
XXT + λI

)−1
, (22)

where λ is zero approached through positive real values. It
is similar to the Levenberg-Marquarelt algorithm in form,
except that λ is limited to a positive value close to zero
without adjustments [24].

To prove the convergence of the proposed PINN with
the improved Newton’s method, the theoretical solutions of
pseudo-inverses are presented by the below two lemmas [25].

Lemma 1: Suppose A ∈ Rm×n is full rank, i.e., rank(A) =
min{m,n}, AAT (m < n) or ATA(m > n) is nonsingular. If
rank(A) = m, A+ = AT (AAT )−1; if rank(A) = n, A+ =
(ATA)−1AT .

Lemma 2: For any matrix A ∈ Rm×n, A+ =

lim
λ→0

AT
(
AAT + λI

)−1.

Referring to (20), (21) and (22), if the initial weight ma-
trix W(0) is set to be zero matrix, the error matrix E will be
the identity matrix correspondingly. Then it’s obvious that
the converged weight matrix after one epoch is consistent
with the theoretical solution of the pseudo-inverse. This con-
clusion demonstrates the convergence of the proposed PINN
model and its correctness of calculating pseudo-inverses.

To sum up, the PINN with improved Newton’s method
can be used to calculate the pseudo-inverse for any type of
matrices. Moreover, its convergence speed is greatly ac-
celerated compared with the GD method, and its computa-
tional complexity is greatly reduced compared with New-
ton’s method.

3.3 Mapping Scheme

Based on the conclusion of the previous subsection, we can
map the linearMIMOdetection on the poposed PINNmodel.
Themapping scheme is shown in Fig. 2. The proposed PINN
works in training and inference stages, respectively. We
assume that the ideal channel matrix H and noise power σ2

n

can be estimated by the channel estimator as the input of the
PINN in the training process. The pseudo-inverse of HT can
be calculated using the PINN model. Initialize the weight
matrix to the zero matrix, and we can deduce the following
equations from (21) and (22):

WT =
(
HTH

)−1
HT , (23)

Fig. 2 The block diagram of the mapping scheme.
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WT =
(
HTH + λI

)−1
HT . (24)

Obviously, (23) is identical to the ZF filter matrix. As-
suming λ = σ2

n , (24) is consistent with the MMSE filter
matrix. After one epoch training, the convergent weight ma-
trix can be obtained. Then we deployed it as the weight
matrix in the inference process of the PINN. Finally, we take
the received signal y as the input vector, and the output vec-
tor is the estimation of the transmitted signal s, which can be
expressed as

ŝ =WTy. (25)

Up to now, we have mapped the ZF and MMSE linear
detectors on the proposed PINN model. The benefits of this
mapping scheme are significant: (1) Through the mapping,
the linear detectors can be easily deployed on the AI hard-
ware accelerator with higher processing speed and energy
efficiency, and the efficiency of the linear detectors in the
practical massive MIMO systems can be improved accord-
ingly. (2) We can make full use of the evolving learning
algorithms of neural networks so as to improve the detec-
tion algorithms. In order to avoid Hessian matrix inversion
in improved Newton’s method, the quasi-Newton method is
always applied [26].

3.4 L-BFGS Method

The essence of the quasi-Newton method is to construct a
symmetric positive definitematrix to approximate the inverse
of Hessian matrix for the lower complexity and efficient im-
plementation [27]. Thereinto, the BFGS method is regarded
as the most effective one, and the L-BFGS method is its
modification that only stores a certain number of correction
vector pairs for the approximate computation without stor-
ing the Hessian approximation explicitly [28]. Because of its
lower complexity and storage, the L-BFGS method is stud-
ied in this paper to further simplify the improved Newton’s
method.

The outline of the L-BFGS method used for the PINN
is summarized as follows:

Step 1: Initialize the initial point w(0), the threshold ε ,
the correction number l, the approximate Hessian inversion
B(0), the search direction d(0) and set k = 0;

Step 2: If ‖g(k)‖ ≤ ε , stop;
Step 3: Compute the exact step length such that µ =

arg min
µ>=0

f (w(k) + µd(k)), and obtain the new iteration w(k +

1) = w(k) + µd(k);
Step 4: Compute the new gradient g(k + 1) = JT e;
Step 5: Update the pair p(k) = w(k + 1) − w(k) and

q(k) = g(k + 1) − g(k);
Step 6: If k > l, discard the pair pk−l , qk−l from

memory storage;
Step 7: Compute the new search direction d(k + 1) =

−B(k + 1)g(k + 1) using Algorithm 1;
Step 8: k := k + 1 and go to Step 2.

