
1

Firmware over-the-air programming techniques
for IoT networks - A survey

Konstantinos Arakadakis, Pavlos Charalampidis, Antonis Makrogiannakis, Alexandros Fragkiadakis

Abstract—The devices forming the Internet-of-Things (IoT) networks need to be re-programmed over-the-air, so that new features are
added, software bugs or security vulnerabilities are resolved and their applications can be re-purposed. The limitations of IoT devices,
such as installation in locations with limited physical access, resource-constraint nature, large scale and high heterogeneity, should be
taken into consideration for designing an efficient and reliable pipeline for over-the-air programming (OTAP). In this work, we present a
survey of OTAP techniques, which can be applied to IoT networks. We highlight the main challenges and limitations of OTAP for IoT
devices and analyse the essential steps of firmware update process, along with different approaches and techniques that implement
them. In addition, we discuss schemes that focus on securing the OTAP process. Finally, we present a collection of state-of-the art
open-source and commercial platforms that integrate secure and reliable OTAP.

Index Terms—Internet-of-Things (IoT), over-the-air-programming, firmware update, code dissemination, delta scripts, firmware image
similarity, security.

F

1 INTRODUCTION

The Internet-of-Things (IoT) presents itself as an emerg-
ing technology, which is able to interconnect a massive
number of heterogeneous smart devices for supporting
complex data-driven applications in a variety of domains,
such as smart-cities, healthcare, industrial automation, etc.
The advances in micro-electromechanical systems that en-
abled the development of cheap sensors, the progress of
wireless communications in the field of Wireless Sensor
Networks (WSNs), as well as the growing market demand
for machine-to-machine interaction have been identified as
some of the key factors that led to the remarkable popularity
and adoption of the IoT technology [1].

It is common for the devices forming an IoT network
to operate unattended for long periods in variable envi-
ronmental conditions. Irrespective of the care taken during
the development phase, the IoT devices need frequently to
be re-programmed over-the-air (OTA), either for resolving
bugs or security vulnerabilities (identified after deploy-
ment) or supporting different features and/or applications.
Failing to do so may result in decreased network perfor-
mance, security breaches that could compromise the privacy
and safety of users, and in general undermine the long-
term sustainability of the IoT deployment. However, the
dynamic, heterogeneous and resource-constrained nature of
IoT networks should be taken carefully into consideration
for achieving a dependable and efficient OTA programming.

• K. Arakadakis, P. Charalampidis, A. Makrogiannakis and A. Fragkiadakis
are with the Institute of Computer Science, Foundation for Research
and Technology-Hellas (FORTH-ICS), Heraklion, Crete GR-70013,
Greece. K. Arakadakis is also with the Department of Computer
Science, University of Crete, Heraklion, Crete GR-70013, Greece.
Email: konarak@csd.uoc.gr; pcharala@ics.forth.gr;
makrog@ics.forth.gr; alfrag@ics.forth.gr.

• Corresponding Author: Alexandros Fragkiadakis

A fundamental characteristic of the IoT networks is
the dynamic changes of the network topology that can
happen either because of the energy depletion of nodes or
their inability to communicate with adjacent (neighboring)
nodes. Furthermore, the IoT devices that are used in such
applications are equipped with scarce resources, such as
limited memory, storage and processing power to keep the
cost and the battery consumption low. These characteristics
impose additional challenges on both the firmware design
the nodes run, as well as their update during the lifetime of
the network.

Regardless of the attention given during the develop-
ment period, software bugs can occur at any level of the
system and stage of the development cycle. As stated by in
[2], an unexpected combination of inputs that are received
by the nodes of a network, can stimulate untested firmware
branches resulting in unresponsive nodes that may degrade
Quality-of-Service (QoS) or even the integrity of the net-
work. Hence, firmware updates are often released to fix such
bugs and security breaches, introduce new functionality, or
even change the purpose of the application, completely.

The latter type of update is a common practice when
the behavior of the device needs to be altered dynamically
in par to changes of the environment and the available
storage is too restricted to accommodate multiple applica-
tion images. In the most common scenario however, the
updates introduce minimal modifications to the firmware
code, changing the implementation of a few functions or
reconfiguring the application parameters [3].

Traditionally, in order to update the nodes of a WSN
(being commonly at the core of an IoT system), maintenance
personnel had to be dispatched and access the nodes via a
serial port or other hardwired back channel. The problem
with this solution is that it is not scalable and requires a vast
amount of time, which may be intolerable when the update
includes fixes for security breaches and should be installed
by the motes as soon as possible. Furthermore, the physical

ar
X

iv
:2

00
9.

02
26

0v
2

 [
cs

.N
I]

 1
7

Se
p

20
20

2

access to the nodes may be impossible sometimes, since
they can be located in inaccessible areas (e.g. implanted into
asphalt roads), or implanted into human bodies as medical
sensors [4].

Due to the above limitations, in the early 2000’s the first
wireless update schemes for restricted embedded devices
were developed. These schemes required the firmware im-
age to be built at a base station, that would afterwards
transmit it in its entirety to the neighboring nodes over a
radio channel. Once a node had fully received the update,
it rebooted, the bootloader overwrote the contents of the
internal flash memory (program memory) with the new
image and started running the new firmware. A limitation
of these first wireless solutions [5], however, is that only
the nodes that were within the radio range of the base
station (over a single hop) were able to receive the update.
Nowadays, due to the large geographical scale of modern
IoT networks, multi-hop communication is a reality, and in
order to facilitate proper OTAP, new dissemination protocols
have been designed, whose goal is the reduction of the
energy consumption upon an update, avoiding redundant
transmissions and collisions that can degrade the quality of
the channel.

In addition, as the developers used to update the
firmware frequently, the approach of transmitting the entire
firmware image each time a new update had been released,
quickly became obsolete, as it seriously affected the lifetime
of these devices, which were supposed to run even for years.
This limitation, accompanied by the vast amount of time the
update of a network required [6], triggered the development
of the first incremental programming schemes. These schemes
avoid sending the whole firmware image every time a
new update has been released and just transmit commands
to the nodes, that instruct them how to reconstruct the
new firmware locally, utilising parts of the currently run
firmware, that each node has already stored in its flash
memory.

Thus, in order to update the modern IoT networks
incrementally, a base station should first create the new
firmware image and then the resulting delta script, com-
puting the common segments between the new and the
previous firmware versions. Afterwards, the delta script is
disseminated in the network, utilising a multi-hop protocol,
in order to reach all the nodes. Whereupon, each node
should interpret the received script, execute the commands
found inside, and reconstruct the new firmware locally.
Once this last step has been completed, the node can be
updated replacing the firmware it currently runs, with the
one it just reconstructed (loading phase). This process can
be visualized in Figure 1.

It must also be noted the importance of the security
during the update of the IoT devices. Since most of the
protocols that have been designed for this environment
aim the update image to reach a lot of the nodes of the
network (if not all of them), they follow a propagation
approach where each node just needs to receive a part of
the update and it forwards it to its neighbors. Although
this technique aids the fast update of the network, it raises
serious concerns regarding the security of the process. If
the nodes do not validate the authenticity of the updates

they receive, this could result into the installation of faulty
or malicious firmware in the nodes, originating either from
outsiders or already compromised network devices.

However, when a new update scheme is designed, the
limitations that bind these devices [7], due to their restricted
nature, should be taken into account. For example, actua-
tors and sensors are devices with low-power antennas and
limited transmission range, able to reach only a portion of
the other nodes in the network. Furthermore, these devices
are severely constrained in terms of computational power,
memory and storage [8]. These characteristics of theirs,
dramatically restrict the features that can be embedded into
the firmware image and the update mechanism itself [9].
In general, IoT OTAP is not a trivial task and poses many
challenges that can affect the quality and sustainability
of the network. The main challenges and limitations that
complicate the OTAP process and have been reported by
the literature are presented in Section 2.

In this survey, we have examined the main stages of the
wireless update process, mainly focusing on the severely
restricted IoT devices. For each such stage, we also present
major contributions that have been designed for this class
of devices, as well as the limitations and complications the
researchers of the had to overcome due to the restrictions of
these devices. In this way, one should be able to understand
the underlying motives of design decisions of the corre-
sponding scheme, setting the basic principles for designing
OTAP solutions.

We advocate that the division of the OTAP process we
have followed (found in Figure 1) is the most suitable, as it
presents the reasonable flow for updating the motes in an
incremental fashion. In contrast to this survey, most surveys
usually target a specific aspect of the OTAP process, neglect-
ing the other stages and their interconnection. For example,
the authors of [10], divided the update process in a similar
way to ours, but specifically targeted the dissemination
stage of the update, neglecting the delta generation and the
security aspects of the process.

Additionally, in [11] the authors have presented an ex-
tensive overview of many update dissemination protocols
for WSNs, as well as stand-alone update schemes. However,
they avoided presenting the internals of various schemes in
higher detail and they compared the protocols and schemes
using the same metrics. We believe that such a comparison
is not appropriate because most contributions introduce
novelties, concentrating on different aspects of the update
process and they are often supposed to be used as parts
of an update scheme. Thus, a more careful division and
comparison of them is required.

On the other hand, in [12] and [13], the security aspects
of the update process were discussed, providing valuable
information on how an adversary can exploit the epidemic
nature of the dissemination protocols to initiate attacks
(e.g. Denial-of-Service (DoS), install malicious code etc.).
Moreover, the authors have provided information about
the available cryptographic libraries that are suitable for
constrained devices as well as their memory footprint and
performance. However, this survey does not present any
actual contributions that have utilised these libraries to
ensure the authenticity and the integrity of the transmitted
data during the update.

3

In [14], a lot of security-oriented dissemination protocols
are presented along with some authentication and freshness
verification methods that have been used by the literature.
Finally, the authors in [15], focus on the key principles of
OTAP in IoT networks; however, limiting their contribution
in brief description of these principles, without presenting
and analysing specific research contributions in depth.

Although the surveys mentioned above provide valu-
able information for the insights of the wireless update
process in IoT networks, as well as the related literature, our
survey differs in several aspects. The main contributions of
this survey paper focus on OTAP techniques, proposed over
the period 1999-2020, and are as follows:

1) We perform a comprehensive organisation of the OTAP
process in the following steps:
• Preservation of the similarity of the two firmware

images;
• Computation of the delta script, using differencing

algorithms to detect common segments;
• Dissemination of the update to throughout the nodes

of the network.
2) We highlight the insights and challenges of each step, as

well as analyze extensively and compare contributions
related to each step.

3) We discuss the limitations of the restricted embedded
devices that must be taken into account when designing
a new update scheme.

4) We highlight the security aspects of the update process
and present contributions that ensure the integrity and
authenticity of the received firmware binary during the
dissemination stage.

5) We present and compare some state-of-art open-source
and commercial IoT platforms that integrate secure and
reliable OTAP support.

2 MAIN CHALLENGES AND LIMITATIONS FOR
OVER-THE-AIR PROGRAMMING

2.1 Limited memory, storage and processing power
Usually, IoT nodes are restricted embedded devices with
limited memory and storage size. Such nodes typically
feature a relatively low-cost internal NAND-based flash
memory [16], called program flash that accommodates both
the bootloader (piece of software responsible for writing the
new firmware code in memory) and the firmware code.
Moreover, there is an SRAM or DRAM for the storage
of the volatile data, including the heap, the stack, and
the global variables of the application. These sections are
mapped to predetermined RAM regions when the reset
handler executes [17], a purpose-specific code, whose goal
is to prepare the RAM and initialise the registers before
the actual application code starts running. Very often, the
available RAM in IoT devices is too limited to accommodate
the firmware code, so the flash memory is used for this
purpose, instead.

Furthermore, IoT nodes are often equipped with an
external non-volatile EEPROM for the storage of various
data, such as routing tables and other network-related data.
Moreover, many wireless update schemes use the EEPROMs
for the storage of rollback images (golden image) to provide
fail-safe updates.

Additionally, EEPROMs are also used by many OTAP
schemes [18], [19], [20] as a temporary storage for the update
image. In these schemes, when the image has been received
completely, the node copies the new firmware code from
EEPROM to the program flash and then starts executing
the new firmware. This strategy allows nodes to remain
operational while receiving the new firmware image. On
the other hand, other schemes (e.g. [21]) explicitly use the
program flash to store the new firmware along with the
currently running one (the flash memory is divided into two
equally size regions).

Finally, due to their low cost, IoT nodes typically feature
micro-controllers that operate at a lower frequency com-
pared to traditional CPUs [22]. Thus, if such a node executes
a complex algorithm that needs intensive processing (e.g.
RSA [23], AES [24]), the time overhead will be significantly
high, during which the node may be unable to perform any
other operations. To address this limitation, the research
community works towards lightweight algorithms in soft-
ware (e.g. [25]), as well as hardware-based acceleration of
cryptographic operations (e.g. [26]).

2.2 Flash memory degradation
Another challenge for the firmware update process is the
quality degradation of the flash memory, caused by the large
number of erase and write operations during an update.
Flash memories consist of erase units called blocks. Prior to
writing into a specific block, it must be erased; however, the
number of times a block can be erased is limited. Typically,
NAND-based flash memories offer at max 1 million flash
cycles, 10 times the life of a NOR-based memory [27]. When
the erase threshold of a block has been reached, it is marked
as a bad block and cannot be used in the future, thus limiting
the available storage.

In order to prolong the lifetime of flash memory, blocks
must be utilised with caution when a new firmware image
has to be stored, so one can achieve a uniform and smooth
degradation of the available blocks. Some schemes(e.g. [28],
[29], [30], [31]), exclusively use the RAM for storing tem-
poral segments of a firmware image, avoiding redundant
access and unnecessary operations on the flash memory.

2.3 Energy consumption
IoT nodes are often battery-operated, thus constrained in
terms of energy, while operating unattended in harsh envi-
ronments for long periods of time [32]. Furthermore, they
often rely on ambient power sources such as solar energy,
wireless energy and RF to operate uninterrupted. A node’s
lifetime is highly affected by routine operations such as
those involved into the wireless radio communication. As
an example, the transmission of a single bit of data could
consume roughly the same amount of energy as executing
1000 instructions [33].

Writing data into the flash memory is not a lightweight
process either, as a higher voltage is required; hence, the
total power consumption is significantly affected by the
size of the data to be stored, and for this reason, firmware
size minimisation is of utmost importance. Furthermore, the
update process can be energy intensive due to the amount

4

of messages that need to be transmitted in the network, so
firmware dissemination protocols must be carefully imple-
mented to avoid redundant transmissions (e.g. flooding).

Moreover, firmware decompression at the receiving node
can consume a significant amount of energy; hence, ren-
dering compression-based update strategies unsuitable for
use by constrained IoT nodes. Finally, node’s energy con-
sumption can be affected by the firmware code layout in
the flash memory. In [34], the authors show that crossing a
page boundary in flash memory causes additional energy
consumption due to the extra circuitry powered up to read
the new page. This implies that the loops in the firmware
code must be properly aligned in a page, if possible, to avoid
an excessive energy consumption.

2.4 Overhead due to node reboot
In several OTAP contributions (e.g. [18], [19], [35], [36]), after
the installation of a new firmware version has been com-
pleted, the node is required to reboot, so as the bootloader
is run and the new firmware starts executing. This can intro-
duce a significant overhead in time-critical IoT applications
such as those used in aviation, health-care, connected cars,
etc. Several other OTAP contributions (e.g. [37]) address this
issue by proposing mechanisms able to dynamically patch
an IoT node with a new firmware while it is operating,
without the need to reboot.

2.5 Group-wise IoT node re-programming in heteroge-
neous environments
Another challenge for the firmware update process is that
IoT nodes within a network can execute different firmware
versions, have different roles and hence have different
update requirements. Moreover, these devices can be het-
erogeneous in terms of software and hardware [22], [38].
Under these conditions, the update mechanism must have
the means to support the update of individual nodes in case
of different firmware versions, and simultaneous updating
in case of a group of nodes that have a common version.
Group programming can minimise the energy consumption
and the total re-programming time required.

