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Analysts wishing to explore multivariate data spaces, typically issue queries involving selection operators, i.e.,

range or equality predicates, which define data subspaces of potential interest. Then, they use aggregation

functions, the results of which determine a subspace’s interestingness for further exploration and deeper

analysis. However, Aggregate Query (AQ) results are scalars and convey limited information and explainability

about the queried subspaces for enhanced exploratory analysis. Analysts have no way of identifying how these

results are derived or how they change w.r.t query (input) parameter values. We address this shortcoming by

aiding analysts to explore and understand data subspaces by contributing a novel explanation mechanism

based on Machine Learning. We explain AQ results using functions obtained by a three-fold joint optimization

problem which assume the form of explainable piecewise-linear regression functions. A key feature of the

proposed solution is that the explanation functions are estimated using past executed queries. These queries

provide a coarse grained overview of the underlying aggregate function (generating the AQ results) to be

learned. Explanations for future, previously unseen AQs can be computed without accessing the underlying

data and can be used to further explore the queried data subspaces, without issuing more queries to the

backend analytics engine. We evaluate the explanation accuracy and efficiency through theoretically grounded

metrics over real-world and synthetic datasets and query workloads.

CCS Concepts: •Mathematics of computing→ Exploratory data analysis; • Information systems→
Data analytics; • Computing methodologies→ Supervised learning by regression.

Additional Key Words and Phrases: Explainability, data exploration, aggregate query explanation, range query

explanation.
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1 INTRODUCTION
In the era of big data, analysts wish to explore, understand and explain processed data in an

efficient and effective manner. The typical exploration procedure followed by analysts is rather

ad-hoc and domain specific, but invariantly includes the fundamental step of exploratory analysis
[27]. Exploring data spaces is central for testing hypotheses, building predictive models, modeling

data trends, etc. Once this step is complete, the possibilities are endless: from models that predict

markets and provide product recommendations to models that decide whether a tumor is benign

or malignant.

To this end, Aggregate Queries (AQs), e.g., COUNT, SUM, AVG, play a key role in exploratory analysis,
as they summarize data regions of interest. The regions are often defined using range operators. A
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2 Savva, et al.

range operator limits the number of returned rows (tuples/data items) by restricting the result set to

rows within a given region. Using such aggregates, analysts decide whether a data region is of high

importance, depending on the task at hand. However, AQs return scalars (single statistics/values)

conveying little information for further explaining the underlying data subspace defined by the

retrieved rows. For instance, imagine checking whether a particular range of Zip Postal Codes is

of interest, where the latter depends on the number of persons having relatively ‘high’ income: if

this number of a particular subspace is e.g., 273, then what does this value mean and/or what other
information one could extract by this scalar statistic? If the selection (range) predicate was less or

more selective, how would this statistic change? In addition, if the analyst wanted to approximate

the values of input parameters that would generate the maximum/minimum output statistic for

a particular region then, a number of extra AQs would have to be executed. To answer such

exploratory questions and enhance analysts’ understanding of the queried subspace, one needs to

issue more queries to further explore nearby regions. In the beginning of the process, the analyst

has no holistic understanding of the space that would steer them in the right direction w.r.t. which

and how many queries to issue next; as such, further exploration becomes ad-hoc, wandering,

unsystematic, and uninformed. This might, reflect additional cost (e.g., DB access, computations,

query processing cost) due to the execution of possibly redundant queries since no systematic

guidance is provided to the analysts.

In addition, the importance of AQs in data exploration and analysis is eminent as almost any

operation can be described as a collection and/or combination of AQs. For instance, histograms

construction can be achieved by executing a number of AQs using range queries. Extracting

descriptive statistics for sub-spaces in a dataset, such as various moments (mean, variance, skewness,

kurtosis) can also be described by such AQs. To this end, the main objective of this work is to find

ways to assist analysts in understanding and analyzing subspaces by explaining AQs as efficiently

and effectively as possible.

Our goal is to explain how an AQ result over a data subspace is derived. This is required so

one can infer the potential impact of a change in the query parameters that defines the queried

subspace. The parameters defining a subspace are essentially the predicates in an AQ. A convenient

way to represent how a statistic is derived (in terms of compactly and succinctly conveying rich

information) is by adopting a statistical regression function. A regression function describes how

an output depends upon independent variables (input) and shows the contribution of each one

of those variables to the output. For example, we can derive a regression function that explains

how the average (mean) household income for each region is generated, based on the size of the

region. Thus, the resulting function can inform the data scientists as to how influential the size of a

region is and how different results are generated across its different subregions. This functionality

is expected to allow the discovery of interesting patterns during exploratory analytics. In addition,

such functions can be utilized to interpolate or extrapolate values (approximate AQ results with

varying parameters) and generate more predicted data items that can later be used for further

analysis. Therefore, the generated regression functions can be used for both predicting the results

of AQs and estimating the structural form of the aggregate function generating the results.

To elaborate on our objective, we provide a running example: consider that every result of an

AQ is obtained by a black-box aggregate function as shown at Figure 1. An initial SQL query

(AQ) is issued and is processed by the DBMS. This particular AQ query defines a region bounding

dimensions/attributes (x1,x2). An aggregate/statistic is then computed on dimension/attribute x3.
Each aggregate function in an AQ can be represented by a different black-box function that accepts

a set of input parameters and maps to a result. The structural form of this black-box function is

unknown. We can only observe the result given a set of inputs as shown at Figure 1. In this case,

the input are the query parameters defining an AQ. Given a number of such observations, we can
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AQ DBMS

𝒇𝒇𝒇

SELECT AGG(x3) 

FROM B

WHERE x1>= $X-$Θ1 AND x1<=$Χ1+$Θ1

AND x2>=$Υ-Θ2 AND x2<=$Υ2+Θ2

ΑQ

AGG(x3)
Black-Box function
Observations

Fig. 1. The range predicates in an Aggregate Query (AQ) represent the input parameters of a black-box
function that generates the corresponding aggregation results.

adopt Machine Learning (ML) methods to approximate its structural form using ML models that are

highly interpretable. In doing this, the analysts can infer the potential impact different parameters

have on the result/statistic and guide them efficiently and effectively to explore other sub-spaces

inexpensively.

Unfortunately, state of the art DB Management Systems (DBMS) and Big Data engines do not

provide explanations for AQs, even though they can be of great assistance to analysts. The gap to

be filled, is non-trivial as one has to find efficient, scalable and accurate methods of providing such

functionality (coined here as explainability). Even though explanation methods have recently been

gaining attention in the relevant literature, these are not oriented to aid exploratory analytics and

they typically require physical access to potentially large-scale datasets, which makes them time-

and resource-costly. In this paper, we propose a novel framework which provides explanations as

to how AQ results are derived while being efficient to compute.

1.1 Motivation and Scenarios
We focus on AQs with a range selection operator because of their wide-applicability in analytics

tasks. A range operator is defined by a hyper-rectangle in multi-dimensional space. An example of

a series of AQs is shown at Figure 2. The range predicates of an AQ are used to represent rectangles.

Such operator is evident in many applications including: location-based search, e.g searching for

spatially-close objects, such as astronomical objects, objects within a geographical region etc.

Scenario 1: Crimes Data. Consider analyzing a dataset containing recorded incidents along

with their location and the type of crime (homicide, burglary, etc.), like the Chicago Crimes Dataset

[1]. A typical exploration is to issue the AQ with a range operator:

SELECT COUNT(*) AS y FROM Crimes AS C
WHERE C.X > $X - $Theta_1 AND C.X < $X + $Theta_1 AND
C.Y > $Y - $Theta_2 AND C.Y < $Y + $Theta_2;

This query can be represented by a rectangle with a 2D center and two variables representing the

length of the first and second dimension. The 2D center of the rectangle is defined by the point ($X,
$Y) and length by $Θ1, $Θ2 in both dimensions. Such AQ returns the number (count) of crimes in

a specific area of interest defined as above corresponding to an arbitrary neighborhood; see Figure
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SELECT AGG(x3) 

FROM B

WHERE x1>= $X-$Θ1 AND x1<=$Χ1+$Θ1

AND x2>=$Υ-Θ2 AND x2<=$Υ2+Θ2

$Y

$X

($X-$Θ1 , 

$Υ-Θ2 )
($X+$Θ1 , 

$Υ-Θ2 )

($X+$Θ1 , 

$Υ+Θ2 )

($X-$Θ1 , 

$Υ+Θ2 )

Fig. 2. A number of 4-dimensional aggregate queries (AQs) represented as rectangles in the 2D data space
defined by X and Y features. Each coordinate is constructed by the sum of the corresponding dimension and
its length over the data space.

