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SUMMARY In this paper, starting from the algorithm, a performance-
and energy-efficient 3D structure or shape of the Tensor Processing En-
gine (TPE) for CNN acceleration is systematically searched and evaluated.
An optimal accelerator’s shape maximizes the number of concurrent MAC
operations per clock cycle while minimizes the number of redundant op-
erations. The proposed 3D vector-parallel TPE architecture with an opti-
mal shape can be very efficiently used for considerable CNN acceleration.
Due to implemented support of inter-block image data independency, it is
possible to use multiple of such TPEs for the additional CNN accelera-
tion. Moreover, it is shown that the proposed TPE can also be uniformly
used for acceleration of the different CNN models such as VGG, ResNet,
YOLO, and SSD. We also demonstrate that our theoretical efficiency anal-
ysis is matched with the result of a real implementation for an SSD model
to which a state-of-the-art channel pruning technique is applied.
key words: multi-channel convolution, tensor processing, vector-parallel
computing, data reusing, computing efficiency

1. Introduction

Deep neural networks (DNNs) have recently demonstrated
their extraordinary ability to make predictions on large
amounts of data with very high accuracy. A very popu-
lar class of DNNs, commonly used to analyze visual im-
agery, is multi-layer convolutional neural networks (CNNs)
where basic processing represents the layer-to-layer change-
able multi-channel 2D convolution. For some CNNs, this
type of convolution represents more than 90% of the total
workload [1]–[3]. Each such convolution requires a massive
execution of the same scalar multiply-accumulate (MAC)
operation on the multi-dimensional tensor data [4]. A na-
tive algorithm for multi-channel 2D convolution exhibits an
enormous concurrency of MAC operations, and therefore,
hardware accelerators with a big number of MAC units are
a natural solution to such computational requirements im-
posed by CNNs.

As soon as it was recognized that a multi-channel 2D
convolution used in CNN can be effectively converted to
the general matrix-by-matrix multiply-add (GEMM) [5]–
[7], the previously well-known systolic array processing
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(SAP) [8], [9] began to be widely used in designing CNN
accelerators. For example, Google, in a few generations
of Tensor Processing Units (TPUs) [10]–[13], has used the
sizeable systolic array architectures to greatly accelerate
convolution operations. These accelerators can be effi-
ciently used in various stages of the machine learning:
whether in training or inference, on edge devices or on the
cloud [14].

The main advantages of SAP, which are favorable to
VLSI systems [15], [16], can be listed as follows: (1) ho-
mogeneity and simplicity of processing elements (PEs) to
implement MAC operation; (2) a structural regularity and
planarity of processing; (3) a locality of mesh-like PEs in-
terconnect; (4) a deep data reuse by data flows across the
array processor which drastically reduces the number of ex-
pensive memory references.

However, despite these beneficial factors, SAP has sub-
stantial disadvantages which may limit a practical usage for
some applications. Some of these disadvantages are: (1) rel-
atively big latency due to pipelining of processing via data
streaming through the array of simple PEs (the latency is
proportional to the size of systolic array); (2) even if all 2D
data are available and ready for processing, e.g., all pixels
in an image, such matrix data should be pre-arranged and
loaded vector-by-vector through peripheral PEs into a pla-
nar systolic array. To reduce a relatively big startup latency
of systolic array processing, but keep the same through-
put of computing, i.e., keep the same number of concurrent
MAC operations per clock cycle, Google has changed the
size and number of the systolic-based Matrix Multiply Units
(MXUs) in the different generations of TPUs from a single
huge 256 × 256 array of 8-bit MAC units [10] in the TPUv1
to the four smaller 128 × 128 arrays of MXUs per chip in
the two latest TPU versions [13], [46]. Note that pipelin-
ing of vector-by-vector distribution in a planar systolic array
processor has been replaced with a vector-by-vector broad-
cast [17], [18] in the non-systolic Tesla’s Full-Self-Driving
(FSD) chip which totally eliminate the startup latency and
mesh-like interconnect of systolic processing [3], [19].

In this paper we are going to eliminate or reduce the
SAP disadvantages while keeping the main advantages by,
firstly, assuming that all data are available for computing
and, secondly, data are reused inside array processor not by
streaming across PEs but by circulation amongst PEs such
that all resulting data remains inside an array processor and
ready for the further computing and reusing. Moreover, we
will demonstrate the preferences of CNN acceleration by
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Fig. 1 The data used in the multi-channel 2D convolution (a) and an execution program (b) which
keeps an inherent in Eq. (1) 3-D (M × R ×C) MAC-concurrency for the given convolutional layer.

using not GEMM-based planar approach, but by direct 3D
implementation of a multi-channel 2D convolution which
does not require data rearrangement. Another our target is
to find an optimal single structure or 3D shape of CNN ac-
celerator which maximizes the number of concurrent MAC
results per clock cycle while minimizing the number of re-
dundant MAC operations when implementing all layer-by-
layer multi-channel convolutions for any given CNN model.

2. Multi-Channel 2D Convolution

2.1 General Equation and Operational Concurrency

A multi-channel 2D convolution can be defined for each out-
put element by the following output-centric [20] equation:

∀(m, r, c) ∈ {1 : M} × {1 : R} × {1 : C} :

Ym,r,c =

{1:N}∑
n∈

{1:K}∑
i∈

{1:K}∑
j∈

Xn,r+i,c+ j ·Wn,m,i, j + bm, (1)

where YM×R×C is a 3-dimensional (3D) tensor of output fea-
ture maps (OFMs), XN×R×C is a 3D tensor of input feature
maps (IFMs), WN×M×K×K is a 4D tensor of given parameters
or learned filter coefficients (weights), bM is a 1D vector of
biases, N and M are the number of input and output chan-
nels, respectively, and the filter window size is K × K. Note
that the order of summations in Eq. (1) is not explicitly de-
fined, i.e., any order is permissible.

