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ABSTRACT 
Face orientation can often indicate users’ intended interaction tar-
get. In this paper, we propose FaceOri, a novel face tracking tech-
nique based on acoustic ranging using earphones. FaceOri can 
leverage the speaker on a commodity device to emit an ultrasonic 
chirp, which is picked up by the set of microphones on the user’s 
earphone, and then processed to calculate the distance from each 
microphone to the device. These measurements are used to derive 
the user’s face orientation and distance with respect to the device. 
We conduct a ground truth comparison and user study to evaluate 
FaceOri’s performance. The results show that the system can de-
termine whether the user orients to the device at a 93.5% accuracy 
within a 1.5 meters range. Furthermore, FaceOri can continuously 
track user’s head orientation with a median absolute error of 10.9 
mm in the distance, 3.7◦ in yaw, and 5.8◦ in pitch. FaceOri can 
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allow for convenient hands-free control of devices and produce 
more intelligent context-aware interactions. 

CCS CONCEPTS 
• Human-centered computing → Interaction techniques; 
Sound-based input / output. 
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1 INTRODUCTION 
Earphones are one of the most ubiquitous wireless accessories. As 
a greater number of smartphones continue to drop the earphone 
jack, the popularity of these mobile audio devices continues to 
grow. With the earphones’ cord getting cut, the input microphone 
has now migrated from a placement inline with the cable to a 
position at each of the user’s ears. While most headsets leverage 
the microphone to take calls and, more recently, to enable the active 
noise cancellation (ANC) functionality, we fnd that this unique 
placement of these sensors can be used to unlock a wider range of 
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Figure 1: FaceOri tracks user’s face orientation towards the 
device with acoustic ranging using microphones in an ear-
phone. 

context-aware interactions when the earphone is transformed into 
a spatial input device via ultrasonic ranging. 

In particular, users tend to orient their heads toward their in-
tended interaction targets [49]. To recognize user interaction inten-
tion, researchers have leveraged eye-gaze or head tracking by using 
dedicated devices [12, 24] or by using an external camera [8, 10, 34]. 
These methods apply vision-based gaze or head tracking, which 
carry privacy concerns [22], and require the user to be in the feld 
of view of the front-facing camera. 

Enabling a device to detect this intention precisely and naturally 
can simplify user interface fow, enable hands-free interaction, and 
adapt interfaces to the context of use. For example, smartphones 
can detect users’ proximity and face orientation toward the device 
to turn on the screen and allow them to read their notifcations 
in a hand-free manner. Additionally, a system that can provide an 
accurate classifcation of whether a user’s head is oriented toward 
a specifc device. This device-specifc binary attention detector can 
be used to drive context-aware experiences. In this way, devices 
can adapt the layout and format of visual content based on whether 
the user is looking at them. Lastly, with continuous tracking of user 
proximity and face orientation, an additional set of applications in 
activity tracking, and head gesture recognition can be realized. 

We propose FaceOri, a novel interaction technique that lever-
ages the built-in set of microphones found in almost all modern 
active noise canceling (ANC) earphones to infer the user’s spatial 
location and head orientation with respect to a smartphone, laptop, 
smart speaker, or other devices with a built-in speaker. FaceOri 
works as follows: the computing device (e.g., a smartphone) emits 
an inaudible, ultrasonic sound from its speaker, and the embedded 
microphones on the earphone receive the sound. FaceOri calculates 
the time-of-arrival to estimate the distance from each microphone 
to the device even when the head occludes direct line-of-sight or 
introduces the Doppler efect. FaceOri uses these measurements 
to estimate 2-degree-of-freedom (DoF) face orientation — pitch 
and yaw — and 1-DoF distance measurement with respect to the 
device (Fig. 1). The user evaluation demonstrates 93.5% accuracy 
in binarized attention detection and dynamic continuous tracking 
performance to be 10.9 mm in distance, 3.7◦ in yaw, and 5.8◦ in 
pitch, which signifcantly outperforms the baseline acoustic rang-
ing method (CAT [32]: 42.0 mm, 11.0◦, and 11.6◦) on our collected 

dataset. These outputs enable a number of hands-free device in-
teractions, including convenient wake-up of the devices, attentive 
user interfaces, and ftness tracking. To our best knowledge, we 
are the frst to benchmark the head orientation tracking perfor-
mance with acoustic ranging methods using build-in microphones 
in commodity ANC earphones. In this paper, we ofer three main 
contributions: 

(1) A spatial input technique that applies ultrasonic ranging to 
enable continuous head orientation and distance tracking 
with respect to a device with a speaker using a built-in set 
of microphones in the commodity ANC earphone. 

(2) An end-to-end system characterization and user evaluation 
demonstrate FaceOri’s high dynamic performance in contin-
uous tracking and binarized attention detection. 

(3) An exploration of the application space aforded by Face-
Ori with prototypes of selected demonstrative experiences, 
showcasing the applicability of the proposed approach. 

2 RELATED WORK 
FaceOri employs acoustic ranging to track the earphone’s position 
relative to a device with a speaker (e.g., phone), enabling natural 
and precise face orientation based interactions. In this section, we 
frst position this paper with respect to the attentive user interface 
literature. We then review the related works on acoustic ranging 
with a focus on mobile systems. 

2.1 Attentive User Interfaces 
Attentive user interfaces have been proposed as a natural user in-
terface concept, sensitive to the user’s focus of attention [46, 53]. 
Gaze pointing, as one of the important input modalities, has tra-
ditionally used dedicated camera-based eye tracking technology 
to identify which object a person is looking at [12, 13, 24, 55]. Re-
searchers have explored gaze-aware solutions that enable users to 
start conversations with software agents [39, 47], select applica-
tions on computers [19, 43, 54], and control home appliances [31] 
by looking to the targets. However, these techniques require users 
to wear intrusive gaze trackers or environments to be instrumented 
with dedicated cameras limiting the ubiquity of these methods. 