However, this is not trivial task as an efficient dissemi-
nation algorithm should be able to select optimum routing
paths, in order to disseminate a new firmware version to
a number of nodes. To make this feasible, modification
of routing protocols may be required (e.g. [39]). In some
contributions (e.g. [40]), the nodes can take decisions based
on criteria like the current firmware version, the number of
reachable neighbors, etc., to decide if they will accept the
update.

Most contributions, however, follow a two-stage ap-
proach to provide group-wised updates. Initially, metadata-
carrying packets are flooded in the network and interested
receiving nodes respond back. Following this approach, a
routing tree is established and the nodes along this path act
as firmware forwarding nodes [10], and the transmission of
the actual firmware then starts. Finally, it must be noted that
the update methods in such heterogeneous environments
have to be portable across hardware platforms and oper-
ating systems nodes are based on, avoiding dependencies
on libraries (e.g. cryptographic libraries [41], [42]) and
underlying protocols.

2.6 Network flooding
IoT nodes often communicate in low bandwidth channels
and in frequency bands that are overcrowded (i.e in the
unlicensed bands of 2.4 GHz) with significant interference.
Moreover, the nodes can be dispersed in large geograph-
ical areas, for example, in IoT-enabled smart city applica-
tions [43]. OTAP protocols should avoid flooding the net-
work during the update process, by employing techniques
for: (i) efficient selection of the nodes to be updated, (ii)
firmware compression, (iii) dynamic patching, (iv) energy-
aware routing for path selection, etc.

2.7 Data and state consistency
There are various algorithms (e.g. trust-based schemes [44],
routing algorithms [45], etc.) where nodes cooperatively
report measurements, so a central server can infer about a
possible event. During the firmware update process, these
applications can be severely disrupted, as some nodes may
execute the new firmware version, while others the current
one. For this reason, extra care should be taken during the
update process and a suitable mechanism has to be used
to guarantee data and state consistency. Usually, after an
update, nodes reboot, so data and state are reset. Moreover,
IoT networks are susceptible to changes of the environ-
mental conditions [46] that can result to temporary node
disconnections.

2.8 Security
IoT proliferation has significantly extended the attack sur-
face and many attacks with disastrous results have already
taken place (e.g. Mirai and other botnets [47], [48]). Hav-
ing compromised thousands of IoT devices around the
world, an attacker can demonstrate large-scale DDoS attacks
against critical infrastructures; hence, it is of paramount im-
portance IoT nodes to be supported by an OTAP mechanism
for securing bug fixes. Moreover, the OTAP mechanism
itself has to be securely designed, otherwise it can become
an additional attack vector for an adversary. For example,
the Zigbee Worm [49] was able to trigger a chain reaction
of infections, initialised by a single compromised IoT device
(light bulb), using a malicious firmware update image.

3 OVER-THE-AIR PROGRAMMING ESSENTIAL OP-
ERATIONS

The limitations imposed by the inherent nature of IoT net-
works, as described in Section 2, dictate the careful design
of an OTAP pipeline that mainly focuses on firmware image
size reduction, as well as efficient and robust dissemina-
tion in the network. The essential stages for performing a
firmware update, which are illustrated in the form of a flow-
graph in Figure 1, are [28]:

• Firmware similarity improvement, which includes
comparing the new firmware source code with the old
one, in order to mitigate function or variable shifts
and increase the similarity between the built firmware
versions;

5

• Differencing algorithm application, which includes
producing a so-called delta script by using a differencing
algorithm for comparing the old firmware image with
the new one. The delta script encodes a set of instruc-
tions that, once applied on the old firmware, enable the
reconstruction of the new one. In general, a delta script
should be of minimal size (smaller than the original
firmware image), since the goal is to reduce the data
transmitted to the node;

• Delta script dissemination, which is responsible for
orchestrating the efficient and reliable firmware (delta
script) distribution to the IoT nodes by applying a suit-
able dissemination protocol that focuses on transmitted
data minimisation;

• Update application, which refers to the OTAP stage
that takes place on the node and includes recon-
structing, verifying, installing and executing the new
firmware.

This section provides a detailed analysis of techniques re-
lated to all four stages of the OTAP pipeline and highlights
both their advantages and their limitations.

3.1 Improving firmware images similarity
Despite the fact that a firmware update can introduce small
modifications to the firmware code, these changes can result
to a disproportional increase in the size of the delta script
produced. As an example, suppose that a software devel-
oper modifies a single function within a piece of software
that will be executed in an IoT node. As a result, the
following instructions will be inserted in the delta script for
transmission:

• COPY the firmware image segment from address
0x00000000 until the address where the function is
located.

• ADD the segment that contains the new function im-
plementation from the new firmware image.

• COPY the firmware image segment from the address
following the end of the function implementation, until
the end of the current firmware.

Although the above sequence of operations is correct, this
constitutes a poor representation of the resulted delta script
because in the binary image of the updated firmware, the
code that follows the modified function’s implementation
will be relocated (shifted), to comply with the new size of
the updated function; thus, functions that are located after
the modified one, will be shifted to other memory addresses
(different from the ones in current version). Subsequently,
the instructions that call these functions will use different
target addresses (the address of the called function in the
flash memory) in the two versions. Finally, since all these
modified target addresses will be encoded using ADD in-
structions in the script, the size of the generated delta script
will be significantly high. This is also true when a new
global variable is defined, or a previously defined one is
removed, as other global variables may need to relocate and
hence the instructions that reference them will have different
target addresses.

In [20], the authors distinguish four distinct properties
of the firmware image that affect the size of the generated
delta script.

• Function shifts. When a function is modified, either
shrunk or grown, other functions located into lower
memory addresses are forced to relocate; hence, the tar-
get addresses of the corresponding calling instructions
need to change. In this case, a COPY instruction will
be injected into the delta script to encode the common
segments present in the two firmware versions, and an
ADD instruction will be required to encode the bytes
associated with the target addresses.

• Global variables shifts. The insertion of new global
variables within the code can also affect the structure of
the resulted binary image. Global variables are stored
in RAM in the .data section when initialised, followed
by the .bss section, where the uninitialised variables
are mapped to. This is a common binary representa-
tion format of the different memory sections. When a
new global variable is initialised, all other variables
located in subsequent RAM locations, will be shifted
and the references (by other functions) to them will
have different target addresses for the two firmware
images. Hence, a declaration of an initialised global
variable will effectively shift all variables in the .bss
section and the ones following within the .data section.
Moreover, a firmware programmer has no control over
the placement of the global variables in RAM, since this
is determined by the compiler and not by the order they
are declared in the source code [18].

• Relative jumps (inside functions). Inside the source
code, the jumps from one function to another are
performed using an offset value that represents the
distance between the jump instruction and the target
address. For this reason, inserting new instructions or
deleting others between a jump instruction and its
target, can result to a different offset, which requires
additional ADD instructions for the encoding.

• Indirect addressing In RISC architectures, memory
locations can only be accessed indirectly through the
processor registers. For example, if an instruction calls
a function, this function’s address will be stored in a
register and then, the control circuit will enforce a jump
based on the value this specific register contains. Since,
as stated above, the functions and global variables can
be shifted in an update, registers’ values need to be
updated; thus additional ADD operations are required.

Based on the above, it is important to preserve images’
similarity, mitigating the effects of function and variables
shifts, prior to calculating the common segments, in order
to create small-sized delta scripts. Various techniques are
proposed in the literature for keeping the target addresses
unchanged. Some contributions presented later in this sec-
tion, transmit only the segments that have been modified in
the new version and not the whole update image. In these
schemes, when a node receives such a firmware segment,
it either re-links the image locally, or patches the image
using the received information. Moreover, these updated
segments can also be used as input to a differencing algo-
rithm, to further reduce the update overhead.

Most OTAP contributions avoid direct modifications of
the compilers and linkers, as they are provided by hardware
vendors, designed to deliver highly optimised code [50].
Usually, the files produced during the code compilation

6

Fig. 1. Firmware update process essential stages [28]

and linking are used. For example in [51], the MAP file
along with the binary files produced before and after the
static linking are used. A MAP file contains the relative
offset and length of each object in the firmware and it can
be produced by the linker, providing additional valuable
information regarding memory usage [52]. Furthermore, the
binary files produced during the static linking can provide
information regarding code re-locations, a useful input for
schemes aiming to improve firmware similarity.

Finally, many related works (e.g. [18], [19], [20]) tar-
get specific boards or platform families, although claim-
ing platform independence. Nevertheless, platform inde-
pendence cannot be achieved easily, as different micro-
controller families use different relocation types and their
definitions should be taken into account by the correspond-
ing scheme. Platform-specific techniques have also been
developed (e.g. [21], [53]). For example, the authors in [54]
describe the effort for porting the Deluge protocol to sup-
port the Imote2 sensors [54], which was initially designed
for the Tmote sky [55] and MicaZ [56] motes.

In the next sections, we briefly describe techniques used
to improve the similarity of firmware images. Moreover,
in Table 2 some OTAP schemes are presented, along with
the similarity preserving technique and the differencing
algorithm they have utilised, as well as some other char-
acteristics.

3.1.1 Slop regions
The use of the slop regions was first introduced in [57] and
since then, it has been adopted by other OTAP schemes as a
way to address function and variables shifts. A slop region
is defined as the free memory space, located immediately
after a function’s code in the flash memory, where a function
can grow or shrink without causing any other functions to
relocate. If a function grows, part of its slop region will
be utilised, thus without causing any other function shifts.
If a function shrinks, its slop region will grow, occupying
the removed part of the function, so other functions that
follow will not be shifted. Besides the .text region that is
mapped in the flash memory, slop regions have also been
used between the .data and the .bss sections in RAM, to avoid
global variable shifts [18]. Finally, in order to implement
this feature, the linker has to be modified, with the risk to
downgrade the produced code performance.

A more efficient use of the slop regions is presented
by the authors of the Qdiff OTAP scheme [20]. To deal
with function shifts, Qdiff does not create slop regions for
each function during linking, like other implementations
do, but when a function is deleted or shrunk, the resulted
available space becomes a slop region. Hence, slop regions
can be found only immediately after functions’ code or
inside functions, as a result of removed instructions. On

the other hand, if a function grows, QDiff will try to find
a slop region right after the function implementation and
if such a regions exists, the function will expand there;
otherwise, the new code will be moved at the end of the
existing code. Moreover, as an update can create (or expand)
some functions, while it can delete (or shrink) some others,
QDiff proactively creates empty slop regions that are later
assigned to functions.

A drawback for using slop regions is that excessive
fragmentation of the memory space can occur, as some
regions may contain code, while others remain idle. Apart
from the inefficient use of the flash memory, fragmentation
can increase the energy consumption because the control cir-
cuitry needs to activate a large number of memory regions.
The authors in [50] show that the energy consumption can
increase by up to 5% when memory is fragmented. Finally,
extra care is needed when a function grows beyond its slop
region and might need to relocate to a completely different
memory region.

3.1.2 Position independent code (PIC)
Position independent code is an option that can be set dur-
ing code compilation, where code is compiled to execute
normally, regardless of the absolute memory address it is
stored in. All references and target addresses are related
to the memory address of the calling instruction; thus, if
shifts occur, the ”relative” target addresses are not affected.
Nevertheless, due to hardware limitations of the embedded
devices, these relative (instruction) jumps can be performed
only within certain offsets. For example, Atmel AVR plat-
form supports PIC, but restricts the size of the program
to 4 KB. The PIC technique is used by the SOS operating
system [58] in order to avoid the effect of address shifts.

3.1.3 Indirection tables
The indirection tables technique was first proposed in [18],
[19] as a countermeasure against function shifts. During
the firmware image linking, an indirection table is created,
stored in a fixed location within the flash memory. In this
table, there is one entry for each function called at least
once, along with the memory address it is stored in. Any
calls to the functions are replaced by suitable jumps to the
corresponding entries of the table.

The advantage of this technique, as a similarity preserv-
ing mechanism, is that when a function relocates, only its
entry in the indirection table is affected (memory address
updated), while the calling instructions are not affected.
However, this technique is platform-specific and linker
modification is required. Moreover, because the function
calls are performed indirectly, through the table, the run-
time latency of the function call increases. Finally, the table

7

size is proportional to the number of functions called, so in
complex programs with many function calls, a large amount
of flash memory is occupied (by the table).

3.1.4 Interrupt service routines pinning
Interrupt service routines are software methods, invoked by
hardware, to respond to specific interrupts (e.g. packets re-
ceived by the network adapter). The memory addresses for
these services are stored in an interrupt vector table, which
in most embedded systems, is placed at the beginning of the
program memory. Whenever an interrupt occurs, the control
goes to a pre-defined entry of the vector, and through it,
the correct interrupt service routine is invoked. However,
modifications in the firmware code can relocate these service
routines, affecting the memory addresses contained in the
interrupt vector table. The authors in [19] address this issue
by mapping the interrupt service routines to fixed memory
locations in the program flash.

3.1.5 Global variables’ address pinning
This technique was proposed in Hermes [18], as a way to
ensure that the global variables appear in a specific order
and hence stored in the same address in each firmware
version. The actual order of the global variables in the RAM
memory is determined by the compiler type. This technique
exploits the fact that members of a structure are placed
in the same order in RAM, exactly as they are declared
in this structure. The defined, as well as the undefined
global variables, are detected and stored into two distinct
structures, so if the update does not define additional global
variables, it is ensured that the memory addresses of the
current variables are not affected.

Furthermore, Hermes utilises a slop region between the
.data and .bss sections to avoid address shifts of the unde-
fined variables when the .data section shrinks or expands.
In another related contribution ([20]), the authors follow
a different approach to address data shifts. They modified
the method for the .data and and .bss sections expansion
in RAM. Instead of expanding towards the same direction,
the two sections expand towards opposite directions. To
implement this concept, the two sections are placed into
a fixed address (initial address) with a large empty space
between them (in RAM); thus, when a new initialised global
variable is created, is placed at the bottom of the .data
section, whereas when an uninitialised one is created, is
placed at the beginning of the .bss section, so no data shifts
occur.

3.1.6 Relocatable code
When building a runnable program, such as a firmware im-
age, various modules must be compiled and linked together
to construct the final executable. These modules, referred
as relocatables, are initially assembled at pseudo-addresses
and when linked together, the linker resolves these address
references to the correct values. However, once the final
program is created (after linking), it should also be able
to execute from different memory addresses, as multiple
users may wish to run multiple instances of the same
program; hence, relocatable code is a piece of software whose
execution address can be dynamically moved around the
available address space and loaded in multiple addresses.

In addition, a relocation table is created, containing all these
memory references and is used by the loader to resolve
the references to the correct absolute addresses, when the
program executes.

In [36], the authors utilise the relocatable code technique
to mitigate the effect of function and variable shifts. The
key idea is to change all references to symbols (functions
and global variables) to the same (predetermined) value
and provide the needed metadata, so that the loader at
the receiving side, properly resolves the references before
code execution. The pipeline the authors follow to create
the firmware image consists of a three-stage process: first,
the linker produces relocatable code, where the resulted
relocation table contains an entry for each reference. Then,
the target addresses of all reference instructions are changed
to zero. Finally, the relocation table and the altered image are
merged to form the final image that will be disseminated.

In [35], the authors use the relocatable code technique
more efficiently, minimising the metadata transmission
overhead. The authors observed that many instructions
reference the same symbols; so instead of filling these ref-
erences with zeros, they are filled with the corresponding
symbol index, which is a reference to a symbol entry that
contains the actual address of the symbol. Moreover, this
scheme manages the symbols and ensures that their index
will not be altered between different firmware versions.
Finally, instead of using the 2-byte offset field to yield which
memory location needs relocation, for compression reasons,
a bitmap is used to indicate which 2-byte memory locations
needs relocation.