The data used in the multi-channel 2D convolution are
shown schematically in Fig. 1(a) where the spatial sizes of
input and output feature maps are usually making equal by
proper zero padding of IFM. The size of padding is com-
puted as p = (K − 1)/2. Note that for each CONV layer
the input OFMs Yin should initially be equal to either a zero

tensor or populated by a bias tensor for the first layer or an
OFM tensor from the previous layer to implement a possi-
ble residual operation or short-cut connection [21], [22] (see
Fig. 1(a)).

The ∀-quantifier “for each” in Eq. (1) clearly shows in-
dependent element-wise computing of the OFM Yout where
each output Y(m, r, c)-element requires exactly K2N scalar
multiply-accumulate (MAC) operations in the form of y ←
x · w + y. Obviously, the total number of these MAC op-
erations to compute Eq. (1) is K2NMRC and if each MAC
operation can be executed in a single time-step or clock cy-
cle then Eq. (1) can be computed sequentially element-by-
element in K2NMRC time-steps.

Each MAC operation requires three-read/one-write
memory accesses to deliver three operands to the MAC unit
and return resulting operand to the memory. This required
data movement from/to four-ported memory is considered
to be the most expensive part of MAC operation in terms of
the latency and energy consumption [13], [23], [24]. A well-
known technique to diminish this problem is a deep data
reusing in each level of memory hierarchy (the main mem-
ory, caches, register files) and between MAC units (like in
systolic array processors).

Note that the total number of involved data elements,
i.e., the IFM, filter coefficients and initial OFM is RCN +
K2NM + RCM, i.e., the MAC intensity or the average num-
ber of concurrent MACs per a single three-operand data
access can be estimated as a ratio ⌈(K2NMRC)/(RCN +
K2NM + RCM)⌉. The MAC intensity can also be inter-
preted as degree of single operand reusing. For example,
the MAC intensity K2NMRC/RCN = K2M shows that each
IFM-element x(n, r, c) after reading from the memory can be
reused in K2M different MAC operations while the MAC
intensity K2NMRC/K2NM = RC shows the number of
MAC operations which can reuse the same filter coefficient
w(n,m, i, j) ∈Win.



SEDUKHIN et al.: IN SEARCH OF THE PERFORMANCE- AND ENERGY-EFFICIENT CNN ACCELERATORS
211

The ∀-quantifier also demonstrates that potentially pos-
sible MAC concurrency is MRC. Therefore, a computing of
Eq. (1) can also be implemented in K2N time-steps with the
MRC intermediate MAC results per time-step. This poten-
tially possible 3D MAC concurrency consists of the spatial
(R × C) parallelism of pixels in the IFM and vector par-
allelism of M output channels. Computing of Eq. (1) can
be expressed in the form of holistic program (see Fig. 1(b))
which keeps an M × R × C scalar MAC concurrency inher-
ent in Eq. (1) on each time-sep and, therefore, shows how to
compute (1) in K2N time-steps.

3. Scalable Vector-Parallel Tensor Computing

The multi-channel 2D convolution (1) can be viewed as a set
of 2D convolutions for Multiple-Input and Multiple-Output
(MIMO) channels where each set consists of a nested sub-
set of 2D convolutions for Single-Input Multiple-Output
(SIMO) channels which, in turn, includes the lowest level
of a nested sub-sub-set of 2D convolutions for Single-Input
Single-Output (SISO) channels.

3.1 SISO Channels 2D Convolution

The SISO convolution is a standard 2D convolution of a
given image. For our case, it is specified as a 2D convolu-
tion of the IFM for n-th input channel, i.e., an (R×C)-matrix
Xn, with a 2D (K × K)-filter Wn,m, resulting in computing of
an (R×C)-matrix Ym for any n ∈ {1 : N} and m ∈ {1 : M}. It
is again assumed that an input matrix Xn is properly padded.

The 2D convolution can be viewed as the sum of the
point-wise (1 × 1) convolutions computed for each input
pixel in any order. The summation order can be common for
all the pixels in an image by massively-parallel moving or
sliding of the pixels across each other in a some predefined
sequence which ensures an involvement in the summation
of all needed pixels from the window-based area.

In terms of operational concurrency, this observation
allows to implement an independent updating of all out-
put pixels y() ∈ Ym by sequentially supplying the weighted
neighbor pixels x() ∈ Xn from the (K × K)-window to the
central to this window pixel x(O) which can be any input
pixel x() ∈ Xn as shown in Fig. 2(a). It can be effectively
implemented by cyclically † shifting or systolically rolling
the image along a Hamiltonian path which defines a neigh-
bor pixel-by-pixel delivery in some linear order [25], [26].
Note that it can be done either from the central pixel x(O)
all the way to the farthest in the window pixel x(SE) or, in
the opposite direction, from the pixel x(SE) to x(O).

Figure 2(a) demonstrates an example of the SISO
2D convolution for the filter size K = 3. The left
side of Fig. 2(a) shows in the red color a possible Hamil-
tonian path of shifting or rolling an image around any
pixel x(O) ∈ Xn covering all eight neighbor pixels, i.e.,
step-by-step shifting an image Xn in the directions of

†The IFM edge pixels should not be lost for further reusing.

Fig. 2 The data needed to implement a 2D convolution for the SISO (a)
and SIMO (b) channels.

O→E→N→W→W→S→S→E→E will provide for any lo-
cation of pixel x(O) delivery of all its neighbor pixels in
the order of x(W), x(SW), x(S), x(SE), x(E), x(NE), x(N),
x(NW). To correctly update every output pixel y() ←
x() ·w()+y() the corresponding filter coefficients w() ∈ Wn,m

should be broadcast to all shifted pixels x() in the opposite
order as it is shown in red on the right side of Fig. 2(a). This
SISO 2D convolution can be computed in K2 time-steps in-
dependently from the image size by using an (R × C)-array
of scalar MAC units with a torus interconnect for temporal
reusing operands x(). Each time-step consists of the same
processing pattern:

• Broadcast {scalar w()};
• Update {(R ×C)-matrix Ym = [y()]};
• Roll {(R ×C)-matrix Xn = [x()]}.