2. Using several such AQs, we build regression functions with input variables the AQ parameters:

($X, $Y, $Θ1, $Θ2) and output y, i.e., the count statistic. The estimated regression coefficients would

then provide a way for the analysts to infer the potential impact query parameters (defined region)

will have on the outcome, e.g., count of crimes in that region in our example. Therefore, the analysts

acquire knowledge of which AQs will provide answers tailored to their interests. For instance, if

they are interested in high crime index (increased output y), then the regression coefficients can

inform them as to which query to execute next by changing the corresponding query parameters.

Scenario 2: Telecommunication Calls Data. Consider a data scientist tasked with identifying

time-frames having high average call times. They need to issue AQs of varying-sized ranges over

time, such as the following range-AQ:

SELECT AVG(Call_Time) AS y FROM TCD AS C
WHERE C.Time BETWEEN
$X-$Theta AND $X+$Theta

Discovering the aforementioned time-frames, without our proposed explanations, can be a daunting

task as multiple queries have to be issued, overflowing the system with a number of AQs. These

could take minutes or hours to execute depending on the data size and throughput of the system. By

using our proposed explanation function, the analyst could carry out their task with highly accurate

answers. This is achieved by plugging in different query parameters to the given explanation

function. Beyond that, analysts could formulate an optimization problem that could be solved using

our methodology. Given a differentiable aggregation function, the maxima and minima points

can also estimated, thus, the analysts can easily discover the query parameters at which the AQ

result is maximized or minimized. Again, such functionality is very much lacking and is crucial for

exploratory analytics.

Another important point to make here is that we do not strive to explain individual SQL queries.

We merely adopt the use of SQL due to its prevalence as the language of choice in data analytic

systems. Instead what we are aiming at is a way to explain how the aggregate result of a particular

SQL query would change given different query parameters. Hence, our proposed solution is not

constricted to explaining SQL queries but instead provides a way of identifying which spaces to
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Fig. 3. Cluster analysis and formation of a real query workload (source: SDSS [47]); x1 and x2 are parameters
of a range query.

explore next. This would in turn help the analyst limit the number of SQL queries that they would

execute against an expensive (in terms of computation) data analytic system.

1.2 Problem Definition
We consider the statistic output (result) of an AQ stemming from an unknown function, hereinafter

referred to as the true function; with that true function’s output fluctuating as the query parameter

values of an AQ change. Thus, we are faced with the problem of approximating the true function

with high accuracy. Using the aforementioned facts, we define an optimization problem to find

an optimal approximation to the true function. In turn, this problem is further deconstructed into

three optimization (sub)problems. The first one seeks the optimal query prototype parameters

representing a query space. The described AQs often form clusters as a number of AQs are issued

with similar parameters. This is evident from Figure 3 displaying AQs (from real-world analytical

query workload [47]) forming clusters in the query space. AQs clustered together are expected to

have similar results, thus, similar true functions. Consequently, we are interested in finding a set of

optimal query prototype parameters to represent queries in each one of those clusters, as this will be

more accurate than one set of global prototype parameters
1
. The second part of the deconstructed

optimization problem is approximating the true function(s) using a known class/family of functions

over the clustered query space. To this end, we use piecewise-linear functions that are fitted over

the clustered query space. In addition, based on historically executed queries and incoming queries,

we define a third joint optimization problem, which is solved in an on-line manner by adapting

both the obtained optimal parameters and the approximate explanation function from the first two

sub problems.

2 RELATEDWORK & CONTRIBUTIONS
2.1 Related Work
Our overarching aim is to provide explanations for AQ, whose efficient computation has been a

major research interest [4, 7, 8, 15, 17, 25, 26, 39, 52, 56], with methods applying sampling, synopses

and Machine Learning (ML) models to compute such queries. Compared to our work, the above

works are largely complementary. One distinguishing feature is that our primary task is to explain
the AQ results and do so efficiently, accurately, and scalably w.r.t. increasing data sizes. Others also

focus on the task of assisting analysts by building systems for efficient visual analytics systems

[18, 49]. However, we note that our work is different in that it offers explanations for aggregates

1
This basically represents all queries in a cluster by one query.
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(as functions) that can be visualised (as the aforementioned works) but can also be adopted for

assisting exploration and for answering subsequent queries.

Explanation techniques have emerged in multiple contexts within the data management and

ML communities. Their origin stems from data provenance [16], but has since departed from

this notion, and focuses on explanations in varying contexts. One of such contexts is to provide

explanations, represented as predicates, for simple query answers as in [19, 35, 42]. Similarly, other

authors have extended this in probabilistic and scientific databases [29], [55]. Explanations have

been also used for interpreting outliers in both in-situ data [54] and in streaming data [9]. The

authors first detect outliers, either manually or automatically, and then generate predicates or

attribute-value combinations that explain the outliers set. In [38], the authors build a system to

provide interpretations for service errors and present the explanations visually to assist debugging

large scale systems. In addition, the authors of PerfXPlain [30] created a tool to assist users while

debugging performance issues in Map-Reduce jobs. Other frameworks provide explanations used by

users to locate any discrepancies found in their data [50], [13], [51]. A recent trend is in explaining

ML models for debugging purposes [31] or to understand how a model makes predictions [41] and

conveys trust to users using these predictions.

Given the above, one can detect the central themes emerging around the concept of explanations.

When working with explanations, one has to determine the (i) domain, (ii) the scalability and

efficiency of generating explanations, and (iii) the knowledge representation. For instance, in [9] the

domain is in outliers analysis, the explanations are represented using attribute-value combinations,

and the approach is to use statistical structures that allow the analysis of streaming values.

In this work, we focus on explanations for AQs because of the AQs’ wide use in exploratory

analytics [52]. Hence the domain is AQ explanation within the context of exploratory data analysis.

Both [54] and [5] focused on explaining aggregate queries. However, the former focused on

explaining the existence of outliers in aggregate queries and the latter on tracking the ‘how?’

provenance of AQs using semi-ring formalism. Our major difference is that we explain these AQs

solely based on the query input parameters and query results of previously issued and incoming

queries, thus not having to rely on directly data access, which makes generating explanations

slow and inefficient for large-scale datasets. We wish to find ways to explain AQs and provide

further insights to data analysts for establishing informed exploratory and descriptive statistics

tasks, in an efficient manner. Hence, using the formalisms from [5] is not possible as they would be

incomprehensible and in need of provenance query language, as explicitly stated in [5].

Furthermore, scalability and efficiency are particularly important: Computing explanations is

proved to be an NP-Hard problem [50] and generating them can take a long time [19, 42, 54]

even with modest datasets. An exponential increase in data size implies a dramatic increase in

the time to generate explanations. Our framework does not suffer from such limitations and is

able to construct explanations in a matter of milliseconds even with massive data volumes. This is

achieved due to two principles: First, on workload characteristics: workloads contain a large number

of overlapping queried data subspaces, which has been acknowledged and exploited by recent

research e.g., [39, 52], STRAT[14], and SciBORQ [32] and has been found to hold in real-world

workloads involving exploratory/statistical analysis, such as in the Sloan Digital Sky Survey and in

the workload of SQLShare [28]. Second, we rely on a novel ML model that exploits the workload

characteristics to perform efficient and accurate AQ explanations by taking into consideration a

stream of query-answer pairs on-line.

2.2 Contributions
The adopted knowledge representation of explanation is in the form of regression functions. Recent

works [36, 43] use this representation as it is highly parsimonious and can pinpoint the source
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of anomalies in aggregate results. In [36] this is used to explain data records and not AQs. Past

AQs are not considered for building regression functions. Therefore our work is applied within a

different domain. This is an extension of our prior work [43]: in this paper, we extend our approach

to cover a wider variety of AQs and also extend the representation so as to be explainable by the

user/analyst. In our previous work, the given explanation included a parameterized regression

function. A function with a single parameter (the radius) parameterized by the multi-dimensional

center was given. This made it harder to interpret as the potential impact of the multi-dimensional

center was not easily inferred. Concretely, the extensions of this work are:

• Comprehensive extension of the supported AQs to include a wider variety of commonly used

aggregate functions and operators;

• Alternative knowledge representation, which includes query parameters to the generated

explanation function;

• Fast and accurate approximation of the explanation function by leveraging past and incoming

stream of query-answer pairs;

• Formulation of the explainability as a novel hetero-associative statistical learning methodol-

ogy (combination of supervised and unsupervised learning methods) along with the corre-

sponding optimization algorithm;

• A variety of visualisations constructed using a new form of explanation functions;

• Comprehensive performance evaluation of the accuracy of AQ explanations in terms of

efficiency, scalability and sensitivity analysis over real multidimensional data.