A key advantage of the relocatable code technique is that
it handles more types of reference instructions, in a more
general way, and hence is able to perform better than other
similarity preserving techniques. A disadvantage, however,
is that it requires a sophisticated loader that can resolve
the relocated addresses before firmware executes, and the
relocation table introduces additional transmission over-
head. Finally, it must be mentioned that although the use
of relocatable code and indirection tables seem similar, they
have some major differences. The relocatable code must be
resolved during load time, while the indirection table-based
code operates in run- time, introducing an extra overhead.
Furthermore, the metadata of the relocatable code are larger
in terms of size compared to those of the indirection table-
based code.

3.1.7 In-place patching
The authors in [37] propose an OTAP strategy based on in-
place code updating, using code patches to avoid system
reboots and make use of the available memory more effi-
ciently. The key idea is to transmit only the parts of the
firmware that have been altered (patches), and the update
module that executes on the receiving side, copies them
directly to the flash memory.

A risk with this technique is that because the firmware
image is updated in real-time, the status of the firmware
stored in memory can fall into an inconsistent state in case
of failures (e.g. transmission errors). A countermeasure is
to make all instructions that contain references to functions
that are being updated, to halt till the update operation
completes. Furthermore, when a new firmware update is

8

released, multiple patches may be transmitted, each one
replacing a specific part of the current firmware. Such a
patch could also target the firmware code responsible for
the updating; hence, code modifications must take place
atomically, even when multiple patches are involved in the
process.

As mentioned before, the code segments being updated
must be suspended to avoid the node falling into an in-
consistent state. However, code-halting till all patches are
applied, can cause a significant delay, similar to that caused
when a node reboot is required. A countermeasure is to min-
imise the required memory writes (called as atomic update
set) during the creation of an updated firmware. Two code
patch strategies are proposed in [37]: (i) in-place patching and
(ii) in-place patching with trampolines.

In in-place patching, all new and modified code parts
are stored in the free space of the flash memory. The code
insertion is performed by adding a jump instruction in the
original code that has as target address, the location where
new code has been inserted. Respectively, at the end of the
inserted segment, another jump instruction exists that jumps
back to the next instruction in the original image. Similarly,
code deletion includes a jump from the address of the first
deleted instruction to the instruction immediately following
the last deleted one. Hence, the atomic update set contains
all jumps added in the original code and not the modified
parts that are transmitted, since the latter part of the code is
placed at a safe place in the flash memory, where no conflicts
can occur. This way, the size of the set is proportional to the
number of the firmware parts required to be patched.

In in-place patching with trampolines, a code snippet, called
as trampoline, is used for each patch. While the modified
code is inserted in an unused memory location, like in the
previous technique, the original code does not jump to these
patches (at least not directly). However, a jump instruction
in inserted in the original code to redirect the control to the
corresponding trampoline. Initially, the trampolines return
back to the instruction that follows the jump instruction
in the original code. This is accomplished utilising a cen-
tralised approach that instructs all trampolines to jump back
to the original code, so no conflicts can occur and hence
the atomic set is empty. Afterwards, a base variable, that all
trampolines check to determine their return addresses, is
modified and instructs the trampolines to jump to the cor-
responding patch (new code inserted in an unused memory
location). Using this global variable as centralised approach
and being able apply all patches in a single shot, results to
minimal downtime, due to the small number of instructions
in the update atomic set. Essentially, the atomic set consists
of just the update of the base variable, the pointer that directs
all trampolines to jump to the corresponding patch.

3.1.8 Dynamic linking of modified firmware sections
The use of a dynamic linker [2] at the node side was intro-
duced as part of the first version of the Contiki OS [59], an
operating system for constrained IoT devices. In this OTAP
scheme, only the modified section(s) need to be transmitted,
since upon reception, the dynamic linker will re-link the
image and load it again, replacing the previous one in
the program flash. However, a limitation of this technique
is that it requires an operating system or a sophisticated

linker that can resolve the addresses properly. Moreover, the
modified section is usually accompanied by the new symbol
and relocation tables that will be used during the dynamic
linking, increasing transmission overhead.

3.1.9 Modules extraction
This technique was presented by the incremental firmware
update algorithm MoRE [51]. In order to create the firmware
image, many object files are linked together. The MAP file
format is used, which is a text file format that presents
the relative offset and length of each object in a binary
file. The proposed method extracts binary fragments called
modules from a firmware image. By comparing the modules
extracted from two sequential incremental updates, it be-
comes feasible to detect which modules are modified. This
was accomplished using modified versions of the R3diff [35]
and RMTD [60] image comparison algorithms for the delta
calculations. In evaluation experiments, although MoRe in
most cases resulted to slightly larger data transmissions
compared to the (modified) RMTD and R3diff algorithms,
it performs better in terms of the required time to complete.
It must also be noted that in MoRe, there is no need to
transmit extra information such as metadata and relocation-
indirection tables, thus resulting to lower network overhead.

3.1.10 Replaceable components
The concept of replaceable components was introduced in the
Elon reprogramming scheme [29], as a way to reduce the
data code to be transmitted during a firmware update (for
the TinyOS operating system). Elon is based on the assump-
tion that TinyOS kernel components (e.g. CTP, FTSP) are
rarely updated, in contrast to the application components;
hence, the programmer can define in the source code which
components (code and data) can be updated in a future
version. To do so, programmers have to use the appropriate
annotations in the source code of the base firmware (e.g. @re-
placeable, @system).

In Elon, the replaceable components and system com-
ponents are stored in different sections, .vdata/.vbss and
.vtext for replaceable data and code, respectively. Initially,
when the first (base) version of the firmware is created,
the replaceable sections are stored in the flash memory
and are not removed throughout node’s lifetime, as they
serve as a golden image to be used for fail-safe operations. In
subsequent firmware updates, the replaceable components
that are received by a node, are stored in the RAM to
avoid further flash memory access. In order for the linker
to determine the base address of these sections, a two-
phase linking process is required. During the first phase,
the firmware is compiled and the size of these sections can
be determined, since they do not involve external libraries
that may be invoked after linking (external libraries cannot
be replaceable). Given this, the linker is able to find the
starting addresses of all sections in both the RAM and flash
memory. Moreover, Elon utilises an indirection table that is
called as jump table. This is crucial, because the replaceable
components can be relocated and the indirection table helps
to mitigate the effect of these shifts.

Based on this technique, Elon is able to update firmware
without the need for a node reboot. A kind of software
reboot process takes place, where, initially, the replaceable

9

sections and the new jump table are stored in RAM, and
then the control jumps to the initial address of the firmware
image. This way, no kernel data initialisation is required,
minimising the required downtime.

An advantage of Elon, over other OTAP schemes, is
that it does not require sophisticated OS support (e.g. dy-
namic linking). Moreover, it does not produce additional
metadata e.g. indirection or relocation tables. However, a
concern exists with regards to the size of RAM required
to store modern and complicated firmware. Moreover, as
the replaceable components are stored in RAM, they are
not persistent and have to be re-transmitted in case of a
hardware reset. Finally, in Elon is assumed that the core
system code and the libraries will not be updated in future
firmware versions.

3.2 Differencing algorithms
As described in the previous section, several techniques
exist that preserve the similarity of the two firmware images,
mitigating the effects of the function and variable shifts.
When this process has been completed, it is desirable to
minimise the required data that needs to be transmitted
for the update of the IoT nodes. To make this feasible, the
sending station (e.g a firmware server) that initiates the
firmware update, uses a differencing algorithm in order to
find the common segments between two firmware images
(the firmware that the nodes currently run and the updated
one). Differencing algorithms can be of two types; either
block-level or byte-level, depending on the granularity level
they are able to detect matching segments.

The block-level algorithms (e.g. [61], [62]) split the
firmware images into fixed-size blocks, aiming to detect
non-common segments between the two images; hence,
their accuracy is highly affected by the block size. On the
other hand, the byte-level algorithms (e.g. [35], [60]) are
able to find non-common segments between two firmware
versions using blocks of variable lengths and can utilise
more fine-grained approaches in order to achieve better ac-
curacy, for example dynamic programming [60]. Regarding
algorithms’ performance, the block-level ones can detect a
limited number of non-common segments, since they are
not able detect those with size smaller than the size of
a block. However, these algorithms typically have smaller
time and memory footprint. Byte-level algorithms, on the
other hand, can detect more non-common segments but
typically require more time to complete.

With respect to the limitations of the IoT constrained
nodes, it is evident that in order to utilise the available
resources more efficiently, the required amount of transmit-
ted data during a firmware update has to be minimised.
This is achieved through a process referred as delta script
generation, which exploits two principles: (i) the nodes to be
updated have already stored a previous firmware version
in their flash memory, and (ii) the updates mostly introduce
small modifications to the firmware binary code. The key
idea of the delta scripts is to transmit only the parts of the
firmware that have been altered, followed by instructions
(for the node) regarding the local firmware reconstruction.

Hence, the common and non-common segments de-
tected by the differencing algorithm, along with some
special-purpose instructions, are encoded into commands

of a delta script that is transmitted to the receiving nodes.
Based on this script and the current firmware code, each
node is able to re-construct the new firmware version locally,
executing the commands in the the script. It is evident that
the delta script creator should be aware of: (i) the current
firmware image a node currently executes, and (ii) and
how the current image is mapped in the internal memory,
because the encoding highly depends on these two.

There has been an effort to create universal delta script
formats, e.g. VCDIFF [63], as well as some other custom
ones [35], [36] that support additional instructions in order
to achieve a more efficient data encoding. Despite their
differences, all proposed formats feature two common core
operations with relatively standardised syntax: COPY and
ADD. These two instructions, along with others reported in
the literature, are presented below.

• COPY [19]: This instruction is used to encode the seg-
ments of the new image that have been matched with
others of the current version. The update module at the
receiving side, upon interpreting the COPY instruction,
copies a segment with a pre-defined length from the
current firmware image. Moreover, the starting address
of the sequence must be provided. Once the update
module has determined the length and the starting
address of the copied segment, it copies and appends
it to the new firmware image (that is reconstructed
locally).

• ADD [19]: This instruction is used to encode the seg-
ments of the new image that do not match with other
segments of the current version, and hence, they have to
be fully transmitted. When the ADD instruction is inter-
preted by the update module at the receiving side, the
associated received sequence will be used (appended)
to reconstruct the firmware image.

• PAD [28]: Pads the memory with a specific data unit.
• RUN [63]: Used for a more efficient transmission of

repeated data. The update module copies the data that
are associated with the instruction a finite number of
times.

• REPEAT [19]: Used when specific patterns are detected
in the data that is transmitted with small differences
between them, that are introduced in a predictable and
standardized manner.

Some of the most popular differencing algorithms are
shown in Table 1 and analysed in the following sections.

3.2.1 Fixed block comparison (FBC)
FBC [61] is the simplest method for comparing two firmware
images, aiming to minimise the required data transmission
for an update. This algorithm splits the two images into
blocks and then compares each corresponding block. For
each matching block pair, a COPY instruction is inserted into
the produced delta script, while the non-matching ones are
transmitted along with the delta script. In order to encode
the latter blocks, an ADD instruction needs to be inserted in
the delta script.

The main benefit of this technique is the low time and
space overhead, as well as the ease of implementation.
Moreover, it works well for small firmware changes, since
only the altered blocks are transmitted. Nevertheless, it

10

TABLE 1
Summary of differencing algorithms commonly used for OTAP schemes

n: the combined length of the two firmware images in bytes

Algorithm Type Time
complexity

Space
complexity

FBC [61] block-level O(n) O(n)

Rsync [62] block-level O(n2) O(n)

RMTD [60] byte-level O(n3) O(n2)

Hirschberg’s
trick [64]

byte-level O(n2) O(n)

R3diff [35] byte-level O(n3) O(n)

DASA [65] byte-level O(nlogn) O(n)

DG [66] byte-level O(n2) O(n)

operates at block level granularity and is not able to detect a
high number of common pairs, especially when the update
includes excessive modifications.

3.2.2 Rsync
Rsync [62] is an algorithm used by many incremental repro-
gramming schemes, (e.g. in [19], [67]), in order to compute
the common segments of two firmware images, initially
developed for binary files exchange over low-bandwidth
channels. This is a block-level differencing algorithm that
splits the firmware images into fixed-size blocks, and then
uses a sliding window with a size equal to the block size,
to scan the two firmware images for detecting matching
segments. Initially, a {Checksum, MD4} pair is calculated
for each block of the current firmware image and then, the
window traverses the new image, the {Checksum, MD4}
pair of each window is calculated and lookups with the
pairs of the current image are performed to detect potential
matches. Like typical sliding window protocols, when a
match is found, the window moves forward one block, oth-
erwise it moves one byte, signing this block as unmatched.
All unmatched blocks are accumulated for transmission
either when a next block is matched, or the current window
reaches the end of the new image.

Although Rsync is able to find subsequencies with a
higher accuracy compared to FBC, it still faces similar
drawbacks, since its granularity depends on the window
size used; thus, being not able to detect common segments
with a size smaller than that of the window used.

3.2.3 Reprogramming with minimal transferred data
(RMTD)
RMTD [60] is a byte-level algorithm that aims to find the
optimum combination of common sequences between two
images, in order to minimise the number of transmitted
bytes. Similarly to other differencing algorithms, RMTD
finds the common segments between the two firmware
versions. Nevertheless, a novelty of this algorithm, is that it
utilises the partially reconstructed firmware image to detect
matching segments. As the instructions in the delta script
are executed at the receiving side sequentially, the new
firmware is gradually rebuilt. Hence, for each segment of
the new firmware, RMTD checks if it can also find matching
segments in this partially rebuilt image.

RMTD uses a 2D matrix to record the pairs of the
common bytes found for the two firmware images, with
the comparisons performed in both forward and backward
order to achieve higher accuracy. The result of this operation
consists of two lists that contain the matching segments of
the two images, as well as the matching segments between
the partially reconstructed new image and the rest of the
(new) image, respectively.

Once these two lists are computed, the algorithm finds
the optimal combination of the COPY and DOWNLOAD
instructions to encode the common segments. Regarding
the segments that can be encoded using COPY instructions
(found in any of the two lists described above), many such
common sequences may correspond to the same memory
addresses. When the respected COPY instruction found in
the delta script are executed, they will result to multiple
writes of the same data to the same memory addresses;
hence, these redundant writes lead to energy waste and
also affect flash memory life span. To mitigate this issue,
RMTD finds the optimal combination of COPY instructions
on the detected common sequences, using a dynamic pro-
gramming approach.

Finally, it must be noted that the algorithm’s complexity
depends on the size of the images, which makes it unsuit-
able for increasingly complex programs, as the time required
to complete is substantially high. Moreover, in experiments
conducted by other researchers (e.g. [65]), it was shown that
RMTD crashes when the code size becomes too large (4̃2
Kb), due to lack of memory.

3.2.4 Hirschberg’s trick
Hirschberg’s trick [68] is a method for computing the
longest common sequences between two strings, while
saving space, utilising a dynamic programming approach.
A longest common subsequence (LCS) of two strings
X=x1x2x3...xm and Y =y1y2y3...yn is a subsequence of both
X and Y, whose length is the maximum possible. Let all pre-
fixes of the two stringsX and Y be {X1, X2, X3, ...Xm} and
{Y1, Y2, Y3, ...Yn}, respectively, where Xi and Yi represent
the prefixes that contain the first i bytes of the corresponding
string. Moreover, between two prefixes Xi and Yj , there
may be multiple longest common prefixes but all of them
will have equal length; hence, if we denote the length of the
LCS of these prefixes as C(i, j), its dynamic formulation is
as follows:

C(i, j) =

0 if i = 0 or j = 0

C(i− 1, j − 1) + 1 ifxi = yj
max(C(i− 1, j), C(i, j − 1)) ifxi 6= yj

Using the above formulation, the common subsequences
between the prefixes of two images can be found in order
to compute the delta script. Based on Hirschberg’s trick, the
authors in [64] proposed a differencing algorithm to detect
common firmware subsequences. Hirschberg also presented
a modified version of this algorithm, which follows a divide-
and-conquer approach and is able to compute the LCS of
two strings in O(min(m,n)).