Algorithm 1 L-BFGS two-loop recursion
Input: g(k + 1), p(i) and q(i), and ρ(i) = 1/

(
p(i)T q(i)

)
where i = k − l +

1, · · · , k;
1: d(k + 1) = −g(k + 1);
2: for i = k to k − l + 1 do
3: α(i) = ρ(i)p(i)T d(k + 1);
4: d(k + 1) = d(k + 1) − α(i)q(i);
5: end for
6: d(k + 1) = B(0)d(k + 1);
7: for i = k − l + 1 to k do
8: β = ρ(i)q(i)T d(k + 1);
9: d(k + 1) = d(k + 1) + p(i) (α(i) − β);
10: end for
Output: d(k + 1).

The two-loop recursive procedure of L-BFGS is pro-
posed to compute −B(k+1)g(k+1)without storing B(k+1)
explicitly, which is shown as below.

Since the L-BFGS method avoids the inverse operation
of Newton’s method and the large storage space required by
the BFGS method, it is computationally efficient, requiring
only about 4lnm operations (one multiplication and one ad-
dition) in the two-loop recursion. In addition, we should
point out that we have proved in our previous work that l = 1
and µ = 1 are feasible for the linear detectors [29].

4. Simulation Results

4.1 PINN Convergence Performance

In order to illustrate the convergence performance of the
proposed PINN model, we compare the convergence speed
and accuracy of theGDmethod, BFGSmethod andNewton’s
method by calculating the inverse matrix of a nonsingular
matrix A ∈ R4×4. For fairness and ease of illustration,
MATLAB neural network toolbox is used here to simulate
the proposed PINN with some specific settings [30].

The convergence behaviors are shown in Fig. 3. We set
the goal of the mean squared error being 10−10. It can be
observed thatNewton’smethod can achieve the best accuracy
with the least number of epochs. Although the computational
complexity of the GDmethod is the lowest for each epoch, it
leads to the largest number of epochs and the worst accuracy.
BFGS method is a compromise between the GDmethod and
Newton’s method in terms of the computational complexity
and convergence performance.

To further compare the computational complexity of
the GD method and improved Newton’s method, we employ
the multiplication operation that dominates the overall com-
plexity to make a rough estimate. For the GD method, the
required number of multiplication operations ism2n+mn per
epoch, i.e., its computational complexity is O(k(m2n+mn)),
where n × m is the dimension of the matrix to be inversed
and k is the epoch number. Accordingly, improved Newton’s
method has a computational complexity of O((m + n)2n),
since its epoch number is 1. We simulate the inversion of
randomly generated matrices with 4, 8, 16 dimensions under
the goal accuracy 10−3 to compare the epoch number and
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Fig. 3 Comparison of the convergence performance of different learning algorithms in a simple
example.

Table 1 Comparison of the epoch number.
Dimension GD Method Proposed Method

4 × 4 1448 1
8 × 8 5148 1

16 × 16 23279 1

runtime of the two algorithms.
As can be seen in Table 1, the GD method converges

much more slowly than the improved Newton’s method. The
epoch number of the GD method increases rapidly with the
increase ofmatrix scales, while it is always 1 for the proposed
Newton’s method. Since k is much bigger than the matrix
scale in the simulation, we can conclude that the PINN with
improved Newton’s method has a lower total computational
cost than the GD-based neural network for matrix inversion.

4.2 PINN Detection Performance

We consider an uplink massive MIMO system with the BS
antennas Nr = 128 and UE antennas Nt = 128 under the
i.i.d. Rayleigh fading channel [31]. Fig. 4(a) and Fig. 4(b)
compare the symbol error rate (SER) performance of ZF,
MMSE, and the proposed PINN detectors under QPSK and
16QAM modulations. We can see that the detection perfor-
mance using the proposed PINN model is consistent with
that of the traditional linear detectors. In addition, results
also show the correctness of the PINN model in calculating
the pseudo-inverses of large-scale square matrices.