In addition to the novel extensions made by this work, we would also like to highlight that

although the underlying (base) statistical learning methods are off-the-shelf (e.g., clustering algo-

rithm, Piece-wise Linear regression models), the context and the way in which they are used is

novel in the way we combine supervised and unsupervised statistical learning. We chose not to

develop our own algorithms for regression/clustering tasks as using tested and highly regarded

methods for specialized tasks reduced the complexity of our solution. Instead, in this context we

also contribute to:

• A novel constrained-driven statistical learning methodology that combines supervised learn-

ing (regression) with unsupervised learning (clustering / vector quantization) to derive online

learning algorithms for explainability of aggregate results. Note that the underlying (base) al-

gorithms are merely a piece of the complete solution. The complete formulation and solutions

to the proposed multi-optimization problem provided in this work are novel.

• A novel hetero-associative online learning methodology, whichmanages to incrementally adjust

the models and their representatives as new queries are processed in an on-line manner.

These contribution points go far beyond the basic functionality that is provided by the underlying

methods used. Overall, even though the clustering and regression base algorithms are off-the-shelf,

the entire optimization framework along with the corresponding hetero-associative statistical

learning methods, where the algorithms are trained and the models are adjusted in both modes:

offline and online, are novel. To the best of our knowledge, this constrained-driven statistical

learning methodology is new in the area of data exploration and explainability of results.

3 EXPLANATION REPRESENTATION
A comprehensive table of notation is in Table 3 in the appendix.
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3.1 Query Vectorial Representation
Let a = [a1, . . . ,ad ] ∈ Rd denote a random row vector (data point) in the d-dimensional data space

D ⊂ Rd . A dataset B contains N random row data vectors B = {a}Ni=1; |B| = N indicates the

cardinality of the set B.

Definition 1. (Range Query) A range query is defined as the vector: q = (x,θ ), x ∈ Rd ,θ ∈ Rd+.
This vector q defines a hyper-rectangle in multi-dimensional space as a series of conjunctions of
predicates, i.e

∧d
i=1(xi − θi ≤ ai ≤ xi + θi ).

Definition 2. (Data Subspace) Given a range query, a data subspaceD(x,θ ) is the convex subspace
of Rd , which includes data vectors D(x,θ ) = {a ∈ Rd |

∧d
i=1(xi − θi ≤ ai ≤ xi + θi )}.

Definition 3. (Query Similarity) The p-norm (Lp ) distance between two query vectors q and

q′ from R2d for 1 ≤ p < ∞, is ∥q − q′∥p = (
∑d

i=1 |qi − q′i |
p )

1

p and for p = ∞, is ∥q − q′∥∞ =
maxi=1, ...,d {|qi − q

′
i |}.

Definition 4. (Aggregate Query) Given a data subspaceD(x,θ ) an AQ q = (x,θ ) with input center
x and vectorial lengthθ , an aggregate function, is represented via a regression function f : Rd×Rd+ → R
over D(x,θ ), that produces a query response variable y = f (x,θ ) which is the result/answer of the AQ.
We notate with Q ⊂ R2d the query vectorial space.

Note that range queries, in general, are over a continuous (real-valued) domain and restrict the

data (sub)space to be within a hyper-rectangle. In a categorical data space, we deal with equality

predicates in the involved queries, which is beyond the scope of this work for explanation serving.

Various encoding schemes could be utilized to encode categorical values into a continuous domain

[37], [53]. However, this requires that distances (similarities) between various categorical elements

should be given specific meaning; which is beyond the scope of this work. We focus on multi-

dimensional range queries in a continuous domain (real-valued query parameters in a vector space)

as they are largely used in the domain of exploratory analytics.

3.2 Functional Representation of Explanations
The defined AQ returns a single scalar valuey = f (x,θ ) to the analysts. We seek to explain how such

values are generated by finding a function f : Rd × Rd → R that can describe how y, is produced
given an ad-hoc query q. We first discuss possible forms of the said function. An approximate

explanation function can be linear or high-order polynomial to approximate non-linear functions.

When using high-order polynomial functions for our explanations, the analyst can no longer

interpret the structural form of the model because of all the added terms. In addition, by using

high-order polynomials we make the assumption that the order of the polynomial is known. On

the other hand, adopting a single linear function will still have trouble representing explanations

accurately. For instance, if the resulty derives from an average operator AVG or a Pearson correlation
operator CORR, then the output of the function might increase/decrease abruptly. A linear function

increases/decreases infinitely as the input increases/decreases.

Therefore, choosing the right family of functions is non-trivial. We choose to employ multiple

local linear functions to capture the possible inherent non-linearity of f as we vary the input query

parameters, i.e., x and θ vectors. Our idea for the knowledge representation of the explanation

function is that the locally linear functions are fitted through a hierarchical clustering scheme in

order to decrease the variance among the input parameters as much as possible. Linear functions

are then fitted in an iterative manner until fitting is optimal.

A Piecewise-Linear Regression (PLR) approximation of f addresses the above shortcomings by

finding the best multiple local linear regression functions. Using PLR functions, we can approximate
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true functions which are linear or non-linear in a coarse grained manner that is more interpretable

than a high-order polynomial. The analyst is simply exposed to the different locally-linear functions

under a given segment.

Definition 5. (Explanation Function) Given an AQ q = (x,θ ), an explanation function f (x,θ ) is
defined as the fusion of local piecewise linear regression functions f ≈

∑
ˆf (x,θ ) derived by the fitting

of the local functions ˆf over similar presviously executed AQ queries q′ = (x′,θ ′) to the AQ q.

Although we make the choice of using PLR functions because of their high interpretability and

flexibility to fit both linear and non-linear functions, our framework can also use other ML models

that can provide a method of estimating the importance of the input parameters. The optimization

problems to be defined later on can be adapted to work with such models. However, as we will

elaborate later, the importance of the query parameters only show the relative importance at a

particular subspace and not necessarily how the output will change w.r.t a change in the input

query parameters.

4 EXPLANATION APPROXIMATION FUNDAMENTALS
The challenge in approximating the underlying function f over the data subspaces defined by

an AQ, lies in seeking local regression functions. These functions should explain the way query

result y varies as query vector q changes without access to the underlying data, as this would harm

efficiency. We build explanation functions by only leveraging previously executed and incoming

AQs. In this section we provide the methodology followed for accurately identifying such PLR

functions.

4.1 Explanation Approximation
We utilize AQs to train statistical learning models that are able to accurately approximate the true
explanation function f for any possible query. Given these models, we no longer need access to

the underlying data, as initially we leveraged queries executed a-priori.

Formally, given a well defined explanation loss or discrepancy metric L(f , ˆf ) between the true
function f (x,θ ) and an approximated function

ˆf (x,θ ), we seek the optimal approximation function

ˆf ∗ that minimizes the Expected Explanation Loss (EEL) for all possible queries:

ˆf ∗ = argmin

ˆf ∈F

∫
x∈Rd

∫
θ ∈Rd+

L(f (x,θ ), ˆf (x,θ ))p(θ , x)dθdx, (1)

whereθ is strictly positive as it defines the data subspace covered by the query’s hyper-rectangle and

p(x,θ ) is the probability density function of the query vectors q ∈ Q. Eq(1) defines an optimization

problem that its solution gives us the optimal approximation of the true underlying function.

However, as stated earlier, accuracy will be problematic as it seems intuitively wrong that one

such function can explain all the queries at any location x ∈ Rd with any length θ ∈ Rd . Such an

explanation is not accurate because analysts issue queries over different sub-spaces of interest. For

instance, data analysts might issue AQs with a different length and a fixed center to compare if a

statistic over a small neighbourhood at a given location increase/decrease as the neighbourhood

size increases/decreases. In addition, having a fixed length and a varying center x will almost surely

produce different output as the analysts are essentially querying different fixed size areas. Even

with the use of PLRs, we found that variance in the output was still large enough that the produced

explanations were not accurate enough.

Therefore, we introduce local approximation functions
ˆf1, . . . , ˆfK that collectively minimize the

objective in (1). Thus, we no longer wish to find one global approximation to the true function for

, Vol. 1, No. 1, Article . Publication date: July 2020.



10 Savva, et al.

Fig. 4. The three different modes of the proposed framework. Each resulting output from each mode is
pipelined into the next.

all possible queries. Instead, we fit a number of locally optimal functions, where each of them can

explain a subset of possible queries. We refer to those models as Local PLR Models (LPM).