Face orientation can also be used as a proxy for the user’s at-
tention [4, 16, 23, 39, 49, 50, 61, 62]. Therefore, prior research has 
explored tracking users’ face orientation to infer their focus to-
ward targets within graphical user interfaces [29, 44], user au-
thentication [27], smart home appliances [18, 20, 45], VR and AR 
targets [6, 11, 25, 62], wearable computing [7] and assistive in-
terfaces [30]. In industry, a number of diferent smartphone ap-
plications have been released that incorporate face tracking via 
the front-facing camera for experiences like Animoji, Memoji and 
face flters [3, 14, 48]. Recent works have adopted RGB [1, 8, 17] 
or depth camera [5, 34] to accurately track the user’s head pose 
or gaze. These methods apply vision-based gaze or head tracking 
which carry privacy concerns [22], and require the user to be in the 
feld of view of front-facing camera. As a result, they would be in-
compatible for devices without a camera, such as smartwatches [51] 
or smart speakers. 

There have also been related works on face orientation detection 
that use microphone arrays distributed around the room to predict 
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the direction of the user’s voice [2, 36, 37, 63]. Although these 
voice-based face orientation detection methods are wearable-free, 
they require users to speak to the targets. Instead, FaceOri can 
continuously track the user’s face orientation and relative distance 
without the requirement of speaking. Thus, FaceOri can beneft a 
wider range of interaction scenarios (e.g., working environment). 
Further, FaceOri has the potential to achieve a higher degrees of 
freedom and face orientation detection performance. 

2.2 Background on Acoustic Ranging 
Acoustic signals have been studied extensively for various tracking 
applications. Traditionally, acoustic tracking systems are based on 
the Doppler efect, which calculates the frequency shift to infer a 
moving object’s speed, and thus distance [15, 21]. AAMouse [64] 
uses the frequency shifts of transmitted signals to enable accurate 
device tracking and achieves a median error of 1.4 cm. Another 
set of acoustic tracking systems performs auto-correlation to de-
termine the travel time (and thus distance) between the speaker 
and the microphone [38, 40], achieving centimeter-level accuracy. 
Phase-based methods treat received signals as phase-modulated 
signals and analyze phase changes to obtain fne-grained distance 
information [57, 65], achieving a mean distance error of 1.3 cm in 
3D space. EarphoneTrack [9] adopts the speaker in the earphone 
as the transmitter for acoustic ranging. It utilizes the leakage sig-
nal from the earphone’s speaker to the microphone as a reference 
signal to calculate the distance from the earphone to the connected 
device. 

Most similar to our work, acoustic ranging via Frequency Modu-
lated Continuous Wave (FMCW) was proposed for high-precision 
distance estimation. CAT [32] proposes a distributed FMCW tech-
nique to accurately estimate the absolute distance between a trans-
mitter and a receiver. It further combines IMU measurements 
to achieve mm-level tracking performance. Based on CAT, Mil-
liSonic [56] utilizes the phase information in the demodulated 
FMCW signal to compute distances and further refne the tracking 
accuracy. The paper prototypes a 4-microphone array setup and 
achieves 2.6 mm median 3D tracking accuracy for smartphones. 
DroneTrack [33] applies MUltiple SIgnal Classifcation (MUSIC) for 
solving the multipath and strong noise issues, achieving 2-3 cm 
distance median error and 1◦-3◦ orientation median error. 

However, these acoustic ranging methods rely on a direct line-
of-sight (LOS) and low moving speed between the speaker and 
the microphone, limiting the applicability of the approaches to our 
face orientation application. In our scenario, the head occludes 
the direct path from the microphone to the device speaker, result-
ing in a severe non-LOS issue. Further, the quick head movement 
introduces a signifcant Doppler efect. These issues signifcantly 
damage the tracking performance. Inspired by advanced techniques 
in the FMCW radar research feld [28, 35, 58], we extended CAT [32] 
with optimization approaches, including adopting the triangular 
modulated chirp signal to reduce Doppler efect [35], and applying 
an advanced fltering method to increase the signal-to-noise-ratio 
(SNR) [28, 41, 58]. To our best knowledge, we are the frst to intro-
duce acoustic ranging for head orientation to a practical usage setup 
– commodity ANC earphone and a smart device and benchmark its 
performance. 

3 METHOD 
FaceOri tracks head distance and head orientation in relation to a 
device to feed smarter device interactions. To derive estimates for 
these values, a two-step process is followed. As Fig. 2A shows, a set 
of distance measurements from the device speaker to the earphone 
microphones are produced via FMCW acoustic ranging, requiring 
a low-efort calibration procedure (described below). Second, these 
distances are fed to a geometric model to continuously calculate the 
face orientation (both yaw and pitch) with respect to the speaker. 
Separately, to enable context-aware applications that only require 
information on whether the user’s face orients to the device or not 
(binarized attention detection), we employ a binary classifer on a set 
of acoustic features (Fig. 2B). Notably, binarized attention detection 
is calibration-free. We describe the methods and algorithms below. 

3.1 Acoustic Ranging Using FMCW 
3.1.1 CAT Acoustic Ranging. This section provides a brief review 
of the fundamental aspects of CAT [32] for our method. The speaker 
emits a chirp signal whose frequency changes linearly with time, 

Bf (t) = f0 + tT , where B is the frequency bandwidth and T is 
the sweep time. By integrating the frequency, we can express the 
transmitted signal in time domain as 2 yt (t) B = A0cos(2π f0t + π t ). T
After some time delay td , the microphone receives the signal as 

  2     B 2yr (t) = A1cos( π f0(t − td ) ± π (t − td ) ). By mixing the received T
signal with the transmitted signal and applying a low pass flter, 
we obtain following signal: 

A0A1 B B 2 ym = cos(2
2

π td t + 2π f0td − π t ) d (1)
 T T 

The time delay td can be calculated with the frequency and phase 
from the mixed signal ym . FMCW-based ranging methods with 
shared transmitter and receiver clock can directly calculate the peak 
at Bf d = tT d in the frequency domain. From the peak frequency d fp p ,
one can estimate the delay time and thus the distance. However, 
with a common problem of distributed FMCW systems [32, 33, 56], 
FaceOri has a separate transmitter (device speaker) and receiver 
(earphone microphone) with unsynchronized clocks. Therefore, 
FaceOri requires a calibration procedure to establish a reference 
position with the peak frequency of 0 f , and the detail is described p
in Sec.3.1.2. The distance between the speaker and microphone can 
be calculated with the following equation, where c is the speed of 
sound. 