SER performance in the Nr = 128 and Nt = 64 antenna
configuration is also provided, which exhibits the channel-
hardening phenomenon and the validity of the proposed
PINN model to solve the rectangular matrix. As seen in
Fig. 4(c) and Fig. 4(d), the linear detectors achieve near-
optimal detection performance, and the performance dif-
ference between the ZF detector and MMSE detector de-
creases. The proposed PINN model can still achieve the
same detection performance with the traditional linear de-
tectors. Results also show the correctness of the PINNmodel
in calculating the pseudo-inverses of rectangular matrices.

Fig. 4 Detection performance comparison under different simulation
conditions.

Fig. 5 L-BFGS-PINN SER performance with different l.

4.3 L-BFGS-PINN Detection Performance

We now provide simulation results to verify the effectiveness
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Fig. 6 Detection performance comparison of the proposed method with existing methods under
16QAM modulation for different antenna configurations.

of the PINN based on the L-BFGS method (L-BFGS-PINN)
for MMSE detection, the performance of which is compared
to the conventional explicit detectionmethods (namely NSA,
NI, and CI) against different values of SNRs with Nr = 128
and Nt = 8 or 16 under 16QAM modulation. Cholesky
decomposition (CHD) method for the exact linear MMSE
detector is used as the baseline [32].

The effect of the correction vector pairs number l to be
stored in L-BFGS method on the detection performance is
first discussed. Fig. 5 shows the detection performance of
L-BFGS-PINN at l = 1 and l = 2 with different antenna
configurations under the fixed iteration number k = 2. It
can be seen that the L-BFGS-PINN based MMSE detector
achieves the identical performance at l = 1 and l = 2 and is
very close to the exact CHD based MMSE detector. Thus,
we set l = 1 in the subsequent performance simulations to
reduce complexity.

To verify the performance of the L-BFGS-PINN based
detector, we compare it to NSA, NI, CI based detectors.
Fig. 6 shows the SER performancewith the Nr = 128,Nt = 8
and Nr = 128,Nt = 16 antenna configurations, respectively.
It can be seen that the L-BFGS-PINN based detector is su-
perior to the NSA based detector in performance under all
simulation conditions. Although the NI based detector per-
forms as well as the proposed detector when BUAR is small,
it performs relatively poorly when BUAR is large. The con-
vergence of the CI based detector is the fast of all. For
Nr = 128,Nt = 8, the performance of the proposed detec-
tor is almost identical to the exact MMSE detector when its
number of iterations as low as 2. For Nr = 128,Nt = 16,
the performance of the proposed detector loses about 0.3dB
at SE R = 10−3 when the number of iterations is 2, and is
consistent with the performance of exact MMSE detector
when the number of iterations is up to 3.

We use the number of multiplications to evaluate the
computational complexity, and the comparison results are
shown in Fig. 7. It can be observed that when the NSA term
is larger than 2 and the iteration number k of NI and CI is
more than 1, their computational complexity is even higher

Fig. 7 Complexity comparison against the number of UEs.

than the CHD-based exact detector. For the proposed L-
BFGS-PINN based detector, its complexity is lower than the
CHD-based detector with k = 3 especially when the number
of UEs is large, and its cost is lower than the other classical
linear detectors. To sum up, the proposed PINN with the
L-BFGS method can adjust the performance and complexity
through the number of iterations for a better trade-off.

5. Conclusion

In this paper, we propose an efficient neural network to cal-
culate the pseudo-inverse for any type of matrices, i.e. the
PINN with the improved Newton’s method, which performs
better than that with the GDmethod in terms of convergence
and complexity. Then linear massive MIMO detectors are
mapped on the proposed PINN, which can give full play to
the advantage and potential of AI learning algorithms and ac-
celerators. To solve the Hessian matrix inversion involved in
the improved Newton’s method, L-BFGS method is further
adopted as the learning algorithm of the PINN with reduced
complexity. In our future work, we will design the efficient
hardware correspondingly.
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