The LPMs are fitted using AQs forming a cluster of similar query parameters. For each uncovered

cluster of AQs, we fit (at least) an LPM. Therefore, if K clusters are obtained from clustering the

query vectorial space Q, then K LPMs are fitted. Intuitively, this approach exploits queries that are

similar to each other within the same cluster. It relies on the hypothesis that these queries will tend

to have similar results/answers. So in turn, the underlying true function generating their outputs

will have similar statistical structure. It will be shown that the resulting fused explanation is more

accurate as the reduced variance in the input query parameters effectively reduces the variance in

the output/answer y. This was empirically shown from our experimental workload.

Formally, to minimize the EEL, we seek K local approximation functions
ˆfk ∈ F ,k ∈ [K] from a

family of linear regression functions F , such that for each query q belonging to the partition/cluster
k of the query space, notated as Qk , the summation of the local EELs is minimized:

J0({ ˆfk }) =
∑̂
fk ∈F

∫
q∈Qk ⊂R2d

L(f (q), ˆfk (q))pk (q)dq (2)

where pk (q) is the probability density function of the query vectors belonging to a query sub-

space Qk . Thus, J0 forms our generic optimization problem mentioned in Section 1.2. Note: the

explanation loss L(f , ˆf ) represents the discrepancy of the actual explanation function f due to the

approximation of explanation
ˆf . For evaluating the loss L, we propose two different aspects: (1)

the statistical aspect, where the goodness of fit of our explanation function is measured, and (2)

the predictive accuracy denoting how well the results from the true explanation function can be

approximated using our explanation function; refer to Section 8 for these metrics.

4.2 Solution Overview
The proposed methodology for computing explanations is split into three modes (Figure 4). The
Pre-Processing Mode aims to identify the optimal number of LPMs and an initial approximation

of their parameters using previously executed queries. The overarching aim of this mode is to

jump-start our framework. In the Training Mode, the LPMs’ parameters are incrementally optimized

to minimize the objective function (2) as incoming queries are processed in an on-line manner. In

the Explanation Mode, the framework is ready to explain AQ results via the obtained LPMs.

4.2.1 Pre-Processing Mode. A training set T ofm previously executed queries q and their cor-

responding aggregate results is used as input to the Pre-Processing Mode. The central task is to

partition (quantize) the query space Q based on the observed previous queries q ∈ T into K
clusters, sub-spaces Qk , in which queries with similar centers x are grouped together. Each cluster

is then further quantized into L sub-clusters, as queries with similar centers x are separated with

regards to their θ parameter values. Therefore, this is an approach of a hierarchical query space
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ℚ1, … , ℚ𝑘 L1- Level

𝑈1,1, … , 𝑈1,𝑙 𝑈𝑘,1, … , 𝑈𝑘,𝑙 L2- Level

መ𝑓1,1

……

መ𝑓1,𝑙 …… መ𝑓𝑘,1 መ𝑓𝑘,𝑙… … LPMs

Fig. 5. The hierarchical hetero-associative learning and quantization scheme provides levels of partitioning
for the multi-dimensional query center x and region sizes θ . Each LPM is associated and trained with the
data points included in a data cluster in L2.

quantization, with the first level partition w.r.t. center x and second level partition w.r.t. parameter

θ , where each Level-1 (L1) cluster Qk ,k = 1, . . . ,K is associated with a number of Level-2 (L2)

sub-clusters Ukl , l = 1, . . . ,L. For each L1 cluster Qk and L2 sub-cluster Ukl , we assign an L1

representative, hereinafter referred to as Location Representative (LR) and an L2 representative,

hereinafter referred to as Region Representative (RR). The LR converges to the mean vector of the

centers of all queries belonging to L1 cluster Qk , while the associated RR converges to the mean

length value of the lengths of all queries, whose lengths values belong to Ukl . After the hierarchical

quantization of the query space, the task is to associate an LPM ˆfkl (q) with each L2 sub-cluster

Ukl . This process is nicely summarized in Figure 5. At L1 we have the partitioned Query Space

Q = Q1 ∪Q2, . . . ,Qk−1 ∪Qk . Each one of the partitions is associated with a sub-cluster at L2 which

are also associated with an LPM.

4.2.2 Training Mode. This mode optimally adapts/tunes the clustering parameters (LR and RR

representatives) of the pre-processing mode in order to minimize the objective function in (2). This

optimization process is achieved incrementally by processing each new pair (qi ,yi ) in an on-line

manner. Consulting Figure 6, in Training mode, each incoming query qi is projected/mapped to

the closest LR corresponding to a L1 cluster. Since, the closest LR is associated with a number of

L2 RRs, the query is then assigned to one of those RRs, and then the associated representatives

are adapted/fine-tuned. After a pre-specified number of processed queries, the corresponding LPM

ˆfkl (q) is re-adjusted to account for the newly associated queries.

4.2.3 Explanation Mode. In this mode no more modifications to LRs, RRs, and the associated

LPMs are made. Based on the L1/2 representatives and their associated approximation explanation

functions LPMs, the model is now ready to provide explanations for AQs. Figure 6 sums up the

result of all three modes and how an explanation is given to the user. For a given query q, the
closest LR;wk is initially obtained and then, based on a combination of the RRs;(uk,1, . . . , uk,3) and
their associated LPMs;( ˆfk,1 . . . , ˆfk,3), returns an explanation as a fusion of diverse LPMs functions

derived by the L2 level. We elaborate on this fusion of L2 LPMs in Section 7.
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5 OPTIMIZATION PROBLEMS DECONSTRUCTION
5.1 Optimization Problem 1:Query Space Clustering
The first part of the deconstructed generic problem identifies the need to find optimal LRs and
RRs, as such optimal parameters guarantee better grouping of queries thus better approximation

of true function, during the Pre-Processing phase. The LRs are initially random location vectors

wk ∈ R
d ,k = 1, . . . ,K , and are iteratively refined by a clustering algorithm until they converge to

the mean vectors of the associated query space Qk . Formally, this phase finds the optimal mean

vectorsW = {wk }
K
k=1, which minimize the L1 Expected Quantization Error (L1-EQE):

J1({wk }) = E[∥x −w∗∥2;w∗ = arg min

k=1, ...,K
∥x −wk ∥

2] (3)

where x is the location of query q ∈ T and wk is the mean center vector of all queries q ∈ Qk
associated with wk . We adopt the K-Means [23] clustering algorithm to identify the L1 LRs based

on the queries’ centers x although other clustering algorithms will work as well. The choice of

K-Means is mainly due to its scalability to many training examples and its simplicity. A limitation

of the K-Means algorithm is that we need to specify the K representatives in advance. Therefore,

we devised a simple strategy to find a near-optimal number K . By running the clustering algorithm

iteratively, each time increasing the input parameter K for the K-Means algorithm, we are able to

find a K that is near-optimal. In this case, an optimal K would sufficiently minimize the Sum of

Squared Quantization Errors (SSQE), which is equal to the summation of distances, of all queries

from their respective LRs. The strategy follows Algorithm 1.

SSQE =

n∑
i

min

wk ∈W
(| |xi −wk | |

2

2
) (4)

The algorithm is fairly straight-forward and is in-line with a method called the "Elbow Method"

in approximating an optimal K for K-means. It essentially performs several passes over the data,

applying the algorithm and obtaining an SSQE. It stops when a pre-defined threshold ϵ > 0 has been

reached. We note that there are multiple such algorithms available in the literature [22]. However,

this is not part of our focused work thus a simple solution was preferred to alleviate such problem.

Algorithm 1 Estimating a near-optimal K

Input: ϵ ; K ▷ initial K ; predefined improvement threshold.

W = ∅; X = {xi }mi=1 : x ∈ T ▷ set of LRs; query centers T

while TRUE do
W ← KMeans(K,X) ▷ call K-Means algorithm with K LRs

SSQE←
∑m

i=1 min

wk∈W
(∥xi −wk ∥

2) ▷ Calculate SSQE

if ∆|SSQE | > ϵ then ▷ improvement

K ← K + 1 ▷ increase K
else

break ▷ no more improvement; exit

end if
end while
Return:W ▷ set of K LRs

We also utilize K-Means over each L2 cluster of queries created by the L1 query quantization

phase. Formally, we minimize the conditional L2 Expected Quantization Error (L2-EQE):

J1.1({uk,l }) = E[∥θ −u∗∥2; u∗ = arg min

l=1, ...,L
∥θ − ul ∥2], (5)
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Therefore, for each LR w1, . . . ,wK , we locally run the K-Means algorithm with L number of RRs,

where a near optimal value for L is obtained following the same near-optimal strategy. With SSQE

being computed using u and θ instead of (w, x). Specifically, we identify the L2 RRs over the

lengths of those queries from T whose closest LR is wi . Then, by executing the L-Means over

the length values from those queries we derive the corresponding set of region representatives

Ui = {ui1, . . . , uiL}, where each uil is the mean vector of lengths in the l-th L2 sub-cluster of the

i-th L1 cluster. Thus the first part of the deconstructed optimization problem can be considered as

two-fold, as we wish to find optimal parameters for both LRs and RRs that minimize (3) and (5).