11

3.2.5 R3diff
R3diff [35] is a byte-level comparison algorithm that com-
plies with the overall design of the R3 OTAP scheme.
Initially, the algorithm computes the hash values for every
three continuous bytes of the current image. Three bytes
were chosen as the lowest level of granularity because
copying smaller byte segments (e.g. 2-byte long), is not more
beneficial than adding them, due to the overhead of the
COPY instructions that comes with additional parameters
in the delta script.

In order to compute the optimal delta for transmission,
the authors use the opti annotation that represents the min-
imum delta script size that needs to be transmitted, in order
the first i bytes of the update image to be reconstructed
by the receiving node. Moreover, a findK method is used for
each such prefix (first i bytes) that returns the smallest index
k, so that the subsequence [k,i − 1] is a common segment
(found both in the new and current images). Furthermore,
two additional notations are used by the algorithm, optAi
and optCi that represent the minimum number of bytes
that need to be transmitted in the delta script in order to
reconstruct i bytes, having as last instruction an ADD or a
COPY one, respectively. Hence, in order to reconstruct the
first i bytes, opti = min(optAi , opt

C
i), omitting the overhead

of COPY instructions, as encoded in the formulations below.
To compute the optimal opti, the algorithm follows a

recursive approach, starting with opt0 = 0, iterating over
all possible prefixes, till the final one that corresponds to
the new image. For each prefix, the algorithm computes
optAi and optCi , and also runs the findK method to check
if the prefix can be encoded in a COPY instruction using
a common segment. If no such common segment is found,
optCi is set to a large integer, so that is not selected over
optAi . The formulations of optAi and optCi are as follows:

optAi = min(optAi−1 + 1, optCi−1 + α+ 1)

optCi =

{
LARGE INTEGER if k > i− 1

optk + β otherwise

, where α is the additional overhead, imposed by each COPY
instruction and β the overhead of an ADD instruction.

3.2.6 An efficient differencing algorithm based on suffix
array (DASA)
DASA [65] is a differencing algorithm that focuses on min-
imising the space and time complexity for computing the
optimal delta script. In order to accomplish this, it utilises
an efficient data structure, called suffix array (SA) [69]. SAs
can be used for data processing, as well as for data compres-
sion operations. Initially, the algorithm combines the two
firmware images in a $-#-padded extension format, using
them in reverse order. For example, two strings S1 = ”cdn”
and S2 = ”ngtv” will result to T = ”ndc#vtgn$”.

Once the extension is created, the doubling algo-
rithm [69] is used to compute the SA by sorting all possible
suffixes in ascending order and for each suffix, stores its
starting index in T . After the computation of SA is com-
pleted, it is used by DASA as input to create the height array

in time complexity of O(nlogn). The height array contains
the length of the longest common prefix of each suffix with
the next one in sorted order. Having computed the height
array, one is able to get the LCP (longest common prefix) of
any two suffixes in linear time.

Next, the algorithm computes the optimal delta script,
annotating as opti the optimal delta script size to reconstruct
the first i bytes of the new image (opt0 = 0). For each prefix
of the new image, DASA uses the findK method (discussed
in Section 3.2.5) to find the largest common segment that
can be used to encode the prefix using COPY instructions.
Moreover, DASA utilises the formulation of optAi and optCi ,
similarly to R3diff, in order to find the opti. Therefore,
DASA iterates over all possible prefixes to find the optimal
combination of ADD and COPY instructions.

The experimental evaluation shows that DASA outper-
forms Rsync in terms of the delta script size, which is an
expected, as Rsync is a block-level algorithm. Despite several
improvements introduced by the Rsync developers, RMTD
and DASA still have superior performance. Furthermore,
DASA has better performance than RMTD both in time and
space domains and this stands true especially when the new
image is relatively large in size.

3.2.7 Delta generator (DG)
Many differencing algorithms assume abundance of spare
memory [60] at the node side for firmware reconstruction,
something not always true due to the constrained nature
of several IoT node types. In [66], the authors propose a
differencing algorithm, known as DG, for nodes that lack
external memory. The algorithm by exploiting the fact that
two sequential firmware versions usually share many com-
mon parts, places the two images side-by-side and executes
an XOR operation between the corresponding bytes, aiming
to reveal the sequences of the non-matching bytes. The
matching sequences can easily be encoded using COPY in-
structions in the delta script and the non-matching ones can
be further broken down into matching and non-matching
subsequences, to achieve delta script size minimisation. To
make this feasible, each non-matching sequence is checked
against the current firmware to find matching subsequences.

The common subsequences found are reconstructed us-
ing COPY instructions. This algorithm has (O(n+m) space
complexity and (O(nm) time complexity, where n is the size
of the current firmware image and m the size of the non-
matching segments. A comparison of R3diff and DG was
conducted in [70], using various image sizes and code shifts.
The authors inferred that DG outputs significantly smaller
delta scripts than D3diff for small-sized images but this does
not stand true, as more data and code is shifted. Moreover,
the authors found that the number of ADD instructions in
the delta script gets smaller, as code shifts increases. The
authors conclude that DG is not able to provide optimisation
for a high number of small changes. Instead, it generates a
number of ADD instructions that encode regions with a few
bytes for each non-matching segment. When the code shifts
increase, these non-matching segments expand together and
are merged under one common ADD instruction. This re-
sults to a larger delta script with fewer ADD instructions.

12

TABLE 2
Summary of OTAP schemes

OTAP scheme OS/platform Update type Firmware similarity Differencing
algorithm

Live update Dissemination
protocol

Elon [29] TinyOS, TelosB Incremental
(replaceable
components)

Replaceable
components

- Yes Deluge

R2 [36] TinyOS, TelosB Incremental
(delta script)

R2sim (Relocatable
code)

RMTD No Stream

R3 [35] TinyOS, TelosB Incremental
(delta script)

R3sim (Relocatable
code)

R3diff (Based on
DASA)

No Stream

MoRE [51] NanoQplus OS,
Mango-Etoi board

Incremental
(Modified
modules)

- RMTD, R3diff No -

Zephyr [19] TinyOS, Mica2 Incremental
(delta script)

Indirection tables Rsync No Stream

Hermes [18] TinyOS, Mica2 Incremental
(delta script)

Indirection tables,
global variables
pinning

Rsync No Stream

In-place
patching [37]

TinyOS,
MSP430FR5739

Incremental
(Patches)

In-place patching
(with or without
trampolines)

Rsync or Zephyr Yes -

Qdiff [20] TinyOS, IRIS mote Incremental
(delta script)

Slop regions, RAM
layout modification

Google-guava
API, Google
diff-match-patch

No -

3.3 Dissemination protocols
Traditional data dissemination protocols (e.g. [71], [72],
[73]), initially designed for WSNs, are not suitable for
firmware dissemination in IoT networks for a number of
reasons. First, the size of the update image is typically
larger (in the order of kilobytes) than that of the commonly
transmitted data, while the corresponding protocols have
been specifically designed to propagate small-size packets
with a low packet rate. Furthermore, during the update
process, the network nodes usually store the update image
and then act as sources, which is not a typical behaviour in
data dissemination protocols. Finally, while the flow of data
transmissions in a WSN is bidirectional, including operation
information from sensors and commands toward actuators,
etc., the flow of the update image is one-way, from the base
station to the network nodes.

Hence, protocols designed for disseminating firmware
updates in WSNs focus on the efficient distribution of the
new firmware code from a central firmware repository
server to the nodes. These protocols have to cope with the
unreliable nature of the wireless medium nodes communi-
cate, employing suitable mechanisms for the provision of a
reliable firmware update process. Regarding this, the nodes
should be able to provide a form of feedback, indicating the
correct reception of update (network) packets, as well as to
request the retransmission of lost ones.

The simplest method to disseminate a new firmware
image is by flooding, where the firmware server broadcasts
the new firmware code to its connected IoT nodes, and the
latter further broadcast it to their neighbors in an epidemic
fashion. However, redundant transmissions during flooding
should be minimised, as they can easily deplete nodes’
battery and can cause the broadcast storm problem [74], where
overlapping radio signals result to increased contention and

packet collisions.
In order to minimise the number of messages required

during a firmware update, several protocols are proposed
that take into consideration the underlying network topol-
ogy. For example in [75], a broadcast protocol is presented
that provides reliable data propagation within the network,
by splitting the nodes into several clusters. As wireless
networks suffer from problems like collisions and the hid-
den terminal problem, in order to minimise the required
transmissions, most dissemination protocols instruct nodes
to aggregate data prior to transmission to their neighbors.
Moreover, they typically use a three-way handshake pat-
tern to establish a communication channel between the
firmware repository server and the nodes. Initially, the
available sources advertise the available firmware version
by broadcasting a message to their neighbors. Since some
nodes may receive multiple advertisements of this type,
they select a specific node as the firmware source based
on some heuristics, and then broadcast a request packet di-
rected towards this selected source. Once the request packet
is received (by the source), the actual data transmission
begins. When a node has partially or fully received an
update image, it can in return broadcast an advertisement,
indicating that it can now offer the firmware update as a
source. The dissemination protocol can also be based on a
subscription approach (e.g. [31]), where the nodes of the
network subscribe to sources in order to receive firmware
updates. This in return, results to additional overhead for
the sources, which are also nodes of the network, as they
have to track all subscriptions.

Finally, most update dissemination protocols require a
form of feedback from the nodes to the sources in order to
validate packet correct reception. This can be accomplished
either by ACKs or selective NACKs (negative ACKs). In

13

the first approach, the node upon successfully receiving a
packet, transmits a short-length ACK to the sender. If the
source has not received an ACK from a node within a prede-
fined time interval, it will re-transmit the packet. Typically,
the source will try to transmit lost packets several times and
will withdraw after a number of failed attempts. As every
packet has to be ACKed separately, network implosion
problem is possible in case of a large number of missing
packets. To deal with this problem, several contributions use
the NACK option, where a NACK is sent from a node to the
source, only if a packet has not been successfully received,
effectively reducing the number of control packets that need
to be broadcasted during the firmware update process.

Several update dissemination protocols are proposed
with the characteristics stated above. Some of them also
use pipelining (e.g. [76], [77], [78]), a method that allows the
parallel transfer of data within the network, thus achieving
better performance in terms of the time required to trans-
mit a whole firmware image. Initially, the image is split
into segments and dissemination is performed segment-by-
segment. When a node completely receives a segment, it
can become a source and can further disseminate it to its
neighbors.

In order to validate or compare the performance of the
dissemination protocols, authors typically utilise simulation
frameworks (e.g. TOSSIM [79], EmStar [80]) or even use real
world sensor deployments as empirical testbeds (e.g. [30],
[81], [82], [83]). The latter can provide more accurate results,
as the experiments are usually conducted in various realistic
indoor and outdoor environments. However, in order to
stimulate congestion and collisions, the authors are required
to use a large number of networking devices, drastically
increasing validation cost. To this end, the authors use
simulation frameworks, where they can simulate network
topologies along with links’ quality, thus being able to
increase the number of the nodes and observe the scalability
and behaviour of the proposed protocol.

Some of the most commonly used protocols in OTAP
schemes are presented in the following sections (sum-
marised in Table 3).

3.3.1 Trickle
Trickle [81] is an update dissemination algorithm built for
the TinyOS and the Mica-2 motes [84], following a ”polite
gossip” approach to propagate the new firmware code
throughout the nodes of a network. In Trickle, each node
periodically broadcasts an announcement that contains the
current firmware version this node executes, informing oth-
ers about a potential update. Firmware update propagation
takes place if a node overhears that another node can
provide a newer firmware version, or if a node receives a
broadcast by another one indicating that it executes an older
version. This ”polite gossip” approach makes Trickle robust
and scalable, able to operate in various networking environ-
ments (sparse, dense network topologies). Moreover, when
a node overhears that a neighbor broadcasts metadata for
an outdated firmware version, it broadcasts the code of the
newer version, initiating the update of the outdated node.

Each node breaks time into fixed-size intervals and
at a random point within an interval, it broadcasts an-
nouncements (metadata) that inform other nodes about

the firmware version it can provide. However, if a node
has overheard several other nodes broadcasting the same
metadata, it stays quiet, since acting as a source can cause
redundant transmissions, wasting network resources. When
a node overhears such an announcement, there are two pos-
sible cases: (i) the node executes a newer firmware version
than the one broadcasted, and (ii) a node executes an older
version than the one broadcasted.

In the first case, the node will respond by broadcasting
its (newer) code, while in the second case, the node will
trigger a firmware update process by broadcasting its (old)
firmware version, so the node that initiated the ”gossip”,
as soon it receives this message, it will broadcast its (new)
code. Moreover, instead of using a fixed transmission rate
per node, Trickle dynamically regulates it by considering
network density in order to achieve the desirable communi-
cation rate, permitting specific number of transmissions in
each interval and for each node.

Network nodes must, in advance, synchronise the time
intervals for their broadcasts, otherwise Trickle could suffer
from the short-listen problem; some nodes of the network
exchange metadata immediately after the starting of their
(time) interval period, listening for a short period of time,
before any other node is able to broadcast its metadata.
This can result to redundant transmissions because a node
may never hear some other broadcasts and hence, will not
suppress its transmissions. Trickle overcomes this challenge
by requiring nodes to fall into a listen-only state under
which, they cannot broadcast any metadata. The other half
of the time interval is then available for each of the nodes to
broadcast its metadata.

Finally, Trickle was one of the first developed update dis-
semination protocols and since then, it has been adopted as
the basis for many dissemination protocols (e.g. Deluge [30],
[76]), with many contributions aiming to further optimise it
(e.g. [85], [86]).

3.3.2 Deluge
Deluge [76] was built for the Mote-2 devices as the default
network reprogramming protocol for TinyOS. Deluge em-
ploys a negotiation mechanism based on Trickle, however
with an increased performance, as it provides pipelined
firmware dissemination; hence, when a node has received
a chunk (page) of the update image, it can also act as a
source for it, serving its neighboring nodes.

A firmware image prior to its dissemination, is split
into pages, and each such page is further split into fixed-
size packets that fit to the maximum packet size of the
TinyOS network stack. Using Trickle, nodes periodically
advertise the pages of a firmware version they can provide
through broadcast packets, while other nodes send requests
for pages they are missing and are willing to receive. The
available pages a node holds for a specific firmware version,
are represented by a bit vector that is carried by the adver-
tisement packets. Deluge enforces a sequential transmission
of the pages, so for a node to request a missing page, it is
required to have successfully received all previous ones.

When a node receives an advertisement packet and
infers that there is a new firmware version available, it first
finds the lowest numbered page that it needs to receive.
In most cases, where the firmware image binary has been

14

TABLE 3
Dissemination protocols for Over The Air Programming

Protocol OS/platform Pipelining Dissemination
hops

Encoding Feedback
/Reliability strategy

Experimental
validation

Trickle [81] TinyOS, Mica-2 No Multi-hop Full image NACK-based Simulated (TOSSIM)

Deluge [76] TinyOS, Mica-2 Yes (pages) Multi-hop Full image (can also
support incremental
updates)

NACK-based Simulated (TOSSIM)

Rateless &
ACKLess
Deluge [77]

TinyOS, Tmote
Sky

Yes (pages) Multi-hop Full image (can also
support incremental
updates)

FEC Simulated (TOSSIM)
and test-bed

MOAP [31] TinyOS, Mica-2 No Multi-hop Full image (can also
support incremental
updates)

NACK-based Simulated (EmStar)
and test-bed

MNP [30] TinyOS, Mica-2
and XSM

Pipelined
(Segments)
and non-
pipelined

Multi-hop Full image (can also
support incremental
updates)

NACK-based Simulated (TOSSIM)
and test-bed

XNP [5] TinyOS, Mica-2 No Single-hop Full image Queries originated
by the base station

Test-bed (Mica-2)

CORD [83] TinyOS No Core-based Full image No feedback Test-bed

ACDP [78] TinyOS, TelosB Yes (pages) Multi-hop Full image NACK-based
(Unicasted)

Test-bed

Stream [82] TinyOS, Mica2 Yes (pages) Multi-hop Full image (can also
support incremental
updates)

ACK-based Simulated (TOSSIM)
and test-bed

completely changed, this page will be the first one. Once
this page is determined, the node waits for a predefined
time interval to receive further advertisements transmitted
by neighboring nodes and to decide which of them can
provide the specific page. When this period is up, the node
heuristically selects one of the available source nodes and
transmits a request packet that indicates the page and the
packets within the page that it wants to receive.