3.2 SIMO Channels 2D Convolution

It is clear from the Eq. (1) that an IFM for the same input
channel n ∈ {1 : N} is reused for all M output channels, i.e.,
the same (R × C)-matrix Xn is used for updating an output
(R×C×M)-tensor Y1:M . This updating requires to use also a
corresponding (K×K×M)-tensor of filter coefficients Wn,1:M

as shown in Fig. 2(b). This vector-parallel style of comput-
ing (1) is implemented on the (R × C)-array of M-element
vector MAC (VMAC) units with a torus interconnect. Such
organization allows to compute a SIMO 2D convolution in
also K2 time-steps while producing not planar RC, but vol-
ume of RCM intermediate MAC results per time-step [27].
Each of the RC VMAC units executes on each step a scalar-
by-vector multiply-add operation y⃗()← x()⊙w⃗()⊕ y⃗(). Each
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VMAC unit has, additionally to the scalar, M-element vec-
tor operand registers to store locally the broadcast vector w⃗
and updated vector y⃗. The same processing pattern with a
Hamiltonian’s path to select both the vector w⃗ and direction
of shifting a matrix Xn is used on each of K2 time-steps, i.e.,
processing pattern for the SIMO 2D convolution is

• Broadcast {M-vector w⃗};
• Update {(R ×C × M)-tensor Y1:M};
• Roll {(R ×C)-matrix Xn}.

3.3 MIMO Channels 2D Convolution

The SIMO 2D convolution can be naturally used to compute
the MIMO 2D convolution by iteratively updating an OFM
tensor Y1:M for all the input channels n ∈ {1 : N} [27]. For
every new input channel it can be done by keeping a previ-
ously computed output tensor Y1:M on the (R × C)-array of
vector registers y⃗() while changing an IFM matrix Xn and
use a corresponding tensor Wn,1:M to implement the next
SIMO convolution. Note that an order of the input channel
selection is not required to be fixed.

3.4 Block Convolution

The existing limitations of memory and computing re-
sources forced to divide the (R × R) IFM into an array of
(r × r) tiles, process each tile independently, and combine
partial solutions into the final (R× R) OFM †. However, im-
plementation of a kernel-wise convolution leads to an issue
in computing near the edges of the tiles due to inter-tile de-
pendencies. To address this, each individual tile should be
slightly overlapped or padded by providing supplementary
data at the boundary. The tile padding size is also setting as
p = (K − 1)/2. We call this padded tile of pixel data as a
block. A 3D [(r+2p)×(r+2p)×N] tensor of the IFM blocks
for all N input channels, which is called a pillar, provides all
needed data to compute a single (r × r)-tile of the OFM.

In terms of a tile padding, there are at least three possi-
ble methods: zero or constant padding, repeated or mirrored
padding and overlapped padding. Zero padding pads the
boundary pixels with zeros while repeated padding dupli-
cating the boundary pixels outwards based on the coherency
of the pixels in an image. For these two methods there is no
need neither explicitly pad each tile nor rearrange memory
pattern on hardware, because block padding can be merged
into process of convolution either by initialization or by ma-
nipulating memory addressing, which is a memory-efficient
approximation of original convolution [28].

The selected here overlapped padding is based on repli-
cation of the boundary pixels from the neighbor tiles such
that it solves the inter-tile data dependency problem. The
result of this block overlapped 2D convolution is exactly
the same as non-blocked convolution of the original image,
but requires additionally data rearrangement in the mem-
ory [29], [30].

†For simplicity, we assume R = C and r is the size of a tile.

4. Accelerator’s Architecture and Area-Time Analysis

4.1 A Generic Architecture of the TPE

An architecture of the accelerator can be directly obtained
from the above analysis of the block multi-channel 2D con-
volution. This analysis covers the algorithm’s complex-
ity, operational concurrency, different ways of data reusing,
blocking, etc. A generic architecture of the CONV acceler-
ator which we call the Tensor Processing Engine (TPE) is
shown in Fig. 3. The TPE is connected to the host computer
which implements other than CONV operations with low
data reusing like pooling, quantization, activation, data man-
agement, etc., in consideration of Amdahl’s Law to properly
support fast compute acceleration of the TPE.

The host connects to the TPE through a common off-
chip memory and, besides, the TPE has its own on-chip
memory to store blocks of the input and output data which
are needed to concurrently compute an (m × r × r) interme-
diate elements of the (M × R × R) OFM tensor data, where
the vector length m ∈ {1 : M} and the array size r ∈ {K : R}.

The on-chip distributed memory with a parallel
read/write data access is directly connected to the (r × r)-
array of Vector MAC (VMAC) units. Each VMAC unit has
the scalar and m-way vector register file (RF) to implement
scalar-by-vector MAC operation y⃗() ← x() · w⃗() + y⃗(). It
is clear that this architecture is based on the three levels of
memory hierarchy: off-chip memory, on-chip memory and
array of the RFs.

The scalar registers of the MAC array, storing initially a
block of x()-operands from the IFM Xin, are interconnected
by torus network (see Fig. 3 where wrap-around connections
are not shown for clarity). The m-element vector of weights
w⃗() is replicated by broadcast from the on-chip memory to
all the m-vector w⃗()-operand registers of the MAC array.
This global one-to-all network is shown in Fig. 3 in the red
color.

A vector-parallel computing of (m × r × r) interme-
diate elements of the (M × R × R) output tensor data di-
rectly follows an approach described in Sect. 3 which uses a
“broadcast-compute-roll” processing pattern on each time-
step. A proposed m-vector y⃗()-stationary approach is based
on an accumulation of m-partial sums (PSUM) inside each
VMAC unit (shown in Fig. 3 in the green color).