5.2 Optimization Problem 2: Fitting LPMs perQuery Cluster
The second part of the deconstructed generic optimization problem has to do with fitting optimal
approximation functions such that the local EEL is minimized given the optimal parameters obtained

from the first part of the deconstructed problem. We fit PLR functions
ˆfkl (q) for each L2 sub-cluster

Ukl . The fitted PLR captures the local statistical dependency of the input parameters given that x is

a member of the L1 cluster represented by wk and θ of L2 represented by ukl . Given the objective

in (2), for each local L2 sub-cluster, the approximate function
ˆfkl minimizes the conditional Local

EEL:

J2({βkl , λkl }) = Eθ,x[L(fkl (q), ˆfkl (q))] (6)

s.t. wk = arg min

j ∈[K ]
∥x −wj ∥

2

2
,

ukl = arg min

j ∈[L]
| |θ − ukl | |22

conditioned on the closeness of the query’s x and θ to the L1 and L2 quantized query space Qk and

Ukl , respectively. Where {βkl , λkl } are the parameters for the PLR local approximation explanation

functions
ˆfkl defined as follows in (7).

Remark 1. Minimizing objective J2 in (6) is not trivial due to the double conditional expectation
over each query center and length. To initially minimize this local objective, we adopt the Multivariate
Adaptive Regression Splines (MARS) [21] as the approximate model explanation function ˆfkl . MARS
is capable of capturing non-linearities in the parameter θ space conditioned around a given location
vector w by introducing hinge point functions hc (x) = max(0,x − c); c is constant.

Based on this adoption, thus, our approximate
ˆfkl has the following form:

ˆfkl (q) = β0 +
M∑
i=1

βihi (q), (7)

where hi (q) are basis hinge functions identified by a forward stepwise procedure. Essentially, this

createsM regression functions. The numberM of linear regression functions is automatically derived

by MARS using a threshold for convergence w.r.t R2
(coefficient-of-determination, later defined);

which optimize fitting. Thus, guaranteeing an optimal number ofM linear regression functions. For

each L2 sub-cluster, we fit L MARS functions
ˆfkl , l = 1, . . . ,L, each one associated with an LR and

an RR, thus, in this phase we initially fit K × L MARS functions for providing explanations for the

whole query space. Figure 6 illustrates the two levels L1 and L2 of our explanation methodology,

where each LR and RR are associated with a MARS model.

5.2.1 Using alternatives to LPMs. As described the usedmodel is MARS, which empirically performs

really well and has also desirable properties. We can derive the importance of features by their use

in basis functions and their coefficients. Because of its building procedure it can also eliminate
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terms that do not increase predictive power. Thus the analyst can infer which parameters are not

crucial in producing the output of aggregate functions. However, the model choice should not be

restrictive. Alternative models that provide similar functionality can be used as well. Regression

trees [33] can also provide similar functionality as the importance of each parameter can be inferred

by its use in branches. In addition, simple Linear Regression models and their variants Ridge [24],

Lasso [20] are also good candidates as their coefficients provide intuitive explanations. Although in

this case increased quantization might be needed as the obtained clusters might be non-linear wrt

the input parameters and output.

5.2.2 Overfitting of LPMs. There is a possibility of the LPMs overfitting under certain subspaces.

In this context, overfitting may be desirable as it essentially means that the functions have learned

to accurately mimic the true underlying function. However, it might limit the LPMs potential in

generalizing to new (unseen) query parameters. To control overfitting, standard regularization

practises of the underlying models should be used in this case. For instance, if we were to use

Linear Regression models as an alternative model to MARS, we could regularize its structure by

using Lp norm penalization on its coefficients to prevent overfitting, where usually p = 1, 2 with
its variants labeled as Lasso and Ridge regression [48]. In MARS, overfitting is prevented by a

backward procedure in which terms/knots are removed from the function. Hence, by choosing

to adopt well known function as our models of choice we can rely on these models to effectively

prevent overfitting.

5.3 Optimization Problem 3: Putting it All Together
The optimization objective functions in (3), (5) and (6) should be combined to establish our generic

optimization function J0, which involves the estimation of the optimal parameters that minimize

the EQE in J1 (L1) and J1.1 (L2), and then the conditional optimization of the parameters in J2. In

this context, we need to estimate these values of the parameters inW = {wk } andU = {ukl } that

minimize the EEL given that our explanation comprises a set of regression functions
ˆfkl . Our joint

optimization is optimizing all the parameters from J1, J1.1, and J2 from Problems 1 and 2:

J3(W,U,M) = J1(W) + J1.1(U) + J2(M) (8)

with parameters:

W = {wk },U = {ukl },M = {(βi , λi )kl } (9)

with k ∈ [K], l ∈ [L], i ∈ [M], which are stored for fine tuning and explanation/prediction.

Remark 2. The optimization function J3 approximates the generic objective function J0 in (2)
via L1 and L2 query quantization (referring to the integral part of (2)) and via the estimation of the
local PLR functions referring to the family of function space F . Hence, we hereinafter contribute to
an algorithmic/computing solution to the optimization function J3 approximating the theoretical
objective function J0.

6 STATISTICAL LEARNING METHODOLOGY & EXPLAINABILITY
We propose a new statistical learning model that associates the (hierarchically) clustered query

space with PLR-based explanation functions. Given the hierarchical query space quantization and

local PLR fitting, the training mode fine-tunes the parameters in (9) to optimize both J1, J1.1
in (3), (5) and J2 in (6). The three main sets of parametersW,U, andM of the framework are

incrementally trained in parallel using queries issued against the underlying data management
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Fig. 6. Illustration of the hetero-association rationale: (i) the query q is projected to the closest L1 cluster
representative; (ii) then, its parameter θ is mapped to the closest L2 sub-cluster conditioned on the L1 LR; (iii)
then, this is associated with an explanation function f . (iv) The explanation of the result is provided by the
associated LPM over the query parameters θ and x.
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Fig. 7. The training phase: A query-result pair is initially associated with an LR, RR and LPM. The LR and RR
parameters are adjusted online as each query is processed. An offline adjustment step is triggered based on a
threshold.

system. These queries are issued online and the incremental process is as follows : (i) the analyst

issues an AQ q = [x,θ ]; and (ii) the DBMS answers with result y ; (iii) our framework exploits pairs

(q,y) to train its new statistical learning model.

The Training phase follows three steps and the complete process is shown at Figure 7. First, in

the assignment step, the incoming query q is associated with an L1, L2 and LPM, by finding the

closest representatives at each level. Next we perform an on-line adjustment step, in which the LR

and RR are gradually modified w.r.t. the associated incoming query in the direction of minimizing

the said objectives. Finally, the off-line adjustment step conditionally fine-tunes any LPM associated

with any incoming query so far. This step is triggered when a predefined retraining value is reached

or the number of queries exceeds a threshold.

6.1 Query Assignment Step
For each executed query-answer pair (q,y), we project q to its closest LR using only the query

center x based on (3). Obtaining the projection w∗k allows us to directly retrieve the associated

RRsU∗k = {u
∗
1k , . . . , u

∗
Lk }. Finding the best RR inU∗k is, however, more complex than locating the
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best LR. In choosing one of the RRs, we consider both distance and the associated prediction error.
Specifically, the prediction error is obtained by the LPM of each RR from the setU∗k . Hence, in this

context, we first need to consider the distance of our query q to all of the RRs inU∗k :

| |θ − ukl | |1,∀ukl ∈ U∗k , (10)

and, also, the prediction error given by each RR’s associated LPM ˆfkl . The prediction error is obtained

by the squared difference of the actual result y and the predicted outcome of the LPM ŷ = ˆfkl (q):

(y − ˆfkl (q))2, l = 1, . . . ,L (11)

Therefore, for assigning a query q to a RR, we combine both distances in (10) and (11) to get the

assignment distance in (12), which returns the RR inU∗k which minimizes:

l∗ = arg min

l ∈[L]
{z | |θ − ukl | |1 + (1 − z)(y − ˆfkl (q))2} (12)

The parameter z ∈ (0, 1) tilts our decision towards the distance-wise metric or the prediction-wise
metric, depending on which aspect we wish to attach greater significance.