The selection of the most appropriate firmware source
node for a specific page is a challenging task, as the total
energy consumption and network bandwidth utilisation
should be minimised. Heuristics used by Deluge aiming to
address these challenges, are as follows:

• A node requests data from the source node that trans-
mitted the most recent advertisement packet.

• A node requests data from the nearest source node.
• A node requests data from the node farthest from the

source, in order to inflate the overall spatial multiplex-
ing.

• A node requests data from the node nearest to the
source node.

The latter heuristic was used only for comparison to others,
since it has many disadvantages. For example, neither it
tries to promote high quality links, nor tries to improve the
spatial multiplexing for a better data propagation perfor-
mance.

Regarding the feedback mechanism of Deluge, it is not
explicitly based on ACKs or NACKs, because such packets
are not transmitted but the protocol itself is described as
NACK-based, because, by default, nodes re-request packets
either not received, or corrupted. Additionally, in order to
decrease energy consumption and excessive bandwidth util-
isation, Deluge uses a self-organised suppression mechanism

that allows each node to deactivate itself, based on packets
it overhears; for example, it does not transmit a page request
if, in the meantime, it overhears the same request sent by a
different node.

A disadvantage of Deluge is that it requires the nodes’ ra-
dio to be always turned on, resulting to an increased energy
consumption. Moreover, the protocol does not support fault
detection or recovery mechanisms. The authors proposed
an optimisation based on forward error correction (FEC),
using the digital fountain approach [87], a method for efficient
transmission of bulk data by heterogeneous nodes.

3.3.3 Rateless and ACKLess Deluge
Rateless Deluge [77] is a firmware update dissemination pro-
tocol based on Deluge, however introducing several mod-
ifications to its propagation mechanism, aiming to enable
rateless transfer of the firmware image and to reduce the
overhead due to lost packets’ retransmissions. Using a rate-
less coding approach, the authors manage to minimise the
amount of the control messages required. Additionally, the
nodes do not need to explicitly specify which packets need
to be retransmitted, as they only need to specify the number
of packets successfully received.

In order to construct rateless codes, the authors utilised
the theory of random linear codes (RLCs) [88]. A file X to be
transmitted is split into k distinct segments that are encoded
into m > k messages. Each encoded message is computed
as the weighted sum of all k segments, Yi =

∑k
j=1 βi,jXj .

Hence, in order to compute each message Yi, a weight vector
βi (coefficient) of size k must be chosen that contains the
weight of each segment for that specific message. These
values should be adjusted so that the coefficients of differ-
ent encoded messages are linearly independent with high

15

probability, so a node would only need to receive k Yis in
order to solve the corresponding system of linear equations
and determine the initial file X .

Rateless Deluge follows the same approach, splitting the
firmware image into pages that are further divided into
packets, and then, encoding each packet using RLC. Re-
spectively, a receiving node stores the encoded packets in
its memory, and once the number of received packets has
reached the page size, it proceeds to decoding using the
Gaussian elimination process (GEP). If decoding is successful,
the linear equation system is solved and the specific page is
stored in the flash memory of the node, while it is requesting
the next page.

However, if the received packets are linearly dependent,
the process of GEP fails. In this case, the node discards
the linearly dependent packets and waits for some time
to receive more packets, and then starts GEP again. In
contrast to Deluge, if some packets are lost, the receiving
node informs the firmware source about the lost packets,
without specifically identifying them, thus reducing the re-
quired feedback overhead. To further improve performance,
Rateless Deluge exploits the fact that the pages are requested
in an incremental fashion and pre-codes the next page.

ACKLess Deluge adopts the changes introduced by Rate-
less Deluge (on top of Deluge), but its main goal is to further
reduce the need of retransmissions by employing an FEC
algorithm, which operates at the packet level and appends
extra encoded information to avoid additional control mes-
sages and retransmissions. The amount of redundant infor-
mation is proportional to the calculated loss probability of
each distinct receiving node.

3.3.4 Multihop Over-the-Air Programming (MOAP)
MOAP [31] is another multi-hop OTAP dissemination pro-
tocol, specifically designed for the Mica-2 motes, executing
TinyOS. The goal of MOAP is to minimise RAM usage
and energy consumption during a firmware update. This
protocol does not offer pipelining, since for a node to
become a firmware source, it has to receive the whole image
in advance. The firmware update image is built using the
standard TinyOS tools and is then split into a number of
segments, with each segment transmitted using a single
network packet. MOAP dissemination mechanism is called
Ripple and, unlike other dissemination algorithms, it avoids
network flooding by selective imagine forwarding to other
nodes, also utilising a sliding window protocol for the
identification of lost packets.

MOAP uses a publish-subscribe mechanism for image
dissemination in a neighbor-by-neighbor node fashion. A
node that has received the full firmware image and can
become a firmware source, advertises information regarding
the type and version of the firmware image it already holds,
through a PUBLISH message that is broadcasted period-
ically. Interested nodes transmit SUBSCRIBE messages in
order to subscribe for a firmware update. As soon as a
source node receives such as message, it waits for some
amount of time to receive any further subscriptions (in order
to suppress duplicate transmissions) and then provides the
new firmware image to the subscribed nodes, which can fur-
ther become source nodes. These nodes wait again for some
amount of time to receive any subscriptions, and if not, they

reboot and the firmware update takes place. Eventually, all
nodes are programmed with the new firmware version.

3.3.5 Multi-hop network reprogramming (MNP)
MNP [30] is a multi-hop reprogramming protocol, designed
for the Mica-2 and XSM [89] nodes running TinyOS. This
protocol aims to reduce network collisions occurring during
firmware dissemination by proposing a source node selec-
tion algorithm, which guarantees that at any given time,
and for each neighborhood, at most one node can act as
a firmware source. Additionally, MNP improves propaga-
tion performance by supporting pipelined dissemination,
splitting the firmware image into fixed-size chunks and
permitting nodes to act as sources for the pages they have
already received.

Each source node has a unique identifier (ID) and
maintains a ReqCtr value that indicates the number of its
receiving nodes (the nodes that have transmitted a request
packet to this specific source node at least once). This value
is incremented by one each time the source node receives
a new request. At random intervals, each node broadcasts
an announcement that contains its ID and ReqCtr, as well
as the firmware version ID. When a neighbor receives this
announcement, it checks if interested in this new code and
broadcasts a request, which contains the ReqCtr and the
ID of the corresponding source node. Using this technique,
nodes unable to receive the initial source node announce-
ment due to network problems (e.g. hidden terminal), can
become aware of other nearby source nodes.

Receiving nodes upon the reception of broadcast an-
nouncements, send replies back to the corresponding source
nodes that increase (by one for every reply) their ReqCtr
values. The node with the highest ReqCtr value is selected
as a source node that can later disseminate the firmware
to the interested receiving nodes. The source node, after
the completion of a firmware update, enters into a sleep
state for some amount of time, to enable a uniform load
distribution, as other nodes can now have the chance to
become source nodes. As soon as a new source node is
selected, it broadcasts a StartDownload message to inform
potentially interested receiving nodes that has available
firmware image to provide.

3.3.6 XNP
XNP [5] is the earliest network reprogramming protocol
hosted within the TinyOS operating system for the support
of the Mica-2 motes. XNP transmits the whole firmware
image (no support for incremental programming) and is
able to disseminate it from a firmware server to only its
single-hop nodes.

Initially, the server splits the firmware binary code into
multiple packets that are then broadcasted one-by-one.
Single-hop nodes able to receive these packets, store the
carried information in their external memory. As packets
can be lost, nodes request any lost packets until the entire
binary code is correctly received. To accomplish this, XNP
at the firmware source node checks the successful delivery
of each packet by querying the receiving node. When the
image is completely received, XNP uses the bootloader to
copy the code to the flash memory and restarts the node [90].

16

A major drawback of XNP is that it does not support
OTAP in multi-hop networks. Moreover, each time an up-
date is required, the whole firmware image needs to be
transmitted, as there is no delta mechanism supported. XNP
also occupies a significant portion of the program memory
in the (constrained) nodes. Finally, during the download of
the update image, the application is halted and the XNP
module that is wired into the firmware image executes. This
introduces extra overhead in terms of time, proportional to
the network latency.

3.3.7 COre based Reliable Dissemination (CORD)
CORD [83] is a reliable bulk data dissemination protocol that
mainly targets energy consumption minimisation during
the firmware update process. To achieve this, it follows
a different approach compared to the other dissemination
protocols presented in this paper, which due to their epi-
demic nature, propagate the update in a neighborhood by
neighborhood fashion, employing also a three-way hand-
shake pattern (advertise-request-data), resulting to a vast
amount of control data. On the contrary, CORD follows a
core-based two-phase approach, similar to the one used in
Sprinkler [73] and Garuda [91].

The authors claim that it is possible to identify reliable
links that have a constant low packet loss rate. Transmitting
data over these links, can result to less corrupted/lost pack-
ets and subsequently less control messages. During the first
phase of CORD, a subset of nodes that are interconnected
though reliable links is identified, forming an approximate
minimum dominating set [92]. These nodes are selected as
the core nodes using Cheng’s single leader algorithm [93].
Subsequently, each network node can either be a core node
or an immediate neighbor of such a node. Once the core
nodes are selected, the update image is propagated from a
firmware source to the core nodes through reliable multi-hop
forwarding. The firmware image is initially split into pages
and pipelining is used for increased performance. Once all
core nodes receive the update image, CORD’s second phase
begins where the image is disseminated to the rest of the
nodes. Furthermore, CORD uses a sleep scheduling schema
to instruct nodes in the network that do not receive or
transmit any data, to turn off their radios in order to reduce
energy consumption.

3.3.8 Adaptive Code Dissemination Protocol (ACDP)
ACDP [78] has been developed for TelosB nodes, execut-
ing TinyOS and aim to minimise the number of packets
that need to be transmitted during the update image dis-
semination, providing reliability, low energy consumption,
balanced traffic in the network and rapid propagation. Simi-
larly to Rateless Deluge, ACDP employs random linear codes
for efficient and robust data transmission.

Prior to dissemination, the update image is split into
different pages and each page is further divided into a fixed
number of packets. This new code image will be distributed
by a single node, whereas the intermediate nodes will
forward the pages they have received to their neighbors,
incrementally, to ensure that the update will finally reach
all network nodes. Additionally, at any given time, only

one page is loaded into the RAM of a source node for
transmission. When the node finishes with the transmission
of a single page, the allocated RAM is released and it enters a
sleep state, so that other nodes can transmit previous pages.

In order to encode the packets of a page, ACDP is based
on RLC, producing a linear combination of M packets of
that given page. The receiving node uses the Gaussian
elimination method to find the original page, which is a
relatively efficient task, as described in 3.3.3. Hence, when a
node has received enough packets, it attempts running the
Gaussian elimination method, aiming to decode the initial
packets of the corresponding page. If decoding is successful,
the receiver chooses a sliding window of size N, depending
on the number of its neighbors, and will encode N packets,
computing their linear combination. This way, the node will
send out M/N encoded packets into the network, achieving
better load balancing within the network. The reason the
size of the sliding window is proportional to the number of
the neighbors is because when a node has many neighbors
it can receive enough encoded packets to decode, without
losing reliability. Finally, nodes broadcast NACKs when a
request has not been served within a pre-defined amount of
time.

3.3.9 Stream
Stream [82] is an update dissemination protocol that aims to
minimise the data transmission overhead by pre-installing
the module responsible for the firmware update in nodes’
flash memory as a distinct image. Hence, at any given
time, each node stores two images: (i) firmware image, (ii)
reprogramming protocol image.

The application image contains the actual firmware im-
age and a limited reprogramming code (Stream-AS), whose
purpose will be discussed below, whereas the reprogram-
ming protocol image contains the code for the reprogram-
ming/dissemination protocol (Stream-RS) and its purpose
is to enable the firmware code update that is pre-installed in
all network nodes.

When a new update is released, all nodes are instructed
to reboot to the stream-RS, so to permit the dissemination
of the new firmware. To achieve this, a command is injected
in the network from the base station that instructs the nodes
to switch to the Stream-RS image. Once a node receives this
command, it broadcasts this further to its neighbors and
then reboots, using the functionality provided by Stream-
AS, which is included in the image that it is currently
running. When all nodes receive the reboot command, they
run the Stream-RS image and the dissemination of the
new update, augmented by the corresponding Stream-AS,
is permitted.

Furthermore, Stream-RS follows a three-way-handshake
approach for the actual dissemination of the firmware that is
based on the Deluge protocol. Each node contains a list of its
neighbors that have transmitted firmware requests. When
all these neighbors have successfully received all pages
requested, the node is able to reboot from the application
image, which now contains the updated firmware. After
a certain period has elapsed, all nodes switch back to the
application image, thus all get updated with the new image.

17

4 OVER-THE-AIR PROGRAMMING SECURITY

Although IoT networks are often used in critical infras-
tructures, they are also known for their weak security if
not deployed properly with security in mind. Similarly, the
firmware update mechanism itself can also be a major attack
vector, if not designed appropriately. Due to the broadcast
nature of the wireless medium, an adversary can launch
both external and insider attacks. In external attacks, the
attacker does not control any network node; however, he
can inject forged packets, launch replay attacks or even im-
personate nodes. He can also launch DOS attacks injecting
a vast amount of messages and exploiting the weakness of
the dissemination protocol.

In insider attacks, the adversary has managed to com-
promise a node and instructs it to intercept sensitive infor-
mation, drop packets, inject false data, exploit weaknesses of
the protocol, etc. Due to the epidemic nature of the update
dissemination protocols, an adversary can gain complete
control over the network, by compromising a single node
and then leveraging the reprogramming mechanism to dis-
tribute malicious code in every reachable node.

For these reasons, the authenticity and integrity of the
firmware image have to be verifiable by the network nodes.
One way to achieve this, is to sign the whole image using
a suitable digital signature algorithm and verify it at the
receiving node. However, this strategy requires the whole
image to be received prior to verification, thus wasting
valuable resources in case the received image has not been
properly signed.

Another option is to sign each different page of the
image separately, or even to sign each network packet
independently from the others. This would enable pipelin-
ing during dissemination and save network bandwidth
but could increase processing cost at a receiving node, as
digital signature verification should be performed for each
individual page or packet.

Several security-related firmware update contributions
are discussed in the next sections (summarised in Table 4).

4.1 Selective ’n’ Secure OTAP protocol (SenSeOP)
The SenSeOP OTAP protocol [39] aims to secure the nodes
of a wireless network from malicious and unauthorised re-
programming attempts, using an asymmetric cryptography
approach based on the TinyECC library [94] that provides
the necessary cryptographic operations for signature gener-
ation and verification. Similarly to Deluge, SenSeOP splits
the update image into pages; however, it uses a simpler
dissemination mechanism. In order to ensure the integrity
and the authenticity of a firmware update image, it leverages
ECC digital signatures using 192-bit length private keys.
Moreover, using asymmetric cryptography, only the public
key is stored in each node; hence, memory attacks are
ineffective. The authors assume infrequent and non-regular
software updates where confidentiality is not required, so
no encryption is used.

In order to save valuable resources, SenseOP computes
the digital signature of the whole firmware image and not
the signatures of the packets the image is subdivided to.
This restricts the signature verification at the receiving side
to be performed only when the whole image is received.

Initially, the firmware update image is hashed and en-
crypted using the operator’s private key to produce the cor-
responding signature. Afterwards, the image is fragmented
and the corresponding packets are transmitted through the
network; broadcast, as well as unicast transmission is possi-
ble. Replay attacks are avoided through the use of a version
counter combined with the destination (or broadcast) ad-
dress that are included in the hash computation as well.