d 0(f −p  f )Tp 
D = c (2) 

B 

3.1.2 Calibration. The calibration procedure is required for head 
tracking but not mandatory for binarized attention detection. Refer-
ring to MilliSonic [56], we require the user to place the left ANC 
microphone against the speaker with around a 2 mm gap for a 
couple of seconds (4 seconds are sufcient based on our evalua-
tion in Sec. 5.3.4). Therefore, FaceOri can 1) establish a reference 
position with the peak frequency of 0 f ; 2) perform an p approxima-
tion synchronization by correlating the received signals with the 
original one; 3) handle the continuous clock time drift between 
the transmitter and the receiver by applying the linear curve ft-
ting solution [32, 56]. We acknowledge that this procedure limits 
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Figure 2: FaceOri can enable continuous head position and 
orientation tracking (A) with FMCW-based acoustic ranging 
or binarized attention classifcation without calibration (B). 

the convenience of using FaceOri in the real-world application. 
Alternative calibration methods are discussed in Sec. 7.1. 

3.1.3 Optimizations for missing LOS and the Doppler efect. Related 
acoustic ranging works [9, 32, 56] assume that there is a direct 
propagation path from the speaker to the microphone. However, 
since the microphones are located on the side of the head in our 
scenarios, minimal shifts in the head can cause the microphones to 
be occluded from the device speaker. This loss of line-of-sight (LOS) 
signifcantly degrades the signal-to-noise ratio (SNR). It distorts the 
peaks (fpd ) in the frequency domain, resulting in multiple peaks or 
the direct path peak merging with anomalous nearby peaks. Further, 
the quick head motion can introduce a signifcant Doppler efect. 
These issues can signifcantly degrade the tracking performance. 
Therefore, we developed and applied optimizations to the existing 
method to better support our application scenarios. 

Inspired by advanced techniques in the FMCW radar research 
feld [28, 35, 58], we extended CAT [32] with optimization ap-
proaches to solve the non-LOS and Doppler efect issues. FaceOri 
adopts an inaudible triangular modulated chirp signal to reduce 
the Doppler efect. Our implementation adopted an up-chirp from 
17.5 kHz (f0) to 23.5 kHz (f1) followed by a down-chirp to 17.5 kHz 
with a total sweep time of 42.7 ms (2048/48000). FaceOri further 
averages the two parts of measurements at diferent edges of the 
triangular pattern [41]. Therefore, FaceOri can achieve a more ac-
curate distance estimation despite the frequency shift caused by 
the Doppler frequency, as prior works [35, 66] explained. To fur-
ther increase the SNR, FaceOri adopts a non-coherent integration 

method [28] by averaging the intermediate FFTs from a small set 
of recent frames (2 frames in our implementation). 

To get the correct peak corresponding to the direct path, we 
used the Constant False Alarm Rate (CFAR) adaptive thresholding 
algorithm [41, 59] on the FFT values of the mixed signal — ym . The 
algorithm combines the following heuristics: 1) an early and high 
peak that is closest to the previous peak is selected corresponding 
to the direct peak due to the continuous change in the distance; 2) 
when a sudden peak shift appear in one microphone channel but 
not the others, indicating a loss-track event, a fallback algorithm is 
utilized to predict the peak frequency from recent historical frames 
(5 frames in our implementation) through interpolation. 

3.2 Yaw and Pitch Estimation 
The FMCW-based acoustic ranging technique provides three dis-
tances between the speaker and the earphones’ three microphones. 
Two microphones used for active noise cancellation (ANC) sit at 
a similar elevation at the top of the earcup (see Fig. 4). A single 
speech microphone sits at a lower elevation on the right earcup. By 
comparing distances between the left and right ANC microphones 
from the speaker, yaw can be calculated. By comparing distances 
between the right ANC microphone and the speech microphone, 
the pitch can be calculated. 

Both the yaw and pitch angles of the face towards the speaker 
are calculated as angles between the face orientation vector and the 
vector from the center of the head to the speaker location. The mic-
speaker distances form triangles in the transverse (top view, see 
Fig. 3A) and sagittal (side view, see Fig. 3B) plane of the head. In each, 
the triangle’s altitude is aligned with the face orientation vector, and 
the triangle’s median is aligned with the vector between the head 
center and speaker. We refer to the distance from the speaker to the 
left ANC microphone as dl , the right ANC microphone as dr , and 
the right speech microphone as ds . The distance between the left 
and right ANC microphones is de , which can be measured manually 
or set by an average value across users. The distance between the 
right speech microphone and the right ANC microphone is db , a 
known quantity. To explain our method, we will detail how the 
yaw angle is calculated. A similar approach is employed for pitch 
estimation. 

The length of the median line (dm ) is calculated as: q 
2 + 2dr 2 − de 22dl 

dm = (3)
2 

and the angle between the median line and the base line of the 
triangle (α ) defnes yaw (φ) as follows: 

22 1 2dm + 2de − dr 
α = arccos( ) (4)

dmde 
φ = α − 90◦ (5) 

The same approach can be used to calculate pitch (θ ), by replacing 
the triangle formed by dr ,ds , and db with the one formed by dl ,dr , 
and de . Therefore, we can obtain both the yaw (φ) and pitch (θ ) 
angles of the user’s face towards the speaker. This is achieved by 
subtracting the current angle with the known initial angle (θ0), 
since the speech microphone is slightly skewed of in vertical from 
the right ANC microphone in the earphone design (Sec. 4). 
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Figure 3: FaceOri estimates face orientation towards the 
sound source by calculating the angle between the median 
line and the altitude line. 