Remark 3. Why incorporate prediction error? We could associate an incoming query with the
closest L2 RR as is being done with L1 LR. However, note that an explanation function may have lower
prediction error even though is not the closest (w.r.t to RR). Intuitively, this holds true, as some function
might be able to make better generalizations even if their RRs are further apart. Therefore, we introduce
the weighted-distance in (12) to account for this and make more sophisticated selections.

6.2 On-line Representatives Adjustment Step
This step optimally adjusts the positions of the chosen LR and RR so that training is informed by

the new query. Their positions are shifted using Stochastic Gradient Descent (SGD) [12] over the

J1 and J2 w.r.t. w and θ variables in the negative direction of their gradients, respectively. This

ensures the optimization of both objective functions. Theorems 1 and 2 present the update rule for

the RR selected in (12) to minimize the EEL given that a query is projected to its L1 LR and its

convergence to the median value of the radii of those queries.

Theorem 1. Given a query q = [x,θ ] projected onto the closest L1 wk∗ and L2 uk∗,l ∗ , the update
rule for uk∗,l ∗ that minimizes J2 is:

∆uk∗,l ∗ ← αzsgn(θ − uk∗,l ∗ ) (13)

Proof. We adopt the Robbins-Monro stochastic approximation for minimizing the combining

distance-wise and prediction-wise loss given a L2 RR u, that is minimizing E(u) = µ∥θ − u∥1 +
(1 − µ)(y − ˆf (θ ;w))2, using SGD over E(u). Given the t-th training pair (q(t),y(t)), the stochastic
sample E(t) of E(u) has to decrease at each new pair at t by descending in the direction of its

negative gradient with respect to u(t). Hence, the update rule for L2 RR u is derived by:

∆u(t) = −α(t)
∂E(t)

∂u(t)
,

where scalar α(t) satisfies
∑∞

t=0 α(t) = ∞ and

∑∞
t=0 α(t) < ∞. From the partial derivative of E(t) we

obtain ∆u← αµsgn(θ − u). By starting with arbitrary initial training pair (q(0),y(0)), the sequence
{u(t)} converges to optimal L2 RR u parameters. □
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α ∈ (0, 1) is the learning rate defining the shift of θ ensuring convergence to optimal position

and sдn(x) = d |x |
dx ,x , 0 is the signum function. Given that query q is projected on L1 w∗k and on

L2 uk∗,l ∗ , the corresponding RR converges to the local median of all radius values of those queries.

Theorem 2. Given the optimal update rule in (13) for L2 RR uk,l , it converges to the median of
the θ values of each dimension of those queries projected onto the L1 query subspace Qk and the
L2 sub-cluster Ukl , i.e., for each query q = [x,θ ] with x ∈ Qk , it holds true for ukl ∈ Ukl that:∫ ukl
0

p(θ |wk )dθ =
1

2
.

Proof. Focus on one dimesion, and consider the optimal update rule in (13) for L2 RR u and

suppose that u has reached equilibrium, i.e., ∆u = 0 holds with probability 1. By taking the

expectations of both sides and replacing ∆u with the update rule from Theorem 1:

E[∆u] =

∫
R
sgn(θ − u)p(θ )dθ = P(θ ≥ u)

∫
R
p(θ )dθ − P(θ < u)

∫
R
p(θ )dθ = 2P(θ ≥ u) − 1.

Since ∆u = 0 thus u is constant, then P(θ ≥ u) = 1

2
, which denotes that u converges to the median

of radii for those queries represented by L1 RL and the associated L2 RR. □

Using SGD, θk∗,l ∗ converges to the median of all radius values of all queries in the local L2

sub-cluster in an on-line manner.

6.3 Off-line Adjustment Step
. The mini-batch adjustment step is used to conditionally re-train the LPMs to reflect the changes

by (13) inUk parameters. As witnessed earlier, representatives are incrementally adjusted based

on the projection of the incoming query-answer pair onto L1 and L2 levels. For the LPMs, the

adjustment of hinge points and parameters (βi , λi ) needs to happen in mini-batch mode taking into

consideration the projected incoming queries onto the L2 level. To achieve this, we keep track of

the number of projected queries on each L2 sub-clusterUk and re-train the corresponding LPMs

ˆfkl given a conditionally optimal L2 RR ukl . For every processed query we increment a counter.

Once we reach a predefined number of projected queries-answers, we re-train every LPM that was

affected by projected training pairs.

Remark 4. Why Pre-Processing and Training Modes ? A concrete explanation as to why these two
modes need to co-exist is provided in the remark. One might notice that with just the Pre-Processing
step, we could achieve a good accurate estimation by creating good enough LPMs to explain new
possible queries. However, with a Pre-Processing step we eliminate the possibility of adjusting as new
query-answers pairs are processed. In addition, it does not take into consideration the prediction error,
thus, it might lead to inaccurate models, which only consider the similarity of query patterns and not
the predictive power of LPMs. Moreover, the Training mode cannot exist on its own as the LPMs need
a number of queries to be initialized, thus, the need for a Pre-Processing step. An additional benefit
of introducing the Training Mode is that both the representatives and their associated models can be
adapted as new queries are executed. This also accounts for cases in which a new stream of queries, that
is wildly dissimilar to current representatives, arrives to the data system. This might be an indication of
a shift to the underlying distribution of q. However, because of the Training Mode, the query parameters
can be incrementally adjusted and adapted to the new distribution. A new distribution might signify
new user interests and application requirements. Studying the full effects of this has been studied in
the context of Approximate Query Processing [44–46], but not in the context of explanation functions,
which remains part of our future work.
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7 EXPLANATION SERVING
After Pre-Processing and Training, explanations can be provided for unseen AQs, i.e., AQs which

have never been used before in the system’s training or executed before over the system’s data.

The explanations are based on the associated LPM found using the AQ’s input parameter values.

The process of returning an explanation function to the user is as follows: firstly, the analyst issues

a query q, q < T , then, the closest LR, RR representatives are located, and finally, the associated

LPM is returned to the analyst used for explanation, as will be discussed later.

As with Training Mode, the closest L1 representative is identified using Eq. 14 and for the closest

L2 representative Eq. 12 is used. As mentioned, the L2 representatives are associated with an LPM

and, thus, the related LPM is returned to the analyst.

w∗ = argmin

i ∈K
| |wi − x| |22 (14)

This explanation function serves as an approximation of how the result of an unseen AQ varies

in that subspace queried by the original AQs. The explanation function coefficients (or feature

importance methods of various ML models) gives us a way to infer how the different query

parameters contribute to the end result. This is an extremely hard thing to do with only the

knowledge provided to us by coarse grained queries executed over the complete data space. We are

essentially trying to infer the parameters’ importance over much smaller subspaces by utilizing

previous query patterns. The main difficulty arises because when the LPMs have finished training,

they have limited knowledge over a specific subspace and some might even ignore the knowledge

coming from queries executed over that specific subspace. To be more concise, imagine single

dimension queries q ∈ R, where q could be a single input parameter with a true function mapping to

results y ∈ R. Now imagine that q1,q2,q3, are three queries q1,q2,q3 ∈ [0, 1] such that q1 ≤ q2 ≤ q3.
Training our model with those queries leaves our model with high uncertainty as to what happens

in the in-between spaces where we have no training examples. Trying to approximate what happens

within those spaces requires good generalizability from the trained models as some models might

even ignore some of the examples. In our work, this is exactly what we are trying to do. With

minimal knowledge given from the coarse grained training examples we are trying to infer the

impact of parameters in much smaller unknown spaces. As shown in our experimental section,

our models overcome this difficulty and are able to find approximate functions to explain what

happens over the smaller subspaces.

7.1 Examples of Explanation Functions and Practical Usage
Using the returned LPM, the analyst can obtain the result of queries not yet executed and infer

the importance of query parameters under the given subspace. In this section we provide some

examples of how the different LPMs can be utilized to provide insight and guide the analyst during

data exploration.