4.2 Secure and DoS-Resistant Code Dissemination in
Wireless Sensor Networks (Seluge)
Seluge [95] is a secure extension for Deluge, which provides
integrity assurance for the firmware image and resistance
against DoS attacks that specifically target firmware dissem-
ination protocols. Seluge provides immediate authentication
of each individual packet upon receipt, defeating the DoS
attacks that exploit the authentication delays the node faces
when waiting to receive the rest of a page. Moreover, all
advertisements and requests are authenticated using a weak
authentication scheme along with a signature, since it can be
efficiently verified by a node; it still takes a vast amount of
time for an attacker to forge the authenticator.

The firmware image is split into fixed-size pages and
each page is further divided into a number of packets. For
every packet of a page P , a hash value is computed that is
appended to the corresponding packet of page P − 1. This
is an iterative process, forming a hash tree [96] that is used
as the basis for the computation of the final signature. For
the digital signatures, the ECDSA algorithm is used over the
160-bit elliptic curve secp160k1.

To disseminate the image, the source node first broad-
casts the signature packet that serves as an advertisement
for the new firmware image. Upon reception of this packet,
a node cryptographically verifies it, and then uses the root
of the Merkle hash tree to authenticate each hash packet
of the first page. Next, since the packets of the first page
carry the hash values of those of the second page, signature
verification continues, and this is repeated till all pages are
verified. Nevertheless, this signature scheme is vulnerable
to DoS attacks as an adversary can inject bogus signature
packets and force the nodes to perform energy and time-
consuming operations.

To address this issue, Seluge uses a weak authentication
mechanism, called message specific puzzles [97], authenticat-
ing the signature packet for a specific firmware version
with a key that is cryptographically associated with the
version identity number. If verification succeeds, the node
will verify the puzzle solution and authenticate the source
of the signature packet. This way, the node will not perform
any operation for bogus signature packets. A disadvantage
of Seluge is that it increases the ROM and RAM utilisation,
as a number of metadata and hash values have to be stored.

4.3 Secure dissemination of code updates in sensor
networks (Sluice)
Sluice [98] is based on Deluge and uses hash chains to ensure
the authentication and integrity of the received firmware
image, while providing pipeline support. Similarly to Del-
uge, Sluice splits each firmware image into several pages and
integrates signatures and hash functions for efficient code

18

authentication. More specifically, the hash image of each
page is computed and is appended to the previous page,
forming a chain of hashes. Following the concept of digital
stream signing, the head of the hash chain (first page in the
chain) only is signed using the private key of the firmware
provider, requiring only one signature to be computed for
the whole update.

Using the digital signature, a node can verify the source
of the update and can also ensure the integrity of the image,
comparing the hash found in a received page with the
computed hash value of the previous one; hence, using
Sluice, there is a minimal overhead, as the only operations
required are the signature validation and the computation
of a few hash values. For the digital signature, the ECDSA
algorithm is used with 160-bit SHA-1 hashes.

4.4 Securing Deluge
In [99], the authors propose a secure version of the Del-
uge protocol that utilises authenticated digital streams. A
firmware image is transformed into a series of messages,
each one containing the hash of the previous message. The
head of this hash chain is signed using RSA signatures and
64-bit SHA-1 hashes.

In more detail, the firmware image is split into pages,
where each page is further divided into a group of packets,
and a hash value is computed for every such packet that
is attached to the data of its previous packet. Finally, the
hash value of the first packet is digitally signed producing
the signature, and these two values form the advertisement
packet of the update, the first packet broadcast when a new
firmware version becomes available. If there is a receiving
node that wishes a firmware update, it checks the signature
and caches the hash value of the first packet. Afterwards, the
normal dissemination methodology of Deluge is followed to
request the packets of the first page.

In order to ensure that packets arrive in order, the hash
of each received packet is compared with the one that was
stored in the last accepted one. If this comparison fails,
the node requests a retransmission with a selective NACK
message; hence the packets, should be received in order
so that they can be accepted as legitimate packets of the
firmware image; but out-of-order packets are also cached
for optimisation purposes.

4.5 Secure firmware updates using open standards
The authors in [100] propose a firmware update mechanism
based on open standards such as CoAP, LwM2M, SUIT,
etc. The firmware server signs the firmware image and its
metadata (manifest) using ECC and more specifically, the
ed25519 and ECDSA/p256r1 algorithms and elliptic curves.
There is a two-process approach that gives higher flexibility:
first only the metadata are transmitted, and if successfully
verified by the receiving node (using a trust anchor with
knowledge of firmware provider’s public key), the firmware
image is downloaded using CoAP block operations. No
deltas are used, and during transmission, neither the meta-
data, nor the firmware image are encrypted.

4.6 Secure software update of realistic embedded de-
vices (ASSURED)
The authors in [101] propose a scalable architecture for
OTAP, supporting end-to-end security. They distinguish
four types of stakeholders: (i) original equipment manu-
facturer (OEM), (ii) firmware distributor, (iii) domain con-
troller, and (iv) connected devices. OEM cryptographically
signs a new firmware version using ECC, based on Ed25519,
and the devices verify the signature prior to installing this
new version. Firmware distributor’s role is solely firmware
distribution and can be a non-trusted entity, while the
domain controller can set policies on the firmware update
process (e.g. use of firmware deltas) that are included within
a metadata structure (manifest).

ASSURED was built in two proof-of-concept implemen-
tations: (i) on Hydra [102], a hybrid (HW/SW) remote
attestation design based on a micro-kernel, which offers
process memory isolation and enforces access control to
memory regions, and (ii) on ARM Cortex-M23 MCU that
is equipped with Trustzone security extensions [103] and is
able to partition the system into two regions (secure, non-
secure).

4.7 Secure FOTA object for IoT
In [104], the authors propose the use of a standardised ap-
proach and structure, commonly referred as objects that can
be used by IoT manufacturers. This secure object is called
FOSE. The motivation is that the packets that compose the
firmware update image are usually secured by application
layer security. However, the connectivity over which the
transmission takes place, usually breaks and it is impossible
to resume later. FOSE ensures that no tampering of data will
take place and broken connection can be resumed in a later
stage. In order to be able to resume the connection, the client
ACKs each received FOSE object and the server keeps track
of the counter. The data contained inside a FOSE object are
encrypted, thus providing confidentiality.

5 PLATFORMS SUPPORTING FIRMWARE OVER-
THE-AIR PROGRAMMING

In this section, we present a collection of cloud platforms
that offer firmware OTAP for IoT devices. Some of them are
part of a broader IoT ecosystem that may support complex
application domains, while others are exclusively focused
on IoT device management, the OTAP software update
being part of it. All information presented here originates
mainly from the documentation provided for each platform.

We focus on platforms that aim at providing robust,
reliable and secure OTAP. This is guaranteed by character-
istics, such as atomic software installation, easy rollback to
previous software version (e.g. through A/B update that
alternates two slots/partitions for loading and storing the
new software), update failure management (i.e. in case
of power or connectivity loss), short downtime, secure
communication during software downloading, as well as
authenticity and integrity verification of new software. Ta-
ble 5 summarises the main aspects of the platforms under
consideration.

19

TABLE 4
Security-enabled OTAP protocols

Protocol Confidentiality Integrity Authenticity Digital signature
scheme

Protection against

SenSeOP [39] No Yes Yes SHA-1 & ECC DoS, replay attacks

Seluge [95] No Yes Yes ECDSA DoS, integrity, insider
attacks

Sluice [98] No Yes Yes ECDSA Integrity, insider
attacks

Securing
deluge [99]

No Yes Yes SHA-1, RSA Integrity, insider
attacks

Secure firmware
updates using
open
standards [100]

No Yes Yes ed25519, EdDSA Integrity attacks

ASSURED [101] Yes Yes Yes ed25519, EdDSA Integrity, insider
attacks

Secure FOTA
object [104]

Yes Yes Yes - Integrity attacks

5.1 Mender
Mender [105] is an open source over-the-air software update
manager for embedded Linux devices, which considers
security and reliability of the update process, and both
application and full system update are possible. Mender
architecture is essentially built on two components: (i)
Mender Management Server, and (ii) Mender Client. Mender
Management Server is the central point for deploying updates
to IoT devices. It monitors the software that is installed on
each registered device and schedules the roll-out of new
releases. Devices can be organised into groups, so that batch
software updates can be orchestrated. Mender Client runs on
the device and periodically polls the Mender Management
Server for monitoring reasons (e.g. status reporting), as
well as for discovering pending software updates. In case
software updates exist for the specific device, Mender Client
is responsible for downloading and installing it.

Obviously, a software build system is necessary for gen-
erating new device software. Mender uses Yocto Project [110]
for building the artifacts required by the target device. Yocto
Project is a Linux Foundation collaborative open source
project that offers tools and processes for creating custom
embedded Linux distributions. It follows a layer model
for developing logically independent software pieces that
can be easily customised, combined and reused, supporting
its architecturally agnostic nature (it supports all major
embedded architectures, such as ARM, 32-bit and 64-bit x86,
PowerPC, and MIPS). Mender provides meta-mender, a set
of Yocto Project layers for embedding Mender Client into
the OS image. Reliability of the update process is enhanced
by using dual rootfs updates (new software is deployed in
inactive partition that becomes active after reboot), sanity
checks during first reboot and rollback to former software,
if the sanity checks fail.

Mender platform considers device authentication, soft-
ware authenticity and integrity, as well as secure commu-
nication between the Mender Client and the Mender Man-
agement Server. Initially, each device authenticates to the
Management Server through an authentication set (identity

attributes and public key). Subsequently, it is provided with
an authentication token (JSON Web Token), by means of
which each subsequent request is authenticated. Authentic-
ity and integrity of the built software is guaranteed through
cryptographic signatures that are verified at the device.
Currently, the platform supports two algorithms, namely
RSA with recommended key length of at least 3072 bits,
and ECDSA with ECC prime256v1 curve. Finally, commu-
nication between devices and back-end is secured through
Transport Layer Security (TLS).

It is noted that although Mender is not a general purpose
IoT device management platform, as it is solely focused on
managing and orchestrating the software updates, it has
been successfully integrated into other major IoT platforms,
such as Google Cloud IoT Core and Microsoft Azure IoT.

5.2 ARM Pelion
ARM provides a full-stack IoT solution, spanning from
embedded devices to IoT cloud services. ARM Pelion [106]
IoT platform is a suite of management services that focuses
on three core IoT components, namely connectivity, device,
and data management, for devices running the ARM Mbed
OS or Linux/Mbed Linux OS. Several different processor
architectures are supported, from simple Cortex-M micro-
controllers to powerful Cortex-A systems, as well as both
IP and non-IP based communication protocols (e.g. LoRa,
BLE), the later with the support of an appropriate gateway
that employs the necessary protocol translation.

Communication between the IoT devices and the Man-
agement Server is based on the Open Mobile Alliance
Lightweight Machine-to-Machine (LwM2M) application proto-
col that is used in combination with the Constrained Applica-
tion Protocol (CoAP), over UDP or TCP transports. Transport
layer security is provided by Datagram Transport Layer
Security (DTLS) or TLS protocol, respectively. The LwM2M
protocol provides a simple, yet very efficient, data model
for: (i) device bootstrapping, (ii) discovery and registration,
(iii) device management and service enablement, and (iv)
information reporting. It is noted that the LwM2M data

20

TABLE 5
Summary of platforms supporting Over-The-Air programming

Platform Mender [105] ARM Pelion [106] Balena [107] Particle [108] AWS IoT -
FreeRTOS [109]

Supported
processors

ARM, x86(-64) ARM Cortex-M,
ARM Cortex-A

ARM, x86(-64) ARM Cortex-M ARM Cortex-M,
MIPS Warrior-M,
Tensilica Xtensa
LX6

Operating system Embedded Linux
(Yocto Project),
Debian Family

ARM MbedOS BalenaOS
(built on Yocto
Project)

Particle
Device OS

Amazon FreeRTOS

Connectivity WiFi, Cellular WiFi, Cellular, BLE,
IEEE 802.15.4, LoRa

WiFi, Cellular WiFi, Cellular (2G,
3G, LTE), BLE,
IEEE 802.15.4

WiFi, BLE

Device
authentication

Public key,
JSON Web Token

Public key,
X.509 Certificate

API key Public Key Public key,
X.509 Certificate

Communication
security

TLS TLS, DTLS TLS DTLS, AES TLS

Software/firmware
authenticity and
integrity

Cryptographic
signatures
(RSA, ECDSA)

Cryptographic
signatures
(ECDSA)

- CRC32
(non-cryptographic)

Cryptographic
signatures
(RSA, ECDSA)

Update reliability
and efficiency

– A/B update
(Dual rootfs)

– Update rollback
– Batch update

– A/B update
– Update rollback
– Conditional

update
– Differential

update
– Continuous

update
– Batch update

– A/B update
(Dual rootfs)

– Update rollback
(includes boot
partition)

– A/B update
– Update rollback
– Context-aware

update
– Update on

wake-up
– Batch update

– A/B update
– Update rollback
– Context-aware

update
– Update on

wake-up
– Batch update

model provides native support for firmware update process,
by defining the necessary resources the device needs to
expose in order to receive the firmware binary.

Over-the-air firmware updates are performed in the
form of campaigns that apply either to a single device or
fleet of devices. A typical full firmware image contains the
OS, the Device Management Update Client (responsible for
managing the update process on the device part) and the
user application. Efficiency of the update process, especially
for low-rate and low-power IoT devices (e.g. NB-IoT), is
enhanced by delta updates (binary patches for constructing
new firmware binary from the existing one). Reliability
mechanisms, include conditional updates (a device accepts
updates based on pre-defined conditions, e.g. minimum
battery level), sanity checks on received firmware (bootloader
verifies firmware integrity, by calculating its hash and com-
paring it with the one received as firmware metadata) and
rollback support through dual partitions (active partition /
candidate partition). Each firmware image is accompanied
by a piece of information, named as manifest. The manifest
is essentially firmware metadata that encodes information
on firmware authenticity, integrity, device compatibility and
update logistics (update time scheduling, binary storage
options etc.).

ARM Pelion Device Management uses Public Key Infras-
tructure (PKI)-based security, and relies on X.509 certifi-
cates and public-key encryption for server and device au-
thentication. Authenticity and cryptographic integrity of a
firmware binary and its corresponding manifest is achieved
by ECDSA signatures (based on ECC secp256r1 curve).

In addition to the device management services, ARM
provides an online compiler, named as Mbed Compiler, for
developing and building device firmware through a web
SDK. The user can download the produced binary either
locally or directly use Pelion services for performing a
firmware OTA update campaign to registered devices. Mbed
Compiler integrates features, such as source code version
control and collaboration tools for multi-author projects.
Finally, it hosts a large database of free user-created libraries
that can be easily imported into any application.

5.3 Balena
Balena [107] offers a complete set of tools for building,
deploying, and managing fleets of connected embedded
Linux IoT devices. It builds on Linux containers technology
for easily deploying updates on applications or even the
entire host OS running on an IoT device.

The main software components of Balena ecosystem are
described in the following. IoT devices run Balena OS, a
Yocto Project Linux-based OS, packaged with balenaEngine, a
lightweight Docker-compatible container engine that man-
ages containers executing Balena services or user applica-
tions. On the cloud side, the BalenaCloud platform is respon-
sible for device and communication management, as well
as source code version control (though git repositories),
software build, storage and device update. A set of CLI
tools is also provided for local development, local or remote
software building and device software deployment.

A device authenticates to BalenaCloud by using API
keys. During provisioning it receives a provisioning API key

21

that is used for authentication after first boot-up and regis-
tration to the back-end. Then, a new API key is generated
and provided to the device, which uses it for subsequent
authentication. Device control and image download during
updates is performed over a Virtual Private Network (VPN),
so that all traffic is secured with TLS.