3.3 Binarized Attention Detection 
FaceOri requires a calibration procedure for continuous face track-
ing. However, we present an alternative binarized attention clas-
sifcation method which detects whether the user is looking at 
the device without any calibration. This binarized detection can 
still be useful in various scenarios including attentive user inter-
faces [31, 39, 47]. As Fig.2B shows, we frst applied a bandpass flter 
with a frequency range of 17.5 kHz to 23.5 kHz to the audio signals 
from the three microphones. We evenly divided the frequency range 
into 20 bands. In each band, we can obtain the level diference (LD), 
which is the amplitude level ratio of audio signals from two micro-
phones. In total, we obtained 20 × 3 = 60 LD features among three 
microphones. We also adopted 3 time diference features between 
the microphones. Each time diference feature is the frequency gap 
between the peaks (fpd ) in the frequency domain of the mixed sig-
nals from two microphones. Using the 63 features (Fig. 2B), FaceOri 
can detect whether the user is looking at the device by training a 
binary classifer. In our implementation, we adopted the supported 
vector machine (SVM, RBF kernel, C = 1.0) as the binary classifer. 

4 IMPLEMENTATION 

4.1 FaceOri Hardware 
4.1.1 Headphone Prototype. Modern ANC earphones share a simi-
lar design in the microphone placement [42] as Fig. 4 shows. Two 
microphones are located at the top of the earcups for collecting 
environmental noises. A speech microphone or microphone array 
sits at a lower elevation on one earcup. We adopted MPOW H19 1 

for evaluation. Further, we demonstrated FaceOri’s applications 
using Hush earphone by 233621 2, Sony WF-1000XM3 3, and ANC 
earbud — Sony WH-1000XM3 4 without an extra speech micro-
phone. To obtain the high-resolution raw acoustic stream, we wired 
out two feed-forward ANC microphones and the speech micro-
phone with 3.5mm TRS plugins. The plugins were connected to a 
Zoom H6 5 audio interface via VXLR to a 3.5 mm audio adapter. 
Zoom H6 supports up to 6 synchronized channels of real-time au-
dio streaming through USB. Therefore, the audio signals from the 
three microphones on the earphone were streamed by the Zoom 
H6 to a Thinkpad X1 carbon laptop (CPU: i7-10710U, 6 cores, 1.1 
GHz, RAM: 16GB, Storage: 512GB), which ran the audio signal 
1https://www.xmpow.com/products/mpow-h19-hybrid-noise-cancelling-
headphones
2https://www.233621.com/
3https://www.sony.com.sg/electronics/truly-wireless/wf-1000xm3 
4https://www.sony.com.sg/electronics/headband-headphones/wh-1000xm3 
5https://zoomcorp.com/en/us/handheld-recorders/handheld-recorders/h6-audio-
recorder/ 

processing algorithms in real-time. The sampling rate and the bit 
depth were set to 48 kHz and 16 bits. To further compare FaceOri’s 
performance to the inertial measurement unit (IMU) based solu-
tion, we adopted the MPU-9250 6  IMU module, which has a 3-axis 
accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer. The 
data was streamed to the laptop with an Arduino Uno using the I2C 
protocol. The laptop read the IMU data with the same sampling rate 
— 23.4 frames per second (fps). To avoid the efect of the speaker 
magnet, we mounted the IMU module to the top of the earphone. 
Before each measurement, we calibrated the magnetometer inside 
the IMU by drawing the ∞ shape in the air. 

Figure 4: FaceOri’s earphone hardware has a commodity ear-
phone hardware (MPOW H19 for demonstration), an MPU-
9250 IMU, an audio interface, and a laptop to process the 
audio signal. 

4.1.2 Audio Transmiter. A common device with a speaker capable 
of generating inaudible ultrasonic sound (e.g., above 17 kHz) can be 
adopted as an audio transmitter. During our evaluation, a Samsung 
Galaxy S21 Ultra smartphone (256GB storage, 12GB RAM) with 
stereo speakers was adopted as the audio transmitter. Further, we 
demonstrated FaceOri’s applications using Thinkpad X1 Carbon 
laptop ( Intel i7-10710U CPU, 16G RAM, 512G storage), Mi Watch 
(8GB storage, 1GB RAM), and Huawei Matepad PRO (10.8 inches, 
256 GB storage). We generated a one-hour mono-channel audio 
fle with continuous triangular chirp signals modulated signals (see 
Sec. 3.1.3). Then, the transmitter played the audio fle from only 
one speaker using the HibyMusic 7 application, which supports the 
sampling rate and bit depth at 48 kHz and 16 bits, respectively. 

4.2 FaceOri Software 
We implemented FaceOri (see Sec. 3.1) using Python on the 
Thinkpad X1 Carbon laptop. As Fig. 5 shows, we used PyAudio 8 to 
read the triple-channel raw audio signal from the Zoom H6 audio 
interface. All the raw audio data was stored for further ofine analy-
sis. The calibration module was launched when the user clicked the 
calibration button on the user interface. To enable the continuous 
tracking, FaceOri requires two parameters to be calibrated that are 
(1) the distance between the two ANC microphones (de ) when the 
user wears the earphone (see Sec. 3.2), and (2) the reference origin 
for precise acoustic ranging (see Sec. 3.1.2). Then we pressed the 
Calibrate button on the launch user interface and keep the two 

6https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250/
7https://store.hiby.com/
8https://pypi.org/project/PyAudio/ 

https://8https://pypi.org/project/PyAudio
https://7https://store.hiby.com
https://6https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250
https://5https://zoomcorp.com/en/us/handheld-recorders/handheld-recorders/h6-audio
https://2https://www.233621.com
https://1https://www.xmpow.com/products/mpow-h19-hybrid-noise-cancelling
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devices still for a 10-seconds duration. Notably, 10 seconds are re-
dundant for later evaluation (Sec. 5.3.4). Once the "Start" button 
is pressed, FaceOri software displays the distance, yaw, and pitch 
values onto the launch user interface in real-time. Further, another 
interface poped up showing the measured distance curves with the 
three channels of the audio signal as Fig. 10C shows. 

Figure 5: FaceOri software’s key components. 

5 EVALUATION 
In this section, we describe the in-lab user evaluation study to 
benchmark FaceOri’s performance of distance, orientation tracking, 
and binarized attention detection when the user is at diferent 
positions in relation to the device. 