In Figure 8 we have created an interactive plot of the different query parameters listed as features

and their importance across different clusters using Bokeh [11]. This overview is constructed by

averaging the importance of all LPMs associated with L2 clusters and then shown for each L1

cluster. By hovering over a particular rectangle the analyst can see the importance of a parameter

over the specified cluster. As evident, the importance of parameters varies across clusters which

can lead the analyst to specific subspaces where the parameter is more important. For instance,

if a particular parameter has more weight in a given cluster then the analyst knows that varying

this parameter will have more impact to the end result than other parameters. In essence, the

analyst has a guide to inform them which parameters to shift in certain subspaces such that they

get meaningful results and not waste resources executing queries that will not impact the result.
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Fig. 8. Analyst’s interactive exploration of data (sub)spaces by visualising the importance of parameters in
different (sub)spaces.
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Fig. 9. Hierarchical representation of L1 and L2 clusters and the parameter importance. (Left) Clusters for
query centers x and the average importance of parameters inferred by the underlying LPMs. (Right) An L2
cluster associated with Cluster 0 from L1.

Moreover, we can construct hierarchical visualizations that show a more fine grained representa-

tion of parameter importance. For this example, we used the coefficients of linear regression models

for explanation functions. Their main difference with parameter/feature importance is that they also

indicate in what way they can influence the result as they can be negative or positive. For instance,

a large negative coefficient for a specific parameter as seen for the input parameter 1 at L1=0 in

Figure 9 (left) advises us that this particular parameter will have a negative impact on the end query

result. In Figure 9(left) we can see the average coefficients for all parameters over clusters at L1.

Using such visualisation we obtain an overview of the coefficients associated with each parameter

and can also zoom-in to a particular cluster of L1 and see how the coefficients change at L2 clusters

associated with the chosen L1 cluster. In this case study, the parameters 0− 3 correspond to the 0-X
Coordinate, 1-Y Coordinate, 2-Size of X Coordinate, 3-Size of Y Coordinate. These parameters define a

range query that cover a spatial region on the map. The corresponding response variable of the

LPMs built is the Arrest Rate within those areas. Therefore, an analyst can begin their analysis by

consulting this figure. They can initially focus on cluster 0 at L1 which shows the lowest average

coefficient for parameter 1-Y Coordinate. The fine grained view shown at Figure 9(right) corresponds

to the coefficients for all input parameters across all clusters at L1-0. The analyst might then notice

that all parameters have positive coefficients except parameter 1 especially over cluster 47 at L2.

, Vol. 1, No. 1, Article . Publication date: July 2020.



20 Savva, et al.

600 700 800 900

Arrest Rate

0

5

10

15

20

F
re

qu
en

cy

Fig. 10. The average Arrest Rate shown as a red vertical line along with the distribution of arrest rate for
queries executed over the region identified by 0-L1 and 47-L2.

They can then obtain the actual LPM model and mean vectors for clusters 0 at L1 and 47 at L2.

The mean vectors correspond to the cluster representatives (centroids) and together they denote

the mean (average) query executed at those regions. Hence, they can identify a possible region to

which the arrest rate is smaller than the average arrest rate over other regions without executing
anything. The mean arrest rate is visualised in Figure 10 along with the distribution of arrest rates

over the pinpointed region. Using our methodology, the analysts have specific knowledge of the

area with smaller than the mean arrest rates. By obtaining the coefficients for the corresponding

LPM at L1-0 and L2-47, they can observe what drives the arrest rate up or down. The corresponding

coefficients in this particular case were [621.64900659,−455.21564492, 34.93227467,−246.40730294]
which indicates that as we increase the Y Coordinate moving up north on the map, the arrest rate

decreases. This is also indicated by the region size covered by the Y Coordinate. Using this derived

knowledge, the analyst can further investigate as to why that happens. Maybe the number of police

officers patrolling the areas has dropped, or maybe the incidents recorded did not warrant an arrest.

As one can observe, without even executing a single query, the analyst has tremendous knowledge

which can guide themwhen they first initiate their exploratory analysis. Surely, the LPMs used were

trained using queries which were executed before. However, these queries can be obtained from

past analyses made by other analysts. They could have also been obtained from other visualisations

previously constructed that have been used for these core operations. Therefore, the analysts can

save huge amount of time by focusing on particular areas instead of starting with a coarse grained

view with no tool to guide them.

8 EXPERIMENTAL EVALUATION
We run experiments to evaluate the accuracy, performance and scalability of our proposed solution.

Accuracy is evaluated on two axes: (1) predictive capability of the proposed explanation function by

using the function as a surrogate black-box function to compute the result of an unknown query,

and (2) accuracy of the estimated explanation functions. We conduct experiments to analyse the

performance of our system, measuring the time required for training the different LPMs, and the

impact of the hyper-parameters in explanation serving.
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8.1 Experimental Setup & Metrics
8.1.1 Real Data Sets: We experiment with two real data sets. The first real dataset B1 = {ai }Ni=1, a ∈
R2 with cardinality |B1 | = N = 6 · 106 contains crimes for the city of Chicago [1]. We obtain a

synthetic workload T containingm = 5 · 104 queries and their answers, i.e., {(q,y)i }mi=1 = T . Each
query is a 4-d vector q = [x,θ ] with answer y where x = [x1,x2] ∈ R2 is the center, θ ∈ R2 is
its length and y ∈ R the result obtained from executing the query against real dataset B1. The

second real dataset B2, which is referred to as the Higgs [3, 10] dataset, contains information about

kinematic properties measured by particle detectors in accelerators. These data are used in specific

signal-versus-background classification problems in High Energy Physics. More information about

the Higgs dataset is provided in Section 8.2.4.

8.1.2 Query Workloads: We use workload T for Pre-Processing and Training and create a separate
evaluation setV containing |V| = 0.2 ·m new query-answer pairs. The synthetic query workloads

were obtained from [2] and follow a similar generation process as described in [6, 43] also described

at [2].

To implement our algorithms, we used scikit-learn [40] , KMeans [23], and an implementation

of the MARS algorithm [21]. We performed our experiments on a desktop machine with a Intel(R)

Core(TM) i7-6700 CPU @ 3.40GHz and 16GB RAM. MARS was used as the explanation function

algorithm because of its superior accuracy to simple linear regression. We note that any ML

algorithm, which is able to provide an estimate on feature importance to characterize the importance

of input parameters is a viable alternative to MARS.

8.1.3 Evaluation Procedure. To evaluate the effectiveness of our proposed explanation functions

on an unknown set of AQs, we have to generate perturbed versions of each query q ∈ V . Assessing

the explanation functions just based on set V is not enough as the metrics will report on the

accuracy of performing point estimates using the explanation functions. Instead, by perturbing a

query vector, we are able to assess whether the proposed explanation function is an an accurate

approximation of the black-box function generating the results of queries. For a query inV , we

generate a set of perturbations P = {p1, . . . , pn} with n = 100, where p ∈ [−1, 1]d . Using these

perturbations, we obtain a set of sub-queries S, where S = {q + p1, . . . , q + pn} and |S| = |P |. A
number of sub-query sets can then be generated which is equal to the number of queries in V ,

and {S1, . . . ,S |V |}. The results for each one of those perturbed versions of query q are computed

using the real dataset. Such that, we have each perturbed version which is now also associated

with a result y ∈ R. We can then evaluate the explanation function over each sub-query set Si
by measuring the loss (EEL) between our predictions and the actual responses. The evaluation

metrics are computed for the recorded responses and the responses obtained from the proposed

explanation function. We then report on an average of the evaluation metrics.

8.1.4 Evaluation & Performance Metrics. In this section we report on the statistical metrics that

evaluate the quality of explanation from information theoretic and predictive accuracy perspective.

Information Theoretic Metric: The EEL is measured using the Kullback–Leibler (KL) diver-

gence. Concretely, the result is a scalar value denoting the amount of information loss when one

chooses to use the approximated explanation function for a given unseen query (without executing

this query) instead of the actual explanation function (after executing the unseen query). The EEL

with KL divergence is then defined as:

L(f , ˆf ) = KL(p(y)| |p̂(y)) =

∫
p(y) log

p(y)

p̂(y)
dy, (15)
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with p(y) and p̂(y) being the probability density functions of the true and approximated query result,

respectively. We require this divergence to be as small as possible to reflect a good approximation

of the explanation funtions.