Reliability of the update process is based on pre-update
sanity checks in terms of software-device compatibility and
availability of the image in the container registry, double
root partition approach (active/inactive partition) and roll-
back support, in case boot partition changes fail (remember
that it is possible to update the entire host operating system,
not only a user application that is executed on the device).

5.4 Particle
Particle [108] offers a full-stack IoT solution that includes
different hardware platforms, various connectivity options
and cloud services for device fleet management, over-the-
air updates and device health monitoring. Microprocessor
architectures supported are of ARM Cortex-M series, while
connectivity options include WiFi, Cellular (2G, 3G, LTE),
BLE and IEEE 802.15.4. Devices run the Particle Device OS
operating system that provides the necessary hardware ab-
straction for easy application development and enables con-
nectivity and management functionalities. On the other end,
the Device Cloud is the cloud back-end that provides device
management and monitoring, through real-time event and
data logging, firmware roll-outs and over-the-air updates,
as well as integration with other major IoT platforms (e.g.
Google Cloud Platform, Azure IoT Hub) and data publish-
ing through Webhooks.

Mutual authentication between Device Cloud and the
devices is based on RSA public/private key pairs. Commu-
nication is encrypted by using DTLS over UDP or AES over
TCP (depending on the device capabilities), and CoAP is
used for data collection and device management operations,
including over-the-air firmware update.

Reliability and resiliency of the firmware update process
is supported by features, such as atomic updates, according
to which only a fully received and verified firmware is exe-
cuted, automatic rollbacks, in case of failure during firmware
transfer, context-aware updates based on device operational
status (e.g. update is postponed for a later time, if the device
currently performs a critical task), update on wake-up, for
currently sleeping devices and batch updates. It is noted that
updates are possible both at an application and Device OS
level, and can be initiated either through provided CLI tools,
Device Cloud Web UI or Device Cloud REST API.

The platform offers additionally a Web IDE, named as
Pacticle Build and a database of libraries for developing and
building device firmware in the cloud, which can be further
released to registered device fleets.

5.5 AWS IoT - FreeRTOS
FreeRTOS [109] is a well-known preemptive real-time oper-
ating system for embedded devices that employs a priority-
based dynamic scheduler and a multi-threading program-
ming model. It is open-source and has been successfully
ported to a large number of microcontroller/microprocessor

platforms, including ARM variants (ARM7, ARM9, Cortex-
M and Cortex-A Series), Atmel AVR, MSP430, Espressif
ESP32 etc. An extension of FreeRTOS, provided by Ama-
zon, includes necessary libraries for the secure and reliable
connection of IoT devices with Amazon Web Services IoT
(AWS-IoT) [111] cloud platform, for device management,
data collection and application development. IoT devices
communicate with the cloud back-end through the Message
Queue Telemetry Transport (MQTT) protocol, either directly
or over Websockets. In addition, an HTTP REST endpoint
exists for data publishing. Mutual authentication is achieved
by using PKI X.509 certificates and the TLS protocol is
used for securing the communication channel between IoT
devices and AWS IoT back-end.

Over-the-air firmware update is supported for devices
running Amazon FreeRTOS. The OTA Update Manager ser-
vice, which is part of the AWS IoT backend, is responsible
for notifying the device on existing updates, orchestrating
the update process and maintaining the update log. On the
device side, the OTA Agent module manages the notification,
downloading (over secure MQTT or HTTP) and verification
of the firmware updates. In order to ensure the authenticity
and integrity of the firmware, the OTA Update Manager
cryptographically signs the firmware image before deploy-
ment (both RSA and ECDSA signatures are supported). The
OTA Agent verifies the signature before applying any new
update.

In order to improve reliability and efficiency of the up-
date process, the AWS IoT for FreeRTOS provides support
for batch updates (device group or entire fleet), continuous
updates (so that new firmware is deployed to devices as they
are added to groups, are reset or re-provisioned), as well as
update rollback.

6 CONCLUSION

The proliferation of massive IoT networks has been remark-
able in the last years. These ubiquitous smart object-enabled
networks, which may operate for several years in variable
conditions, are used for supporting complex applications in
several domains, such as smart cities, healthcare, industrial
automation, etc. Throughout their extended lifetime, the
nodes forming the IoT networks need to be re-programmed,
so that new features are added, software bugs or security
vulnerabilities are resolved and their functionality is re-
purposed. The large scale of IoT networks and the usual
installation of IoT nodes in locations with difficult or no
physical access, mandates the use of OTAP solutions for the
efficient update of firmware running on IoT nodes.

In this paper, we present an overview of OTAP tech-
niques that can be applied to IoT networks. We highlight
the main challenges and limitations stemming from the
resource-constraint and heterogeneous nature of IoT nodes
and analyse the essential stages of firmware update pro-
cess, along with different approaches and techniques that
implement them. In addition, we discuss schemes that focus
on securing the OTAP process by encrypting the trans-
mitted firmware and/or providing firmware authenticity
and integrity-preserving mechanisms. Finally, we present a
collection of state-of-the art of commercial and open-source
platforms that integrate secure and reliable OTAP.

22

ACKNOWLEDGMENTS

This research has been financed by the European Union
and Greek national funds through the Operational Program
Competitiveness, Entrepreneurship and Innovation, under
the call RESEARCH CREATE INNOVATE (project code:
T1EDK-03389).

REFERENCES

[1] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A
survey on Internet of Things: Architecture, enabling technologies,
security and privacy, and applications,” IEEE Internet of Things
Journal, vol. 4, pp. 1125–1142, 2017.

[2] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-time dy-
namic linking for reprogramming wireless sensor networks,” in
Proc. of the 4th international conference on Embedded networked sensor
systems - SenSys ’06. ACM Press, 2006, p. 15.

[3] J. Shi, J. Wan, H. Yan, and H. Suo, “A survey of Cyber-Physical
Systems,” in Proc. of the International Conference on Wireless Com-
munications and Signal Processing (WCSP), 2011, pp. 1–6.

[4] C. Wilson, “Sensors in medicine,” The Western journal of medicine,
1999.

[5] C. Technology, “Mote In-Network Programming User Reference
Version 20030315. Crossbow Technology, Inc.”

[6] M. Stolikj, P. J. Cuijpers, and J. Lukkien, “Efficient reprogram-
ming of wireless sensor networks using incremental updates,”
in 2013 IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOM Workshops), 2013, pp. 584–
589.

[7] T. Liu, C. Sadler, P. Zhang, and M. Martonosi, “Implementing
software on resource-constrained mobile sensors: experiences
with Impala and ZebraNet,” in Proceedings of the 2nd international
conference on Mobile systems, applications, and services - MobiSYS
’04. ACM Press, 2004, p. 256.

[8] “RFC 7228 - Terminology for Constrained-Node Networks.”
[Online]. Available: https://datatracker.ietf.org/doc/rfc7228/

[9] E. Baccelli, J. Doerr, S. Kikuchi, F. Padilla, K. Schleiser, and
I. Thomas, “Scripting Over-The-Air: Towards Containers on
Low-end Devices in the Internet of Things,” in 2018 IEEE In-
ternational Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops). IEEE, 2018, pp. 504–507.

[10] Qiang W., Yaoyao Z., and L. Cheng, “Reprogramming wireless
sensor networks: challenges and approaches,” IEEE Network,
vol. 20, no. 3, pp. 48–55, 2006.

[11] S. Brown and C. Sreenan, “Software Updating in Wireless Sensor
Networks: A Survey and Lacunae,” Journal of Sensor and Actuator
Networks, pp. 717–760, 2013.

[12] K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Bac-
celli, “Secure Firmware Updates for Constrained IoT Devices
Using Open Standards: A Reality Check,” IEEE Access, 2019.

[13] Y. Wang, G. Attebury, and B. Ramamurthy, “A survey of security
issues in wireless sensor networks,” IEEE Communications Surveys
Tutorials, pp. 2–23, 2006.

[14] D. Chen, D. He, and F. Ahmad, “A survey of reprogramming
security in wireless sensor network,” VFAST Transactions on Soft-
ware Engineering, 2016.

[15] J. Bauwens, P. Ruckebusch, S. Giannoulis, I. Moerman, and E. D.
Poorter, “Over-the-air software updates in the internet of things:
An overview of key principles,” IEEE Communications Magazine,
pp. 35–41, 2020.

[16] M. Sanvido, F. Chu, A. Kulkarni, and R. Selinger, “nand Flash
Memory and Its Role in Storage Architectures,” Proc. of the IEEE,
vol. 96, pp. 1864–1874, 2008.

[17] J. Yiu, “Introduction to Embedded Software Development,” in
The Definitive Guide to Arm Cortex-M0 and Cortex-M0+ Processors.
Elsevier, 2015, pp. 55–86.

[18] R. Panta and S. Bagchi, “Hermes: Fast and Energy Efficient
Incremental Code Updates for Wireless Sensor Networks,” in
IEEE INFOCOM 2009 - The 28th Conference on Computer Commu-
nications. IEEE, 2009, pp. 639–647.

[19] R. Panta, S. Bagchi, and S. Midkiff, “Zephyr: efficient incremental
reprogramming of sensor nodes using function call indirections
and difference computation,” in USENIX, 2009.

[20] N. Shafi, K. Ali, and H. Hassanein, “No-reboot and zero-flash
over-the-air programming for Wireless Sensor Networks,” in
Proc. of the 9th Annual IEEE Communications Society Conference on
Sensor, Mesh and Ad Hoc Communications and Networks (SECON),
2012, pp. 371–379.

[21] D. Frisch, S. Reimann, and C. Pape, “An Over the Air Update
Mechanism for ESP8266 Microcontrollers,” 2017.

[22] M. Farooq and T. Kunz, “Operating Systems for Wireless Sensor
Networks: A Survey,” Sensors, pp. 5900–5930, 2011.

[23] S. Nisha and M. Farik, “RSA Public Key Cryptography Algorithm
A Review,” International Journal of Scientific & Technology Research,
pp. 187–191, 2017.

[24] F. D’Souza and D. Panchal, “Advanced encryption standard (aes)
security enhancement using hybrid approach,” in Proceedings
of the International Conference on Computing, Communication and
Automation (ICCCA), 2017, pp. 647–652.

[25] M. Mughal, X. Luo, A. Ullah, S. Ullah, and Z. Mahmood, “A
lightweight digital signature based security scheme for human-
centered internet of things,” IEEE Access, pp. 31 630–31 643, 2018.

[26] U. Banerjee, A. Wright, C. Juvekar, M. Arvind, and A. Chan-
drakasan, “An energy-efficient reconfigurable dtls cryptographic
engine for securing internet-of-things applications,” IEEE Journal
of Solid-state circuits, vol. 54, pp. 2339–2352, 2019.

[27] A. Tal, “White Paper Two Flash Technologies Compared : NOR
vs NAND,” 2002.

[28] O. Kachman, “Effective multiplatform firmware update process
for embedded low-power devices,” 2018. [Online]. Available:
http://acmbulletin.fiit.stuba.sk/vol11num1/kachman2019.pdf

[29] W. Dong, Y. Liu, X. Wu, L. Gu, and C. Chen, “Elon: enabling
efficient and long-term reprogramming for wireless sensor net-
works,” in Proc. of the ACM SIGMETRICS international conference
on Measurement and modeling of computer systems - SIGMETRICS
’10. ACM Press, 2010, p. 49.

[30] S. Kulkarni and L. Wang, “MNP: Multihop Network Reprogram-
ming Service for Sensor Networks,” in 25th IEEE International
Conference on Distributed Computing Systems (ICDCS’05), 2005, pp.
7–16.

[31] T. Stathopoulos, J. Heidemann, and D. Estrin, “A Remote Code
Update Mechanism for Wireless Sensor Networks,” Tech. Rep.,
2004.

[32] M. Ersue, D. Romascanu, J. Schoenwaelder, and A. Sehgal,
“Management of Networks with Constrained Devices: Use Cases,
rfc7548,” Tech. Rep., 2015.

[33] N. Reijers and K. Langendoen, “Efficient Code Distribution in
Wireless Sensor Networks,” in Proc. of the 2nd ACM International
Conference on Wireless Sensor Networks and Applications. Associa-
tion for Computing Machinery, 2003, pp. 60–67.

[34] J. Pallister, K. Eder, S. Hollis, and J. Bennett, “A High-Level Model
of Embedded Flash Energy Consumption,” in Proc. of the 2014
International Conference on Compilers, Architecture and Synthesis for
Embedded Systems. Association for Computing Machinery, 2014.

[35] W. Dong, B. Mo, C. Huang, Y. Liu, and C. Chen, “R3: Optimiz-
ing relocatable code for efficient reprogramming in networked
embedded systems,” in Proc. of the IEEE INFOCOM, 2013, pp.
315–319.

[36] W. Dong, Y. Liu, C. Chen, J. Bu, C. Huang, and Z. Zhao,
“R2: Incremental Reprogramming Using Relocatable Code in
Networked Embedded Systems,” IEEE Transactions on Computers,
vol. 62, pp. 1837–1849, 2013.

[37] C. Zhang, W. Ahn, Y. Zhang, and B. R. Childers, “Live code
update for IoT devices in energy harvesting environments,”
in Proc. of the 5th Non-Volatile Memory Systems and Applications
Symposium (NVMSA). IEEE, 2016, pp. 1–6.

[38] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating Sys-
tems for Low-End Devices in the Internet of Things: A Survey,”
IEEE Internet of Things Journal, pp. 720–734, 2016.

[39] N. Aschenbruck, J. Bauer, J. Bieling, A. Bothe, and
M. Schwamborn, “Selective and Secure Over-The-Air Program-
ming for Wireless Sensor Networks,” in 2012 21st International
Conference on Computer Communications and Networks (ICCCN),
2012, pp. 1–6.

[40] H. Zhu, Z. Zhang, J. Du, S. Luo, and Y. Xin, “Detection of selective
forwarding attacks based on adaptive learning automata and
communication quality in wireless sensor networks,” Interna-
tional Journal of Distributed Sensor Networks, vol. 14, 2018.

[41] E. Frimpong and A. Michalas, “IoT-CryptoDiet: Implementing a
Lightweight Cryptographic Library based on ECDH and ECDSA
for the Development of Secure and Privacy-Preserving Protocols
in Contiki-NG,” 2020.

[42] V. Lakkundi and K. Singh, “Lightweight DTLS implementation in
CoAP-based Internet of Things,” in Proceedings of ADCOM, 2014.

https://datatracker.ietf.org/doc/rfc7228/
http://acmbulletin.fiit.stuba.sk/vol11num1/kachman2019.pdf

23

[43] E. Tragos, A. Fragkiadakis, V. Angelakis, and H. Pohls, “De-
signing secure iot architectures for smart city applications,” in
Designing, Developing, and Facilitating Smart Cities: Urban Design
and IoT Solutions. Springer, 2017.

[44] A. Fragkiadakis and E. Tragos, “A trust-based scheme employing
evidence reasoning for iot architectures,” in IEEE 3rd World Forum
on Internet of Things (WF-IoT), 2016, pp. 559–564.

[45] L. Li, Z. Xi, Y. Zhu, and S. Wang, “Improvement and implemen-
tation of rpl routing protocol in wireless sensor networks,” in
WiCOM, 2018.

[46] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, “Lessons
from a sensor network expedition,” in EWSN, 2004.

[47] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. Halderman, L. Invernizzi, M. Kallit-
sis, D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, and K. T. an Y. Zhou, “Understanding the mirai
botnet,” in 26th USENIX Security Symposium, 2017, pp. 1093–1110.

[48] A. Kishore, “Turning internet of things (iot) into internet of
vulnerabilities (iov) : Iot botnets,” 2017. [Online]. Available:
https://arxiv.org/abs/1702.03681v1

[49] E. Ronen, A. Shamir, A. Weingarten, and C. OFlynn, “IoT Goes
Nuclear: Creating a ZigBee Chain Reaction,” in Proceedings of
IEEE Symposium on Security and Privacy, 2017.