Fig. 3 A generic architecture of the Tensor Processing Engine.
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4.2 Computing of the OFM “Brick” and “Pillar”

It is clear that SIMO-computing of an (m× r× r) output data
for a single input channel n ∈ {1 : N} and m output channels
requires a planar [(r+K−1)× (r+K−1)]-block of the IFM,
an (m × K × K)-tensor of weights and, in general, an initial
(m × r × r)-tensor of the OFMs. As it was mentioned, an
initial (m×r×r)-tensor can be either the zero tensor or tensor
of biases or tensor of OFMs from the previous layer. We call
an (m × r × r) output data structure a brick and, in general,
many bricks are needed to compute a single pillar and many
pillars can be required, especially for initial CONV layers in
the CNN model, to complete computing of an OFM tensor.
This SIMO-computing of the m-channel output brick of data
for a single input channel is finished in K2 time-steps or
clock cycles.

To compute an output brick iteratively for all N input
channels in the K2N time-steps, i.e., to compute 2D con-
volution for the all input, but multiple output channels, the
whole [(r+K−1)×(r+K−1)×N]-pillar of the IFMs blocks
and (m × K × K × N)-tensor of weights are needed as it is
shown in Fig. 4(a). The next output brick in the same pillar
of OFMs can then be computed in any order.

It can be seen that the same input pillar of the IFMs
and all [N × M × (K × K)]-tensor of weights are needed
for computing an (M × r × r)-pillar of the OFMs for all in-
put and all output channels (see Fig. 4(b)). The K2N⌈M/m⌉
time-steps are required for a single output pillar and, totally,
K2N⌈M/m⌉⌈R/r⌉2 time-steps to finish computing a resulting
(M × R × R)-tensor of the OFMs. It is clear also that each
brick in the output pillar and each pillar in the output tensor
can be computed independently, i.e., in parallel. It can be
used for additional acceleration of CONV layer computing.

Fig. 4 Data needed for computing a brick (a) and a pillar (b) of OFMs.

4.3 Area-Time Analysis

It is possible now to make an Area-Time analysis of the pro-
posed direct computing of multi-channel 2D convolution (1)
and provide a quantitative comparison with computing of (1)
by a matrix-by-matrix multiplication.

4.3.1 Direct Vector-Parallel Computing

The total number of required MAC operations to compute
a single CONV layer is R2NK2M, which can be considered
equal to the number of time-steps in sequential (serial) com-
puting with a single MAC unit, i.e.,

T1 = R2NK2M (2)

time-steps are needed for computing a given CONV layer
under assumption that a single three-read-one-write MAC
operation is executed in one time-step or one clock cycle τ1.

On the other hand, as it was shown above, the number
of time-steps to compute a CONV layer on the TPE with the
shape of (m × r × r) is

Tmr2 = K2N⌈M/m⌉⌈R/r⌉2. (3)

Here, all the mr2 MAC results are computed in one clock
cycle τmr2 with a deep data reusing. More specifically, a
single m-element vector of weights w⃗() is reused spatially
by broadcast over an (r × r) array of VMAC units while all
elements x() of the input [(r+K −1)× (r+K −1)]-block are
reused temporally during K2 time-steps through data rolling
or cyclical shift across an array of VMAC units.

The speedup of a vector-parallel computing of CONV
layer on the TPE over a corresponding sequential execution
can be expressed as

S mr2 =
T1

Tmr2
=

M
⌈M/m⌉ ·

( R
⌈R/r⌉

)2
≤ mr2, (4)

with the efficiency of processing

Emr2 =
S mr2

mr2
≤ 1. (5)

Note that, in reality, due to memory overhead, a time-
step period or clock cycle for vector-parallel computing τmr2

can be perceptibly less than that of sequential computing τ1.
Moreover, for both of serial and parallel implementations,
due to the different cost of data accesses in memory hier-
archy [23] as well as different degrees of operation concur-
rency and data reusing, the clock periods of execution likely
to be dissimilar for various MAC operations. These are the
main reasons in discrepancy between the amount of MAC
operations and real speed of processing which has been no-
ticed in previous works [31], [32]. We, however, assume,
for the simplicity of comparison that all MAC operations
are similar and that τ1 = τmr2 .

Note also that although the number of MAC operations
does not directly translate to the CONV layer runtime [33], it
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Fig. 5 The 3D index space of a matrix-by-matrix multiply-add (a) and its corresponding linear pro-
jections onto a 2D array processor space along R2-edge (b), M-edge (c), and K2N-edge (d).

is indicative of the runtime and allows for comparing CNN
cost independent of hardware and associated software im-
plementation details [34].

4.3.2 Convolution via Systolic Matrix Multiplication

To use a so-called GEneral Matrix Multiplication (GEMM),
which is highly-optimized in software and hardware in
today high-performance computers, many deep learning
frameworks convert a multi-channel 2D convolution (1) to
this basic operation [6], [7], [31]. In this case, reshaping of
the output tensor YR×R×M into a matrix YR2×M can be done
as follows (see, e.g., [35])

Y(m, r, c) = Y(m, r + R(c − 1)).

Reshaping of the input tensor XR×R×N into a matrix XR2×K2N

is implemented as

X(n, r+i−1,c+ j−1)=X(r+R(c−1), i+K( j−1)+K2(n−1))

and, finally, reshaping the kernel tensor WK×K×N×M into a
matrix WK2N×M is done by

W(m, n, i, j) = W(m, i + K( j − 1) + K2(n − 1)).

Using these matrices, the multi-channel convolution (1) can
be computed as a matrix-by-matrix multiply-add

YR2×M = XR2×K2N ×WK2N×M + YR2×M , (6)

where, initially, a matrix YR2×M is either a zero matrix or an
output matrix from the previous layer.