5.1 Participant and Apparatus 
We recruited 12 participants (7 females, 5 males) with an average 
age of 22.5 (SD = 3.4). Each had previously used earphones and 
smartphones. The experiment was conducted in a room with the 
size of 4 by 3 meters. To obtain the ground truth positions, we 
utilized the OptiTrack motion capture system (10 Prime 17 cameras) 
with its coordinate calibrated. The tracking markers were located 
at the phone’s front speaker, which was located next to the front 
camera, and each microphone location on the earphone. We used a 
Samsung Galaxy S21 Ultra smartphone as our sound transmitter 
and MPOW H19 earphone as our receiver in this evaluation study. 
A tripod with adjustable height was used to hold the phone at 
diferent heights. 

5.2 Experiment Design and Procedure 
Each participant was informed about the purpose and the proce-
dure of the experiment. An experimenter assisted each participant 

in putting on the earphone and then measured the approximate 
distance between the left and right ANC microphones with a ruler. 
The experimenter conducted the calibration by placing the smart-
phone’s speaker to the left ANC microphone of the earphone for 10 
seconds. To understand the efect of relative position on FaceOri’s 
distance and orientation tracking accuracy, we created a 3D grid 
of test positions in front of the smartphone. With the smartphone 
located at the origin (0,0) in the top view, three rows of grids were 
located at 50 cm, 100 cm, and 150 cm away from (0,0) in the y di-
rection. The three columns of grids were located at -50 cm, 0 cm, 
and 50 cm away from (0,0) in x . We chose the maximum tracking 
distance to be around 160 cm — (150, -50) or (150, 50) — because we 
targeted FaceOri’s usage scenarios within the range of a personal 
workspace. We tested three speaker heights: 80 cm, 120 cm, and 160 
cm away from the foor. The participant adjusted the seated chair’s 
height to a comfortable position. Therefore, the relative heights of 
the smartphone with respect to the earphone are diferent across 
the participants. During the user study, the lab noise levels ranged 
between 54.3 dBA to 62.7 dBA with a server running and people 
talking. 

Each participant fnished three head movement sessions at each 
3D grid point. Each head movement session consisted of 6 sub-
tasks: 1) look at the smartphone’s speaker for 5 seconds, called the 
neutral state; 2) move forward and backward for 3 times; 3) rotate 
the head in the yaw direction for 3 times to the maximum range 
and return to the neutral state; 4) tilt the head in the pitch direction 
for 3 times to the maximum range and then return to the neutral 
state; 5) draw the zigzag shape from top left to the bottom right 
with 2 folds; and 6) randomly move the head for 3 seconds. The 
order of the 2D grids was randomized under each height condition. 
We re-calibrated FaceOri when we collected the data at a diferent 
height. Therefore, we conducted three calibrations in total. Each 
participant received a 20 USD gift card for their efort and time (40 
minutes). 

5.3 Results 
Same as CAT [32] and MilliSonic [56], the deviation of FaceOri’s 
measurements (distance, yaw, and pitch) follow non-Gaussian dis-
tributions, the median absolute error (MedAE) is a better measure 
compared to the mean absolute error (MAE). Therefore, we re-
port FaceOri’s tracking performance using the MedAE and the 
interquartile range (IQR). Nonetheless, we also derive MAE in the 

Table 1: The tracking performance within 9 grids. Each value group A/B/C indicates performance when the smartphone is 
placed on the height of 80/120/160 cm. Distance (mm), Yaw (◦), Pitch (◦). 

Y/X -50 cm 0 cm 50 cm 
MedAE IQR MedAE IQR MedAE IQR 

50 cm 
Distance 
Yaw 
Pitch 

12.9/9.5/5.4 19.2/14.7/7.8 
4.7/4.9/2.0 7.8/8.2/2.6 
6.2/4.2/3.1 10.0/5.4/3.8 

7.9/4.1/3.4 13.9/8.1/6.3 
3.7/1.7/1.5 5.9/3.2/2.6 
8.9/3.4/2.8 15.9/6.0/4.5 

10.1/6.6/4.6 27.3/13.2/8.5 
5.7/3.9/2.0 11.9/8.0/3.5 
9.7/5.7/4.1 18.8/8.8/7.3 

100 cm 
Distance 
Yaw 
Pitch 

16.5/11.0/7.4 21.1/12.7/10.7 
3.7/3.0/2.3 6.4/4.0/3.6 
6.3/4.5/3.6 9.5/6.0/5.4 

14.6/12.4/9.2 22.8/14.6/12.5 
5.8/4.1/3.1 9.5/5.7/3.8 
6.7/6.6/4.9 12.5/9.1/6.7 

13.4/10.4/10.8 23.0/16.1/20.7 
4.8/4.9/3.9 11.7/7.0/8.5 
8.4/6.5/7.4 13.5/9.8/13.9 

150 cm 
Distance 
Yaw 
Pitch 

24.5/17.4/14.6 29.8/19.6/25.0 
4.7/3.7/4.0 10.8/6.4/6.7 
9.3/7.3/6.7 15.0/11.9/10.7 

19.4/11.2/10.6 55.1/17.7/22.3 
6.6/5.0/3.9 14.9/8.9/6.9 
9.8/8.3/6.3 15.1/12.2/10.3 

19.6/15.5/13.1 41.5/29.5/23.8 
5.5/6.6/4.5 12.0/13.4/11.5 
8.3/7.5/8.2 13.6/11.9/14.4 
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discussion to compare against camera-based methods [1, 52] in 
literature. The ground truth distance and orientation of a user’s 
face towards the device were calculated as described in Sec. 3.2 
using coordinates of the tracker attached to the microphones and 
the speaker in the OptiTrack system. We utilized Aligned Rank 
Transform Factorial ANOVA for within-subject non-parametric 
statistical analysis (p < 0.05) with Wilcoxon signed-rank test for 
post-hoc analysis (p < 0.05). 

We summarize results in Table 1. The table shows the MedAE 
and IQR of distance in millimeters, yaw in degrees, and pitch in 
degrees when the smartphone’s speaker was placed at the height 
of 80, 120, and 160 cm. Each cell of the 3 × 3 cell represents one 
grid during the experiment (see Sec. 5.2). 