[50] O. Kachman, “Configurable Reprogramming Scheme for Over-
theAir Updates in Networked Embedded Systems,” 2016.
[Online]. Available: http://www.fit.vutbr.cz/events/pad2016/
download/sbornik/11-Kachman.pdf

[51] H. Park, J. Jeong, and P. Mah, “Non-invasive rapid and efficient
firmware update for wireless sensor networks,” in Proc. of the
2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing Adjunct Publication - UbiComp ’14 Adjunct. ACM
Press, 2014, pp. 147–150.

[52] “Map files GNU.” [Online]. Available: https://ftp.gnu.org/old-
gnu/Manuals/ld-2.9.1/html node/ld 3.html

[53] I. Adly, H. Ragai, A. El-Hennawy, and K. Shehata, “Over-The-
Air Programming of PSoC Sensor Interface in Wireless Sensor
Networks,” in Proc. of the Mediterranean Electrotechnical Conference
- MELECON, 2010, pp. 997 – 1002.

[54] R. Parthasarathy, N. Peterson, W. Song, A. Hurson, and B. Shirazi,
“Over the Air Programming on Imote2-Based Sensor Networks,”
in 2010 43rd Hawaii International Conference on System Sciences,
2010, pp. 1–9.

[55] “Tmote Sky,” 2006. [Online]. Available: https://insense.cs.st-
andrews.ac.uk/files/2013/04/tmote-sky-datasheet.pdf

[56] MICAz. [Online]. Available: http://www.openautomation.net/
uploadsproductos/micaz datasheet.pdf

[57] J. Koshy and R. Pandey, “Remote incremental linking for energy-
efficient reprogramming of sensor networks,” in Proc. of the
Second European Workshop on Wireless Sensor Networks, 2005. Is-
tanbul, Turkey: IEEE, 2005, pp. 354–365.

[58] C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “SOS
-A Dynamic operating system for Sensor Networks,” in Proc. of
MobiSys, 2005.

[59] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight
and flexible operating system for tiny networked sensors,” in 29th
Annual IEEE International Conference on Local Computer Networks,
2004, pp. 455–462.

[60] J. Hu, C. J. Xue, Y. He, and E. H.-M. Sha, “Reprogramming
with Minimal Transferred Data on Wireless Sensor Network,” in
Proc. of the 6th International Conference on Mobile Adhoc and Sensor
Systems. Macau, China: IEEE, 2009, pp. 160–167.

[61] J. Jeong, “Node-level Representation and System Support for
Network Programming,” 2003.

[62] A. Tridgell, “Efficient algorithms for sorting and synchroniza-
tion,” Ph.D. dissertation, The Australian National University,
1999.

[63] D. Korn, J. MacDonald, J. Mogul, and K. Vo, The VCDIFF Generic
Differencing and Compression Data Format. RFC Editor, 2002,
published: RFC 3284.

[64] B. Mazumder and J. O. Hallstrom, “An efficient code update
solution for wireless sensor network reprogramming,” in Proc. of
the 2013 International Conference on Embedded Software (EMSOFT),
2013, pp. 1–10.

[65] B. Mo, W. Dong, C. Chen, J. Bu, and Q. Wang, “An efficient
differencing algorithm based on suffix array for reprogramming
wireless sensor networks,” in Proc. of the 2012 IEEE International
Conference on Communications (ICC), 2012, pp. 773–777.

[66] O. Kachman and M. Balaz, “Optimized differencing algorithm
for firmware updates of low-power devices,” in 2016 IEEE 19th
International Symposium on Design and Diagnostics of Electronic
Circuits & Systems (DDECS). IEEE, 2016, pp. 1–4.

[67] J. J. and D. Culler, “Incremental network programming for wire-
less sensors,” in Proc. of the First Annual IEEE Communications
Society Conference on Sensor and Ad Hoc Communications and Net-
works., 2004, pp. 25–33.

[68] D. Hirschberg, “A Linear Space Algorithm for Computing Max-
imal Common Subsequences,” Commun. ACM, vol. 18, pp. 341–
343, 1975.

[69] R. Dementiev, J. Krkkinen, J. Mehnert, and P. Sanders, “Better ex-
ternal memory suffix array construction,” Journal of Experimental
Algorithmics, vol. 12, 2008.

[70] K. Lehniger and S. Weidling, “The Impact of Diverse Execution
Strategies on Incremental Code Updates for Wireless Sensor Net-
works:,” in Proceedings of the 8th International Conference on Sensor
Networks. SCITEPRESS - Science and Technology Publications,
2019, pp. 30–39.

[71] F. Stann and J. Heidemann, “RMST: reliable data transport in
sensor networks,” in Proceedings of the First IEEE International
Workshop on Sensor Network Protocols and Applications, 2003., 2003,
pp. 102–112.

[72] S. Kulkarni and M. Arumugam, “Infuse: A TDMA Based Data
Dissemination Protocol for Sensor Networks,” International Jour-
nal of Distributed Sensor Networks, vol. 2, pp. 55–78, 2006.

[73] V. Naik, A. Arora, P. Sinha, and H. Z., “Sprinkler: a reliable
and energy efficient data dissemination service for wireless em-
bedded devices,” in 26th IEEE International Real-Time Systems
Symposium (RTSS’05), 2005, pp. 10 pp.–286.

[74] Y. Tseng, S. Ni, Y. Chen, and J. Sheu, “The Broadcast Storm
Problem in a Mobile Ad Hoc Network,” Wireless Networks, vol. 8,
pp. 153–167, 2002.

[75] S. Alagar, S. Venkatesan, and J. Cleveland, “Reliable broadcast in
mobile wireless networks,” in Proceedings of MILCOM ’95, vol. 1,
1995, pp. 236–240 vol.1.

[76] A. Chlipala, J. Hui, and G. Tolle, “Deluge: Data dissemination
for network reprogramming at scale,” in Class project, Berkeley,
University of California, 2004.

[77] A. Hagedorn, D. Starobinski, and A. Trachtenberg, “Rateless
Deluge: Over-the-Air Programming of Wireless Sensor Networks
Using Random Linear Codes,” in 2008 International Conference
on Information Processing in Sensor Networks (ipsn 2008), 2008, pp.
457–466.

[78] C. Dong and F. Yu, “An efficient network reprogramming pro-
tocol for wireless sensor networks,” Computer Communications,
vol. 55, 2014.

[79] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate
and Scalable Simulation of Entire TinyOS Applications,” in Pro-
ceedings of the 1st international conference on Embedded networked
sensor systems, 2003.

[80] J. Elson, S. Bien, N. Busek, V. Bychkovskiy, A. Cerpa, D. Ganesan,
L. Girod, B. Greenstein, T. Schoellhammer, T. Stathopoulos, and
D. Estrin, “EmStar: An Environment for Developing Wireless
Embedded Systems Software,” Tech. Rep., 2003.

[81] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: A Self-
Regulating Algorithm for Code Propagation and Maintenance
in Wireless Sensor Networks,” in Proceedings of the 1st Conference
on Symposium on Networked Systems Design and Implementation -
Volume 1. USENIX Association, 2004.

[82] R. Panta, I. Khalil, and S. Bagchi, “Stream: Low Overhead
Wireless Reprogramming for Sensor Networks,” in Proc. of IEEE
Infocom, 2007, pp. 928 – 936.

[83] L. Huang and S. Setia, “CORD: Energy-Efficient Reliable Bulk
Data Dissemination in Sensor Networks,” in IEEE INFOCOM
2008 - The 27th Conference on Computer Communications, 2008, pp.
574–582.

[84] J. Hill and D. Culler, “Mica: a wireless platform for deeply
embedded networks,” IEEE Micro, vol. 22, no. 6, pp. 12–24, 2002.

[85] B. Djamaa and M. Richardson, “Optimizing the Trickle Algo-
rithm,” IEEE Communications Letters, vol. 19, no. 5, pp. 819–822,
2015.

[86] B. Ghaleb, A. Al-Dubai, and E. Ekonomou, “E-Trickle: Enhanced
Trickle Algorithm for Low-Power and Lossy Networks,” in 2015
IEEE International Conference on Computer and Information Technol-
ogy; Ubiquitous Computing and Communications; Dependable, Auto-
nomic and Secure Computing; Pervasive Intelligence and Computing.
IEEE, 2015, pp. 1123–1129.

https://arxiv.org/abs/1702.03681v1
http://www.fit.vutbr.cz/events/pad2016/download/sbornik/11-Kachman.pdf
http://www.fit.vutbr.cz/events/pad2016/download/sbornik/11-Kachman.pdf
https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html
https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html
https://insense.cs.st-andrews.ac.uk/files/2013/04/tmote-sky-datasheet.pdf
https://insense.cs.st-andrews.ac.uk/files/2013/04/tmote-sky-datasheet.pdf
http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf
http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf

24

[87] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital
fountain approach to reliable distribution of bulk data,” ACM
SIGCOMM Computer Communication Review, pp. 56–67, 1998.

[88] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi,
and B. Leong, “A Random Linear Network Coding Approach
to Multicast,” IEEE Transactions on Information Theory, pp. 4413–
4430, 2006.

[89] Prabal D., M. Grimmer, A. Arora, S. Bibyk, and D. Culler, “Design
of a wireless sensor network platform for detecting rare, random,
and ephemeral events,” in IPSN 2005. Fourth International Sympo-
sium on Information Processing in Sensor Networks, 2005., 2005, pp.
497–502.

[90] B. Wang, Y. Chen, H. Gu, J. Yang, and T. Zhao, “Two Energy-
Efficient, Timesaving Improvement Mechanisms of Network Re-
programming in Wireless Sensor Network,” in Embedded Software
and Systems. Springer Berlin Heidelberg, 2005, pp. 473–483.

[91] S. Park, R. Vedantham, R. Sivakumar, and I. Akyildiz, “A scal-
able approach for reliable downstream data delivery in wireless
sensor networks,” in Proceedings of the 5th ACM international
symposium on Mobile ad hoc networking and computing - MobiHoc
’04, 2004.

[92] S. Guha and S. Khuller, “Approximation Algorithms for Con-
nected Dominating Sets,” Algorithmica, pp. 374–387, 1998.

[93] X. Cheng, M. Ding, D. Du, and X. Jia, “Virtual backbone construc-
tion in multihop ad hoc wireless networks,” Wireless Communica-
tions and Mobile Computing, pp. 183–190, 2006.

[94] A. Liu and P. Ning, “TinyECC: A Configurable Library for
Elliptic Curve Cryptography in Wireless Sensor Networks,” in
2008 International Conference on Information Processing in Sensor
Networks (ipsn 2008), 2008, pp. 245–256.

[95] S. Hyun, P. Ning, A. Liu, and W. Du, “Seluge: Secure and DoS-
Resistant Code Dissemination in Wireless Sensor Networks,” in
2008 International Conference on Information Processing in Sensor
Networks (ipsn 2008), 2008, pp. 445–456.

[96] A. Shoufan and N. Huber, “A fast hash tree generator for Merkle
signature scheme,” in Proceedings of 2010 IEEE International Sym-
posium on Circuits and Systems, 2010, pp. 3945–3948.

[97] P. Ning, A. Liu, and W. Du, “Mitigating DoS attacks against

broadcast authentication in wireless sensor networks,” ACM
Transactions on Sensor Networks, vol. 4, pp. 1–35, 2008.

[98] P. Lanigan, R. Gandhi, and P. Narasimhan, “Sluice: Secure
Dissemination of Code Updates in Sensor Networks,” in 26th
IEEE International Conference on Distributed Computing Systems
(ICDCS’06), 2006.

[99] P. Dutta, J. Hui, D. Chu, and D. Culler, “Securing the deluge
Network programming system,” in IPSN, 2006.

[100] K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Bac-
celli, “Secure firmware updates for constrained iot devices using
open standards: A reality check,” IEEE Access, 2019.

[101] N. Asokan, T. Nyman, N. Rattanavipanon, A. Sadeghu, and
G. Tsudik, “Assured: Architecture for secure software update of
realistic embedded devices,” IEEE Transactions On Computer-aided
Design Of Integrated Circuits and Systems, pp. 2290–2300, 2018.

[102] K. Eldefrawy, N. Rattanavipanon, and G. Tsudik, “Hydra: hybrid
design for remote attestation (using a formally verified microker-
nel),” in Proceedings of ACM WiSec, 2017, pp. 99–110.

[103] S. Pinto and N. Santos, “Demystifying arm trustzone: A compre-
hensive survey,” ACM Computing Surveys, 2019.

[104] K. Doddapaneni, R. Lakkundi, S. Rao, S. G. Kulkarni, and B. Bhat,
“Secure FoTA Object for IoT,” in 2017 IEEE 42nd Conference on
Local Computer Networks Workshops (LCN Workshops), 2017, pp.
154–159.

[105] “Mender - Open source over-the-air software updates for Linux
devices.” [Online]. Available: https://mender.io/

[106] “Arm Pelion IoT Platform.” [Online]. Available: https://www.
pelion.com

[107] “Balena - the complete IoT fleet management platform.”
[Online]. Available: https://www.balena.io

[108] “Particle.” [Online]. Available: https://www.particle.io/
[109] “FreeRTOS - real-time operating system for microcontrollers.”

[Online]. Available: https://www.freertos.org/
[110] “Yocto Project.” [Online]. Available: https://www.yoctoproject.

org/
[111] “Amazon Web Services IoT.” [Online]. Available: https:

//aws.amazon.com/iot

https://mender.io/
https://www.pelion.com
https://www.pelion.com
https://www.balena.io
https://www.particle.io/
https://www.freertos.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://aws.amazon.com/iot
https://aws.amazon.com/iot

	1 Introduction
	2 Main challenges and limitations for over-the-air programming
	2.1 Limited memory, storage and processing power
	2.2 Flash memory degradation
	2.3 Energy consumption
	2.4 Overhead due to node reboot
	2.5 Group-wise IoT node re-programming in heterogeneous environments
	2.6 Network flooding
	2.7 Data and state consistency
	2.8 Security

	3 Over-the-air programming essential operations
	3.1 Improving firmware images similarity
	3.1.1 Slop regions
	3.1.2 Position independent code (PIC)
	3.1.3 Indirection tables
	3.1.4 Interrupt service routines pinning
	3.1.5 Global variables' address pinning
	3.1.6 Relocatable code
	3.1.7 In-place patching
	3.1.8 Dynamic linking of modified firmware sections
	3.1.9 Modules extraction
	3.1.10 Replaceable components

	3.2 Differencing algorithms
	3.2.1 Fixed block comparison (FBC)
	3.2.2 Rsync
	3.2.3 Reprogramming with minimal transferred data (RMTD)
	3.2.4 Hirschberg's trick
	3.2.5 R3diff
	3.2.6 An efficient differencing algorithm based on suffix array (DASA)
	3.2.7 Delta generator (DG)

	3.3 Dissemination protocols
	3.3.1 Trickle
	3.3.2 Deluge
	3.3.3 Rateless and ACKLess Deluge
	3.3.4 Multihop Over-the-Air Programming (MOAP)
	3.3.5 Multi-hop network reprogramming (MNP)
	3.3.6 XNP
	3.3.7 COre based Reliable Dissemination (CORD)
	3.3.8 Adaptive Code Dissemination Protocol (ACDP)
	3.3.9 Stream

	4 over-the-air programming security
	4.1 Selective 'n' Secure OTAP protocol (SenSeOP)
	4.2 Secure and DoS-Resistant Code Dissemination in Wireless Sensor Networks (Seluge)
	4.3 Secure dissemination of code updates in sensor networks (Sluice)
	4.4 Securing Deluge
	4.5 Secure firmware updates using open standards
	4.6 Secure software update of realistic embedded devices (ASSURED)
	4.7 Secure FOTA object for IoT

	5 Platforms supporting firmware over-the-air programming
	5.1 Mender
	5.2 ARM Pelion
	5.3 Balena
	5.4 Particle
	5.5 AWS IoT - FreeRTOS

	6 Conclusion
	References