The 3D index space of (6) as well as surrounding in-
put/output matrices are shown in Fig. 5(a). Because each in-
dex point in a 3D K2N×R2×M computational index space is
associated with a single MAC operation, the total number of
such operations to compute (6) is the same as for the direct
computing of (1). However, a matrix multiply-add approach
requires K2 more elements in an input matrix X, i.e., more
memory accesses would be needed.

The 2D array processors as the different sets of MAC

units as well as the initial data flows for matrices X,W and
Y can be formally obtained by linear projections of a 3D in-
dex space into a 2D processor space [16], [36]–[38]. Fig-
ures 5(b), (c), (d) demonstrate three such projections of a
given 3D index space along the R2-edge, M-edge, and K2N-
edge for the so-called weight-stationary, input-stationary,
and output-stationary variants of the planar array processors,
respectively.

For the systolic time-space scheduling of the MAC op-
erations and data movement inside the 3D index space, the
total number of time-steps or clock cycles to implement
computing (6) is equal to the length of a critical path, i.e.,
K2N + R2 + M − 2, which is preserved for all the 3D→2D
projections [39], [40]. However, the startup delay and com-
puting latency, measured also in the time-steps, will be dif-
ferent for the different projections. Indeed, for the weight-
stationary projection, a startup delay is K2N + M − 2 while
computing latency is R2; for the input-stationary, a startup
delay is R2 + K2N − 2 and computing delay is M; for the
output-stationary, a startup delay is R2 +M − 2 and comput-
ing latency is K2N.

The all three systolic array processors have the same
potential speedup of computing

S systolic = K2NR2M/(K2N + R2 + M − 2),

but different efficiency or utilization levels: R2/(K2N +R2 +

M−2) for the weight-stationary variant, M/(K2N+R2+M−
2) for the input-stationary, and K2N/(K2N +R2 +M − 2) for
the output-stationary variant. Note that our proposal also in
the case of unlimited parallelism has the potential speedup

S direct = MR2

and, therefore, it has the highest possible efficiency of 100%.
For the CNN VGG16 (see Table 1 below), Fig. 6 shows

the speedup (a) and efficiency (b) of the different systolic
and direct implementations of (1). As it can be seen, the
speedup of a direct computing is always higher than any sys-
tolic implementation, Fig. 6(a), while an efficiency is suf-
ficiently varied not only for the differently projected sys-
tolic arrays but also for the different CNN layers, Fig. 6(b).
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Fig. 6 Computing speedup (a) and efficiency of the direct and different systolic implementations (b).

Indeed, an efficiency of the weight-stationary systolic ar-
ray processor is changing from 99.8% for the first CONV
layer to 3.7% on the last three CONV layers, while for
the output-stationary array processor, an efficiency is varied
from 0.05% at the beginning to 86.7% at the end of process-
ing. The input-stationary variant never reaches a computing
efficiency higher than 10%.

Obviously, to keep a high efficiency of the systolic
VGG16 computing, it is possible to use a weight-stationary
systolic array processing from the beginning until the
conv3 3 layer and then switch to the output-stationary sys-
tolic processing. But even in this combined case, due to the
inherent startup delay, a systolic array processing will never
reach the highest possible efficiency of computing as in the
direct implementation.

4.4 Selection of TPE’s Shape for a Single CONV Layer

As it can be seen, the selection of a proper vector-parallel
(m × r × r)-shape of the 3D TPE for a single CONV layer is
crucial with respect to the achievable levels of performance
(shown as Eq. (4)) and data reusing (shown, partially, as an
efficiency). Figure 7 exhibits a solution space for selection
of the TPE’s shape for a single CONV layer. The three cases
are shown: (a) a serial implementation on the TPE with one
scalar MAC unit, i.e., when m = r = 1 (in the blue color);
(b) an extremely vector-parallel implementation when the
vector length m = M and the array size r = R (in the red
color); (c) a tiled vector-parallel implementation for the vec-
tor length m < M and the array size K ≤ r < R (in the green
color).

An area Ar,m of each rectangle with an (m×r×r) TPE’s
shape is proportional to the number of time-steps required
for this specific implementation of the CONV layer. Obvi-
ously, for the extreme cases (a) and (b) we have an equality
A1,1 = AR,M . However, for the case (c), due to a “ceiling”
function ⌈x⌉ = min{n ∈ Z|n ≥ x} = n in Eq. (4), an area
Ar,m may be greater than A1,1 = AR,M , i.e., the TPE with
this shape may compute a number of unnecessary or redun-
dant MAC operations. The number of these operations can
be estimated as A1,1 − Ar,m. The lower computing efficiency

Fig. 7 An area-time solution space of the scalable TPEs.

means that more of such unnecessary MAC operations are
executed.

It is important to note that if the “ceiling” functions ⌈x⌉
in Eq. (4) do not have remainders, concurrently for both x =
M/m∗ and x = R/r∗, the area of such tiled vector-parallel
implementation Ar∗,m∗ would be equal to A1,1 = AM,R. In
this case, the speedup of computing on the TPE with such
an (m∗ × r∗ × r∗)-shape is S m∗r2

∗
= m∗r2

∗ with the maximal
possible efficiency of computing Em∗r2

∗
= 1. Otherwise, the

TPE executes the redundant MAC operations which will af-
fect the speedup and efficiency.

Traditionally, the redundant MAC operations can be
masked and isolated from the main data processing path, but
it would require additional logic, control and energy con-
sumption †. A masking of the vector MAC operations is rel-
atively simple and straightforward, but its implementation
in the fixed VMAC array might not be trivial because this
array executes not only computing, but also supports data
reusing by cyclical data shift across locally interconnected
VMAC units.