5.3.1 Distance Tracking Accuracy. Results show that FaceOri can 
continuously track the distance from the user’s head to the smart-
phone with a MedAE of 10.9 mm and an IQR of 18.8 mm. Statistical 
analysis shows that there are signifcant efects of 2D location (grid) 
(F(8,253100) = 1260, p < 0.001) and height (F(2,253106) = 3115, p < 
0.001) on the distance tracking performance. Fig. 6 and post-hoc 
pairwise tests show that FaceOri can achieve a better distance 
tracking performance when the user is closer to the smartphone 
(p < 0.01) and in the center column of grids (p < 0.01). Results 
show that FaceOri can achieve the best performance when the 
smartphone was placed at height of 160 cm (p < 0.001). 
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Figure 6: The median absolute error (mm) of the distance 
at diferent relative positions (cm) between the smartphone 
and the earphone. 

5.3.2 Head Orientation Tracking Accuracy. Results show that Face-
Ori can continuously track the user’s head orientation with respect 
to the smartphone. The MedAE and IQR of the yaw angle were 3.7◦ 

and 6.8◦ and those of the pitch angle were 5.8◦ and 10.0◦. Results 
also show that the yaw range among all participants was from 
-81.1◦ (s.d. = 10.1) to 76.9◦ (s.d. = 9.1), the pitch range was from 
-87.8◦ (s.d. = 6.3) to 84.3◦ (s.d. = 9.9). The maximum, MedAE, and 
IQR of head orientation speed of the yaw angle were 250.9 ◦/s, 185.6 
◦/s, and 33.2 ◦/s and those of the pitch angle were 185.6 ◦/s, 13.6 ◦/s, 
and 44.1 ◦/s. These results can be helpful references for experience 
development. 

We further evaluated the efect of the relative position of the 
user’s head with respect to the smartphone on the orientation track-
ing performance. Statistical analysis shows that there are signifcant 
efects of 2D location (grid) on the yaw (F(8,234813) = 745, p < 0.001) 
and the pitch (F(8,226907) = 730, p < 0.001) tracking performance. 
Fig. 7 and post-hoc pairwise tests show that FaceOri can achieve 
a better tracking performance when the user is closer to the 
smartphone and in the center column of grids (p < 0.01) in gen-
eral. Further, there are signifcant efects of height on the yaw 

(F(2,234819) = 1056, p < 0.001) and the pitch tracking performance 
(F(2,226913) = 390, p < 0.001). Again, FaceOri can achieve a better 
performance when the smartphone was placed at height of 160 cm 
(p < 0.05) as compared to the other heights. Further, we observed a 
signifcant efect of the relative height (p < .01) of the earphone to 
the smartphone’s speaker but not the absolute sitting height of the 
participant (p = 0.07) on the tracking performance. 
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Figure 7: The median absolute errors of the yaw (left) and 
pitch (right) angles with diferent relative position (cm) be-
tween the smartphone and the earphone. 

5.3.3 Binarized Atention Classification Accuracy. Using the track-
ers on the smartphone, we labeled the smartphone’s margin as a rec-
tangle in the OptiTrack coordinate space. We regarded the ground 
truth of orienting to the device as the vector of the user’s head in-
tersecting with this rectangle. When evaluated on the performance 
through leave-one-out cross-user validation for the look-or-not bi-
nary classifcation, FaceOri can achieve an average classifcation 
accuracy of 93.5% across users ( s.d.= 2.5%). The calculation latency 
is within 42 ms. 

5.3.4 Efect of Setup Configuration. During the user study, the ex-
perimenter measured the distance between two ANC microphones 
(de in Fig. 3) manually. Results show that the mean absolute error 
of the measurement with a ruler is 3.4 mm against OptiTrack. But 
choosing which one from these two measuring methods has no 
signifcant efect (p = 0.33) on the yaw tracking performance. Fur-
ther, when setting de to an fxed distance of 235 mm (considering 
human’s head breadth 155 mm 9 + extra earcup depth 40 mm × 
2), FaceOri was still able to achieve a satisfying performance that 
the MedAE in yaw direction increases by only 1% without a sig-
nifcant diference (p = 0.1). Therefore, there is no evidence that it 
is necessary to manually measure the distance between two ANC 
microphones. 

We applied a redundant clock-sync calibration duration — 10 
seconds. Since we recorded all the data from the study, we reran 
our method with a 4-second calibration duration, resulting in only 
a 3% increment in the median absolute error across all angles and 
distances, adequate for a whole experiment session of 15 minutes. 

9https://en.wikipedia.org/wiki/Human_head 

https://9https://en.wikipedia.org/wiki/Human_head
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Our evaluation environment had a background noise from 54.3 
dBA to 62.7 dBA with a server running and people talking, indi-
cating the robustness of ultrasonic ranging against noise, which 
aligns with the result from MilliSonic [56]. 

5.3.5 Comparison with CAT Baseline Method. We evaluated the 
efectiveness of our optimization method mentioned in Sec. 3.1.3 to 
overcome the issues introduced by the head motion. We compared 
our method to the baseline CAT acoustic ranging method [32]. 
Results shows that our method (10.9 mm in distance, 3.7° in yaw, 
and 5.8° in pitch) signifcantly outperforms CAT (42.0 mm, 11.0° and 
11.6°) on our collected dataset (p < 0.001 for all cases). Here, we 
defne a dropped frame with the feature of a large distance ofset 
away from the ground truth (37.6 mm as our threshold - 2.0 × IQR). 
Fig. 8 shows the dropped frame rate along with the ground-truth 
yaw (left fgure) and the pitch (right fgure) angle. Results show 
that our method can efectively decrease the dropped frame rate 
with an average rate of 14.8% versus 52.8% (CAT method). Head 
rotation of a larger amplitude in yaw or pitch angles results in more 
dropped frames. This demonstrates that our method is more robust 
against the non-LOS and Doppler efect introduced by the head 
motion. Further, the large spread of the head orientation angle and 
speed also indicate FaceOri’s robustness against noises introduced 
by the head motions. 
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Figure 8: FaceOri has less dropped frames compared with 
CAT acoustic tracking method [32]. 