4.5 Selection of a Single TPE’s Shape for All CONV Lay-
ers

The selection of a proper TPE’s shape becomes even more

†Including, e.g., a static energy of the masked MAC units.
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Table 1 CNN VGG16
Layer R N M K # MACs # Params
conv1 1 224 3 64 3 86,704,128 1,728
conv1 2 224 64 64 3 1,849,688,064 36,864
conv2 1 112 64 128 3 924,844,032 73,728
conv2 2 112 128 128 3 1,849,688,064 147,456
conv3 1 56 128 256 3 924,844,032 294,912
conv3 2 56 256 256 3 1,849,688,064 589,824
conv3 3 56 256 256 3 1,849,688,064 589,824
conv4 1 28 256 512 3 924,844,032 1,179,648
conv4 2 28 512 512 3 1,849,688,064 2,359,296
conv4 3 28 512 512 3 849,688,064 2,359,296
conv5 1 14 512 512 3 462,422,016 2,359,296
conv5 2 14 512 512 3 462,422,016 2,359,296
conv5 3 14 512 512 3 462,422,016 2,359,296
Total 15,346,630,656 14,710,464

complex under a run-time variety of the CONV layer sizes in
the same CNN model. In the existing state-of-the-art CNNs
all the CONV layer parameters {R,N,M,K} can be changed
from layer to layer and the number of such layers can be
from a few to many tens and even hundreds. In our case,
a dynamic vector length (m) and array size (r) adjustment
by the run-time TPE reconfiguration requires the additional
processing/memory logic, time and power which will affect
a computing efficiency. In existing CNNs the spatial dimen-
sion (R) is gradually shrunk while the channel dimension
(M) is expanded over layers, for example, from the initial
input data shape (224 × 224 × 3) to (14 × 14 × 512).

As an example, the parameters of each of the 13 con-
volutional layers in the VGG16 CNN as well as the total
number of required MAC operations and filter coefficients
are shown in Table 1.

4.5.1 Selection of the Optimal Array Size

The total number of MAC operations shows simultaneously
the total number of time-steps which are needed to execute
all the CONV layers on a computer with the single MAC
unit. This number can be evaluated as

T ∗1 =
L∑

l=1

T (l)
1 ,

where L is the total number of CONV layers (L = 13 in the
VGG16) and T (l)

1 = R2
(l)N(l)K2

(l)M(l) is a sequential or serial
time complexity of the layer l.

Now we can calculate the number of time-steps

T (l)
1,r = K2

(l)N(l)M(l)⌈R(l)/r⌉2

required for parallel, but not vector, execution of each layer
l ∈ {1, 2, ..., L} on the planar TPE with an (1 × r × r)-shape,
i.e., m = 1, for the all possible array sizes K ≤ r ≤ Rmax,
where Rmax = 224 for our case (see Table 1).

After that the total number of time-steps required for
execution of all CONV layers on the same planar TPE can
be computed as T ∗1,r =

∑L
l=1 T (l)

1,r. Then the speedup S ∗1,r =
T ∗1/T

∗
1,r ≤ r2 and efficiency E∗1,r = S ∗1,r/r

2 ≤ 1 are computed
also for the all possible array sizes K ≤ r ≤ Rmax. Finally,

Table 2 Vector length m∗ and array size r∗ for the different CNNs

CNN T ∗1 m∗ r∗ T ∗ S ∗ E∗

VGG16 [41] 15,346,630,656 64 14 1,223,424 12,544 1.00
128 14 688,896 22,277 0.89

VGG19 [1] 19,508,428,800 64 14 1,555,200 12,544 1.00
128 14 854,784 22,823 0.91

ResNet50 [21] 12,649,168,896 64 14 1,008,384 12,544 1.00
128 14 584,448 21,643 0.86

YOLOv3 [42] 7,415,529,472 32 8 3,620,864 2,048 1.00
64 8 1,966,080 3,911 0.92

SSD300 [2] 30,129,032,192 64 19 1,351,936 22,286 0.97
128 19 753,152 40,004 0.87

PCAS/SSD [43] 10,493,445,025 11 19 2,836,687 3,699 0.93
32 19 1,080,760 9,709 0.84

for this part, the optimal array size r∗ is selected for both
the efficiency of processing E∗1,r∗ = max∀r{E∗1,r} and time of
computing T ∗1,r∗ = min∀r{T ∗1,r}. It is clear from the Table 1
that for the VGG16, r∗ = 14 which is a greatest common
divisor (GCD) for all sizes R.

A presence of the GCD , 1 guarantees the maximal
possible efficiency of processing. But this selection is not so
obvious for the other CNNs, like SSD300 [2], which have
GCD = 1 for the input feature maps resized by pooling.
Note that selection of the bigger array size with, however,
less compute efficiency can be practically justified, e.g., it
can be shown that r = 28 with the efficiency of 0.79 can
also be selected for the VGG16 to further acceleration of
computing.

4.5.2 Selection of the Optimal Vector Length

After selection of the optimal array size r∗, a search of the
optimal vector length m∗ for the array (m × r∗ × r∗) is per-
formed for all different m. The number of time-steps re-
quired for processing a single CONV layer (l) is computed
as

T (l)
m,r∗ = K2

(l)N(l)⌈M(l)/m⌉⌈R(l)/r
∗⌉2.

Then the total number of time-steps required to process
all CONV layers in the given CNN computed as T ∗m,r∗ =∑L

l=1 T (l)
m,r∗ . The corresponding speedup S ∗m,r∗ = T ∗1/T

∗
m,r∗ ≤

m(r∗)2 and efficiency E∗m,r∗ = S ∗m,r∗/m(r∗)2 ≤ 1 for TPE with
an (m×r∗×r∗)-shape are calculated. Then, for this final part,
the optimal array size m∗ is selected for both the efficiency
of processing E∗m∗,r∗ = max∀m{E∗m,r} and time of computing
T ∗m∗,r∗ = min∀m{T ∗m,r}. For example, for the VGG16, as it can
be seen from the Table 2, the value m∗ = 64, which is a GCD
for all sizes of the output channels M, drastically increases
a MAC concurrency without any efficiency penalty.

Table 2 shows the parameters for a few popular CNNs
including the number of time-steps needed for serial CONV
layers execution T ∗1 , the optimal as well as suboptimal vec-
tor length m∗ and array size r∗, the number of time-steps T ∗

required for a vector-parallel processing on the TPE with an
(m∗ × r∗ × r∗)-shape, and the corresponding speedup S ∗ and
efficiency E∗. Note that to satisfy possible hardware limita-
tions, such as the size of VMAC array (r × r) and the vector
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length (m), it is feasible to scale a TPE’s shape not only up,
but also down while keeping a reasonable computing effi-
ciency of vector-parallel processing.

As it can be seen from the Table 2 there is the opti-
mal or suboptimal vector-parallel TPE shape which can be
very efficiently used for considerable acceleration of com-
puting all CNN layers. Moreover, due to an image inter-
block independency, it is possible to use a cluster of such
highly-efficient TPEs for the additional CNN acceleration.
Furthermore, the single TPE or cluster of TPEs can also be
utilized for efficient vector-parallel execution of the different
CNN models which are collectively used in some important
applications such as self-driving cars [3], [19].

5. Hardware Implementation

We implemented a CNN accelerator based on a single TPE
on Xilinx Kintex KU5P FPGA board and evaluated the per-
formance, power efficiency, and computational efficiency
for PCAS/SSD [43]. The block diagram of our CNN ac-
celerator is shown in Fig. 8. A TPE consists of r × r VMAC
units with mesh interconnect. Each VMAC is composed
of m scalar MAC units. Each edge VMAC unit has ad-
ditional registers to store halo elements. Moreover, it has
additional registers to avoid long wrap-around torus inter-
connect. In this implementation, we set r and m as 19 and
11, respectively, which are selected based on the analysis of
Table 2.

The bit widths of activations and weights are 4 bits and
2 bits, respectively, while the bit width of accumulation reg-
isters is 12 bits. We implemented four MAC units using
a DSP block of KU5P. These bit widths are determined by
the evaluation using all test images from the PASCAL VOC
2007 dataset. We investigated the accuracy degeneration
due to quantization and the overflow of each convolutional
layer computation of PCAS/SSD with 2 bits for weight, 4
bits for activation, and 12 bits for the accumulator. Table 3
shows the mean average precision (mAP) before and after
the application of quantization and PCAS. The overflow oc-
curred only in the conv6 layer of PCAS/SSD, and the num-
ber of times of overflow occurred in PCAS/SSD computing
was only three. The accuracy degradation after quantization
and channel reduction was 1.5%.

The Data Manager has Xin, Win, Yout, First-In-First-
Out (FIFO) for data transfer from/to an external mem-
ory via the Direct Memory Access (DMA) module with a
width of 512 bit. An Xin FIFO stores a block of the in-
put feature map data, and the word size of Xin FIFO is
(r + K − 1) × (r + K − 1) × 4, which is 1764 bits for K = 3
and r = 19. The Xin FIFO receives a pillar of an input
feature map with DMA read instruction. Until executing
FIFO Flush instruction, the pillar is reused inside the FIFO.
In other words, we can read the first channel of the pillar
after we read the last channel. Note that data reusing of
FIFO is realized by changing the address pointer of BRAM
to avoid redundant reads and writes. A Win FIFO stores pa-
rameter and the word size of Win FIFO is 2m = 22 bits. We

Fig. 8 Architecture of CNN Accelerator.

Table 3 Comparison between SSD300 and quantized PCAS/SSD.

Model Weight Activation Accumulation mAP
SSD300 float float float 72.5%
PCAS/SSD 2-bit int 4-bit uint 12-bit int 71.0%

place 24 Win FIFOs in parallel so that Win FIFOs can re-
ceive data from DMA every clock. The Win FIFOs receive
all parameters of a convolutional layer with DMA read in-
struction, which can reuse data as in Xin FIFO. Yout FIFO
is to store bricks of output feature maps calculated by TPE.

The micro controller unit (MCU) can execute DMA
data read/write, loop control, and TPE execution in parallel
based on the 32-bit instruction code. The TPE can reduce
the waiting time for data transfer and achieve high TPE uti-
lization by data reusing in Xin and Win FIFOs and parallel
execution of data transfer and computing. Our instruction
set consists of type-C, type-S, type-L, and type-H instruc-
tions. The type-C is for computing a multi-channel tensor
convolution. BRICKIS of type-C loads a channel of a pillar
of Xin FIFO, computes the convolution while broadcasting
m-vector of weights, and stores the brick to the Yout FIFO
iteratively. The type-S is for reading from and writing to
the DDR memory. SETST sets the address given in 20-bit
operand to address pointer specified by 3-bit operand, and
ADDST increments the specified address pointer by the value
given in 20-bit operand. STINR reads a pillar of the address
pointer from the DDR memory and pushes it to the speci-
fied FIFO. This pillar can be reused until the specified FIFO
is cleared by FLUSH instruction. Similarly, STOUT writes
a specified number of bricks of the specified FIFO to the
DDR memory. In type-L, LSET sets the value to the speci-
fied counter and LOOP decrements the specified counter and
goes n instructions back where n is given by 16-bit operand
if the specified counter is larger than zero. In type-H, HALT
stops the program counter until receiving an awake signal.
In Fig. 9, we show a code example for calculating convolu-
tion for a pillar. In this code example, NBP is the number of
bricks in an output pillar, NMP is the number of 4 KB mem-
ory blocks in an input pillar, NC is the number of channels,
KS is the kernel size, NMB is the number of 4 KB memory
blocks in a brick. This code executes 19·19·11·KS ·KS ·NC
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Fig. 9 Example of instruction codes for computing convolution for a pil-
lar of (19 × 19 × 11) · NBP.