5.3.6 Comparison with IMU-Based Head Orientation Tracking Solu-
tions. To compare the performance of FaceOri and the IMU-based 
solution (MPU-9250 with Arduino code 10), we performed calibra-
tion to the IMU by aligning its initial yaw and pitch angle with 
the OptiTrack coordinate system. Results show that IMU-based 
solution can continuously track the user’s head orientation with 
a MedAE of 17.2◦ (IQR = 330.4) in yaw, and 4.9◦ (IQR = 10.8) in 
pitch. The pitch tracking performance is signifcantly better than 
FaceOri (p < 0.001). However, we observed signifcant yaw drift, a 
well-studied problem in IMU tracking [26], even with the reference 
calibration provided by the magnetometer. Therefore, the IMU-
based solution is insufcient for our applications, which require 
more accurate yaw estimation. 

There are additional functionality limitations regarding to the 
IMU-based solution. The IMU tracks it orientation relative to the 
inertial world reference frame rather than the mobile device refer-
ence frame as FaceOri does. Modern earphones with IMUs do not 
contain the magnetometer due to the speaker’s strong magnet. Fur-
ther, IMU cannot provide accurate absolute distance to the mobile 
device (>20 cm error with calibration [60]). 

5.3.7 Comparison with Camera-Based Head Orientation Tracking 
Solutions. To compare with camera-based solutions in the literature, 
we measure FaceOri’s performance with a mean absolute error of 
8.3◦ in yaw and 9.6◦ in pitch. This is comparable with cutting-edge 
RGB camera-based technique, which can track head orientation 
with MAE of 7.6◦ in both yaw and pitch [1]. Further, RGBD-based 
methods (ARKit) achieved higher performance — 1.8 mm in the 
distance, 0.9◦ in yaw, and 0.7◦ in pitch [52]. However, FaceOri has 
advantages in a wider feld of view, preserving visual privacy, and 
has the potential to support the interaction with devices without 
cameras (e.g., smartwatch). FaceOri can be complementary to the 
vision-based method regarding usage scenario, power consumption, 
and privacy, etc. 

5.3.8 Sensor Fusion of FaceOri and IMU. To further reduce the 
power consumption during real-world deployment, we can adopt a 
sensor fusion method by combining FaceOri and the IMU if avail-
able. FaceOri can calibrate the IMU every certain amount of time 
Tcal . Therefore, we can track the yaw and pitch angles with higher 
accuracy than the IMU-based solution but consume less power than 
the sole ultrasonic-ranging-based solution. Since the IMU already 
achieved a better tracking performance in pitch than FaceOri, we 
evaluated the sensor fusion method on the yaw angle. We ran the 
FaceOri for 0.5 seconds to establish an accurate yaw angle and dis-
tance. Then we tested the efect of Tcal (in second) on the tracking 
performance in yaw. Results show that the sensor fusion method 
can achieve a MedAE of 5.1◦ (IQR = 14.2◦), 7.0◦ (IQR = 20.0◦), and 
9.7◦ (IQR = 21.5◦) when Tcal = 1, 3, 5 seconds. 

6 APPLICATIONS 
FaceOri provides three outputs as a user interacts with a particular 
computing device: distance measurement, binarized attention detec-
tion, and continuous orientation tracking. These metrics can be used 
individually or in conjunction to enable and enhance applications. 

10https://github.com/hideakitai/MPU9250 

https://10https://github.com/hideakitai/MPU9250
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6.1 Activity and Gesture Sensing 
The head distance and orientation measurements can be used to 
analyze user activity or capture explicit user input. We prototyped 
an exercise smartwatch application that can count the number of 
exercise repetitions that a user performs by analyzing the periodic-
ity of the distance measurement provided by FaceOri (Fig. 9). We 
used the Sony WH-1000XM3 earbud as the receiver and the Mi 
Watch as the transmitter in this application. 

Figure 9: FaceOri can track and count the exercise activities 
with a smartwatch as the audio transmitter and an ANC ear-
bud as the receiver. (A) (B) User does push-ups. (C) The dis-
tances between two ears and the speaker when user does 
a push-up. (D) Confusion matrix of the four classifcations 
(push-up, body twist, touching shoulder, and bird dog). 

To evaluate the feasibility of FaceOri in activity recognition, we 
conducted a recognition evaluation for this application. Participants 
were asked to perform four activities: push-up, body twist, touch-
ing shoulder with contralateral hand (arm for abbreviation), and 
bird dog for 3 rounds with 5 repetitions per round. We manually 
segmented the dual-channel raw audio signal and aligned data to 
the length of 160 by interpolation. We chose 7 features for each 
frame: the distance between two microphones and smartwatch, 
the frst derivative of two distances, the level diference between 
two microphones, and whether the signals of two channels lose 
track. Using SVM (RBF kernel, C = 1.0) to classify each exercise 
activity, FaceOri can achieve an average accuracy of 90.9% using 
leave-one-out cross-user validation. 

The continuous orientation tracking metric could also be used to 
enable gesture input. By analyzing oscillations in pitch and yaw, 
"yes" and "no" head shake gestures can be recognized. Finally, con-
tinuous orientation tracking could drive a selector or pointer for 
accessible interfaces where a user may lack muscle control below 
the neck. 

6.2 Context-aware and Attentive User 
Interfaces 

Real-time data on user position can be used to drive smarter, more 
context-aware interfaces. Distance measurement can be used to lock 
a phone or laptop or dim the screen when the user moves beyond 

a certain distance threshold away from the device (Fig. 10). We 
implemented this example on a Thinkpad X1 Carbon laptop. The 
distance threshold was set to 1.5 meters. 

Figure 10: FaceOri dims the device when the user moves 
beyond a certain distance threshold away from the device. 
(A)(B) The User walks away from the laptop and the screen 
is dimmed. (C) FaceOri measures distances from the laptop 
speaker to the three microphones in the earphone. 

Binarized attention detection can help ease switching between 
multiple tasks or points of interest. For example, as a user follows 
a recipe video on their laptop, the video can automatically pause 
as the user turns to the stove or cutting board and resume when 
they return their attention to the screen. In Fig. 11, a user can 
provide input to their smartphone device even if they are otherwise 
preoccupied and unable to easily perform touch input. 

Figure 11: FaceOri can light up the smartphone and open to 
the message application when the user is unable to easily 
perform touch input. (A) The user is washing her hands. (B) 
When a message comes, (C) the user turns her head towards 
the phone to wake it up and then the detailed massage is 
displayed. (D) FaceOri measures distances from the smart-
phone speaker to the three microphones in the earphone. 