Table 4 Implementation data

Device KU5P
CNN Model PCAS/SSD
LUT 120,035
FF 84,566
DSP 1,088
Max frequency [MHz] 183
Frequency [MHz] 180
Peak performance [GOPS] 1,430
Throughput [GOPS] 1,265
Power [W] 2.27
Power efficiency [GOPS/W] 629.5

MAC operations in almost KS · KS · NC clocks. Note that
STINR reads the next pillar from the DDR memory while
BRICKIS computes convolution for the current pillar. We
developed a compiler for the proposed hardware implemen-
tation. This compiler receives a neural network model that
are compressed and quantized by PCAS and generates in-
struction codes. Those codes with a nested loop are loaded
to the TPE’s instruction memory shown in Fig. 8.

The implementation result of our CNN accelerator is
shown in Table 4. The CNN Accelerator achieved a through-
put of 88.5% of the peak performance, which is close to the
optimal efficiency of PCAS explained in Sect. 4.5. More-
over, we achieved a power efficiency of 629.5 GOPS/W. We
also show the theoretical estimation and real efficiency for
each layer of PCAS/SSD in Fig. 10. The degeneration of
real efficiency compared with theoretical analysis is caused
by data transfer from/to external memory. However, the ef-
ficiency of our CNN accelerator is comparable with theo-
retical analysis in most layers. Because the data reusing
rate decreases in layers where the number of input chan-
nels is relatively small, the efficiency is decreased in such
layers. Moreover, the block sizes of conv9 1 to conv11 2
are 10 × 10 to 3 × 3. As a result, our TPE of 19 × 19 × 11
executes many redundant MAC operations for these layers.
Therefore, the efficiency of these layers is low. On the other
hand, we achieve high efficiency of 88.5% across all CONV
layers of PCAS/SSD.

We show the efficiency of other CNN accelerators in
Table 5. The efficiencies for the all versions of TPUs are
estimated by using the referenced Roofline models. As it

Fig. 10 Efficiency per layer for PCAS/SSD.

Table 5 MAC concurrency per clock cycle and efficiency of MAC array.

Accelerator MACs/cc Efficiency CNN Model Reference
Eyeriss 168 36% VGG-16 [44]
ConvAix 192 76% VGG-16 [45]
FSD 9,216 80% Inception-v4 [19]
TPUv1 65,536 11% / 22% CNN0 / CNN1 [12]
TPUv2 32,768 87% / 44% CNN0 / CNN1 [46]
TPUv3 65,536 65% / 25% CNN0 / CNN1 [46]

is mentioned in [12], CNN0 is AlphaZero, a reinforcement
learning algorithm with extensive use of CNNs, which mas-
tered the games chess, Go, and shogi while CNN1 is a
Google-internal model for image recognition. A relatively
low computational efficiency or utilization (33%) of the lat-
est Google’s TPU4i across the eight most utilized at Google
models is also mentioned in [13]. As it can be seen our im-
plementation and theoretical analysis of TPE demonstrate a
computational efficiency that is higher or comparable with
state-of-the-arts practical accelerators.

For the VGG16 model, the proposed accelerator with a
TPE of 19×19×11 achieves an efficiency of 71.0% while the
theoretical efficiency is 72.5%. Even though the TPE is not
optimized for the VGG16 model (see Table 2), it achieves
higher efficiency than Eyeriss. Also, it is comparable with
ConvAix, while the number of MACs/cc is much higher.
Moreover, if we select r and m optimized for VGG16, we
can achieve close to the maximum efficiency and perfor-
mance.

6. Conclusions and Future Work

The scalable algorithm and proper single shape 3D vector-
parallel architecture of the Tensor Processing Engine for
efficient layer-to-layer computing of the multi-channel 2D
convolutions are proposed and evaluated. An optimal accel-
erator’s shape maximizes the number of concurrent MAC
operations per clock cycle while minimizes the number of
redundant operations. The proposed 3D vector-parallel TPE
architecture with an optimal shape can be very efficiently
used for considerable acceleration of the CNN computing.
Due to supported inter-block image data independency, it is
possible to use multiple of such highly-efficient TPEs for the
additional computing acceleration.

It is important to note that our approach is based on the
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involvement in computing all ready for use data and, there-
fore, a very high memory bandwidth is required. However,
we can see a few possible scenarios to soften or even elimi-
nate this requirement.

Firstly, because of all major CNN models are computed
iteratively, layer-by-layer, i.e., an output data of one layer is
an input data for the next layer, it is possible to keep this data
inside an array processor without sending it to the memory
by implementing an output-stationary variant of computing
including the CNN layers fusion [47]. Moreover, this input
and output data are originally the 3D tensors and the pro-
posed 3D array processing keeps these tensors in a natural
order without destroying an integrity of data.

Secondly, an initial input of the practically big multi-
channel data from the image sensors, actuators, etc., affects
only the first CONV layer in a CNN model. A processing
of this layer might be tightly coupled with a tensor data ac-
quisition, e.g., by fusion of the array processor with a smart
or intelligent image sensor [48] which has a highly-parallel
pixels read-out [49].

And last but not least, a blocking of the input multi-
dimensional data tensor (see Sect. 3.4) divides a convolu-
tion problem into the set of totally independent subprob-
lems with the smaller size reflecting the hardware limita-
tions such as admissible operational concurrency, memory
size and bandwidth, I/O capabilities, etc. Computing of each
such subproblem can be efficiently overlapped with an in-
put/output of relatively small data tensors.

Note also that a possible extension of the proposed
vector-parallel computing to other less compute-intensive
types of CNN operations such as activation, pooling, quan-
tization and others, which are currently assumed to be exe-
cuted on the host computer, but can be effectively combined
and implemented inside a proposed VMAC array, are con-
sidered as a future work.
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