6.3 Attentive Detection from Multiple Devices 
FaceOri can be used to detect when users direct their intention 
toward a specifc device. By orienting toward a smart speaker, a 
user can issue a command without requiring a keyword. Finally, 
we prototype a demonstrative application that applies FaceOri’s 
binarized attention detection in a simple multi-device scenario. As 
a user looks between two laptops, the keyboard and the mouse 
pair automatically to the laptop that the user watches (Fig. 12). To 
implement this application, the devices share a central server and 
time-multiplex their transmitted chirps. 

We implemented the multi-device application on two Thinkpad 
X1 Carbon laptops. We used a third laptop as the proxy to 1) trans-
fer the mouse and keyboard inputs to the two Thinkpad laptops; 
2) run the FaceOri algorithm to recognize which device the user 
orients to. These three laptops were connected through WiFi. The 



CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Yuntao Wang, et al. 

Figure 12: The mouse and keyboard can pair to the device 
that the user faces towards automatically. (A)(B) The user 
switched her attention between two laptops. (C) FaceOri 
measures distances from each laptop speaker to the three 
microphones in the earphone. (D) The time-multiplex ap-
proach for the multi-device application. 

proxy coordinated the two Thinkpad laptops to let them emit the 
ultrasonic chirp signal alternately, 0.5 seconds for each. Therefore, 
the proxy knew which device was emitting the sound and then 
performed the binarized attention detection to detect which device 
the user orients to. The frst two seconds are skipped due to the 
delay of speakers and echoes. The time-multiplex approach caused 
a delay during recognition, but there was no evidence that it would 
infuence the tracking performance. 

7 DISCUSSION AND FUTURE WORK 
This paper proposes FaceOri, a novel end-to-end head position 
and orientation tracking system based on acoustic ranging using 
existing microphones in commodity earphones. Due to its high 
tracking performance, FaceOri can support a wide range of novel 
interaction applications. In this section, we discuss the fndings, 
limitations, and avenues for future work. 

7.1 Alternative Calibration Methods 
The biggest limitation of FaceOri is the requirement of calibra-
tion (Sec. 3.1.2). During our evaluation, to enable accurate contin-
uous acoustic ranging, FaceOri synchronizes the transmitter and 
receivers by holding one of the microphones to the speaker ev-
ery session. However, existing work found that the calibration is 
only required once in each battery circle [9]. Therefore, the per-
session calibration is not necessary. We would expect future work 
to validate a per-battery-circle calibration method. 

To make the calibration procedure more user friendly, future 
work could explore using the front-facing RGB or RGBD camera 

on a device (if available) to establish the reference point and syn-
chronize the clocks of the device and the wireless earphone. Fur-
ther, calibration can be completely side-stepped if the earphone 
is connected to the transmitter via Bluetooth 5.0 or other wire-
less channels method with time synchronization protocol; thus, a 
sufciently synchronized clock can be established. Future work 
can explore combining ultrasonic ranging with synchronization 
provided over these channels, avoiding calibration and additional 
complexity for drift compensation. A heuristic can be applied for a 
quick calibration procedure for applications that require absolute 
distance but do not need high accuracy. For example, the user can 
be instructed to hold their phone out at arm’s length, and the origin 
can be set by substituting the average human arm length. 

Notably, binarized attention detection requires no calibration 
and can be useful in various applications. Further, applications that 
use only a relative distance (such as the exercise application in Fig. 
9) do not necessarily require calibration. 

7.2 Deployment and Generalizability 
We developed and evaluated FaceOri using the existing hardware 
in commodity earphones and mobilephones. To clarify, our test 
hardware is a proof-of-concept to evaluate our end-to-end face 
orientation and distance tracking system. In our implementation, 
we wired the built-in ANC microphones to an of-board laptop to 
host the signal processing program. However, modern ANC ear-
phones have on-device processors. For instance, Sony 1000XM3 
has CSR8675 chip with DSP (120 MHz, 48kHz audio sampling rate) 
and MCU (80 MHz). We believe the proposed algorithms can be 
deployed on the micro-controller in the future for real-world appli-
cations. 

We evaluated FaceOri’s performance with only one type of ear-
phone and one type of smartphone. However, we observed that 
ANC earphones adopt a common design in microphone placement 
as the tested one. Further, many newer models of earphones pos-
sess an extensive array of distributed microphones (e.g., Apple 
AirPods Max and the Bose 700). These characteristics can further 
improve the performance and increase the degrees of freedom. We 
expect future work to investigate FaceOri’s generalizability across 
eardphone models. 

To further improve robustness and performance for real-world 
deployment, we would expect future work to further evaluate the 
efect of ambient noise on FaceOri’s performance in various mobile 
scenarios. Meanwhile, future work can explore a more compre-
hensive sensor fusion method using the absolute (in device-frame) 
orientation provided by FaceOri with the relative (with respect to 
an inertial reference frame) information provided by the IMU. 

7.3 Supporting Multiple Devices 
In section 6.2, we briefy demonstrated a possible time-multiplexed 
solution to support multiple audio transmission devices, allowing 
FaceOri to enable richer multi-device applications. However, this 
method assumes that all transmitters and the receivers can commu-
nicate via an additional channel (e.g., WiFi). We expect future work 
to explore other audio-only solutions to enable multiple device 
applications, for instance, using a frequency or phase-modulated 
chirp signal to provide unique device identifcation. Further, future 
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work can adopt existing wireless multi-transmitter communication 
methods such as frequency hopping or code-multiplexing. 

8 CONCLUSION 
In this work, we have presented FaceOri, a novel spatial input tech-
nique using ultrasonic ranging. FaceOri leverages the microphones 
found in typical active noise cancellation (ANC) earphones to glean 
user head proximity and orientation with respect to a computing 
device that emit an inaudible chirp from its speaker. Through a user 
study, we evaluated FaceOri’s performance for continuous head 
position and orientation tracking, and binarized attention detection. 
We explored and demonstrated how FaceOri can be used to capture 
user activity and gestural input, and enable more context-aware 
interactions. As the number and type of computing devices con-
tinue to proliferate, techniques like FaceOri can help to make our 
interaction experiences more human-centered. 
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