Goodness of Fit: The EEL is measured here using the coefficient of determination R2
. This

metric indicates how much of the variance generated by f can be explained using the approximated

explanation function
ˆf . This represents the goodness-of-fit of an approximated explanation function

over the actual one:

R2 = 1 −

∑
i (yi − ŷi )

2∑
i (yi − y)

2
, (16)

in which the denominator is proportional to the variance of the true function and the numerator

are the residuals of our approximation. We require that R2
should get a relatively high value (close

to unity) to indicate good explanation fit over the underlying data sub-region. The EEL between f

and
ˆf can then be expressed as:

L(f , ˆf ) = 1 − R2
(17)

Predictive Accuracy:We also quantify the predictive accuracy associated with explanation (re-

gression) functions. We employ the Normalized-Root-Mean-Squared-Error(NRMSE) for this purpose:

NRMSE =
1

ymax − ymin
(
1

n

n∑
i

(yi − ŷi )
2). (18)

Essentially, this shows how accurate the results would be if an analyst used the explanation

(regression) functions for further data exploration, without executing queries. We require a small

NRMSE to reflect high predictive accuracy. This is evaluated on setV as we want to evaluate the

accuracy on point estimates.

8.1.5 Comparative Methods & Baselines. We provide a performance comparative assessment with

baseline models and regression methods.

Local Method: The Local model is trained using Linear Regression and the perturbed set of

queries and answers S, hence, it is the gold standard that we are trying to achieve. Note that

obtaining a Local model is not actually possible as one has to execute a number of perturbed

versions of a query to be able to obtain it. We are merely constructing such local functions to

provide an estimate of the highest possible accuracy that can be obtained.

Global Method: The Global model is obtained by training a single Linear Regression model on

T and is the baseline method that we are trying to compare with.

p-order Polynomial Method: The p-order polynomial (non-linear) regression functions indi-

cated by LR(p) with p > 0 are used at Section 8.2.4 and are obtained over the training set defined

over the associated data set that is utilized under this experiment for different p order values. As

it will be shown later, these non-linear methods do not provide flexibility and interpretability in

explanation serving w.r.t. predictive accuracy and goodness of fit.

Local Piecewise linear Models (LPM): LPM is our proposed approach, which utilizes the

procedure outlined in the earlier sections.

8.2 Experimental Results: Accuracy
For our experiments we chose to show performance and accuracy results over three representative

aggregate functions: COUNT, AVG and SUM due to their extensive use and because of their properties.

We compare the accuracy across the different workloads each one with different distributions for
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Fig. 11. Goodness of fit results (R2) for all methods on aggregation operators over B1; higher is better.

region location and region size. Their abbreviations are shown at Table 1. We compare our LPMs

with two baselines Local and Global.

Distribution for x Distribution for θ
G.G Gaussian Gaussian

G.U Gaussian Uniform

U.G Uniform Gaussian

U.U Uniform Uniform

Table 1. Abbreviations for the different workloads distribution over query parameters.

8.2.1 Goodness of Fit Results. Figure 11 shows the results for R2
over all workloads for all three

aggregates. We report on the average R2
found by evaluating the models on queries inV using their

pertubed sets S. As expected the Local models perform best as their ttrained using the queries in the

pertubed sets. Overall, we see that our proposed explanation functions approaches the accuracy of

the Localmodels and is more accurate than the Global function, except for one case in which both

the LPM and Global achieve statistically similar accuracy. It might be the case that the knowledge

obtained from the queries was not enough such that our LPMs would be able to approximate the

general trend followed by these queries in more specific subsets. We also notice some difference in

accuracy levels across different workloads. This leads us to argue that the distribution of queries

is a significant factor in determining the accuracy of the proposed models. However, the general

outtake of this experiment is that we can fit good approximate models that approach the accuracy

of models fitted with the pertubations themselves.

8.2.2 Information Theoretic Results. Figure 12 shows the ratio of bit increase when using the

approximated distribution generated by the LPMs rather than the actual values for y of the pertur-

bations (where lower is better). This indicates the inefficiency caused by using the approximated

explanations, instead of the true function. This information, theoretically, allows us to make a

decision on whether using such an approximation would lead to the propagation of errors further

down the line of our analysis. We observe that overall the ratio is low for all methods with the

Local method approximating the true distribution with minimal loss of information. It is important

to note that all results are less than 10% with most of the loss incurred over the AVG function. We

notice that sometimes the Global function outperforms our LPMs. However, the difference in all

of these cases is minimal. We speculate that the Global model obtains a coarse grained view of how

the aggregate statistic across a much larger space which could tend to approximate the underlying
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Fig. 12. Information theoretic results (KL-Divergence) for all methods on aggregation operators over B1;
lower is better.
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Fig. 13. Predictive accuracy results (NRMSE) for all methods on aggregation operators over B1; lower is
better.

distribution for the pertubed queries. These results serve as evidence that using our approximations

is sufficient for conducting further analyses by using these models instead of executing subsequent

queries to uncover more information.

8.2.3 Predictive Accuracy Results. We have also measured the predictive accuracy of all methods

across all datasets to quantify how good the models would be in predicting the results of future

queries. The results are shown at Figure 13. As expected, the error is the lowest for the Local method

as the predictions are being made on the set of queries that the model was trained on. The highest

error was recorded by the Global method. Apart from AVG, the Global method has extremely large

NRMSE which makes it inappropriate to make predictions for the perturbations, thus, it should not

be used in this case. We also note that across all three aggregates the U.U distributions appears

the hardest to perform predictions. One possible explanation is that models trained on uniform

workloads require more queries as they have to be equally good uniformly across the space that they

are being evaluated. Their difference with workload distributions having a Gaussian distribution is

that queries are executed with a higher probability closer to the mean and thus the patterns might

be easier to learn. This experiment also shows that no one model is fit for all problems. Something

aligned with the No Free Lunch theorem. So in this case it might be more appropriate to investigate

different models (with the same properties of interpretability) to be used for different distributions.

In conclusion, the accuracy across statistics/aggregates and workloads is not preventive. It shows

that our LPMs could in the context of providing approximate answers to queries that analysts might

have while conducting their analysis. This could save up computational/monetary/productivity
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Fig. 14. Query parameter values x1,x2 of workload queries executed (training and testing sets) for explanation
of the AVG operator for signal classification over the Higgs (B2) data set.

costs, as the analysts would be using the LPMs to get answers efficiently without issuing queries

against any of the data.

8.2.4 Accuracy Results on Higgs. We also evaluated and compared the methods on the B2 real data

set Higgs [3, 10], which contains |B2 | = 11 · 106 rows (data vectors). The individual rows are signals

recorded and have a label= {0, 1} which denotes whether the signal produced Higgs bosons or it

was background noise. In this experiment, we constructed queries using the columns (attributes

related to energy magnitudes) m_bb, m_wwbb, label of the Higgs dataset. We constructed a

number of synthetic queries that restricted the rows of the complete data set within the range of:

(m_bbL ≤ m_bb ≤ m_bbU ) ∧ (m_wwbbL ≤ m_wwbb ≤ m_wwbbU ) (19)

where the subscripts L, U indicate the lower and upper bounds of the predicate values for the

specified columns, respectively [3]. These values were selected randomly to cover the domain space

of the selected columns. The aggregate statistic that we used was the AVG over the label attribute,

such that y = 1

|Dx,θ |

∑
i ∈Dx,θ

label, where the set Dx,θ holds all the rows returned by the query..

Specifically, a number of clusters were generated (49) across the 2D space spanned by the selected

columns. Then, 40 queries were generated for each cluster. So in total 1960 synthetic queries were

constructed. For the parameters of the queries, we used a Normal distribution with the center of

each cluster as the mean value and the variance is set 10% of the mean value at each dimension.

We present the various centers (x1,x2) for these synthetic queries at Figure 14. It is evident that a
number of clusters is present, which represent the existence of various analysts. In addition, we

highlight which queries (illustrating the centers only for legibility) were used for training and for

testing. Our target was to use a subset of queries from each cluster to examine whether our LPM

method could learn that subspace and provide accurate and effective explanations for this particular

area. We used uniform distributions bounded in the interval [0.2, 0.7] for the query lengths (θ1,θ2).
In this experiment, we compare the accuracy of our own approach LPMwith the Linear Regression

(LR) andp-order polynomial regression functions indicated by LR(p) in Figure 15 withp ∈ {3, 5, 7, 9}.
Specifically, we examine the explanation delivery of the AVG operator over the label attribute of
the data set, which explains the ratio of correctly classified signals over specific data subspaces.
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We obtain similar performance results for the COUNT and SUM operators. We measured the above

mentioned goodness of fit R2
and the NRMSE to examine how well these methods could provide

accurate explanations for the specified subspaces (measured by R2
) and whether the same methods

can answer future queries with high accuracy (measured by NRMSE). In Figure 15, it is evident

that LPM is able to outperform all other methods in providing accurate explanations over specific

data regions. LPM achieves the relatively bigger R2
value compared to the other regression models

reflecting its capability for good explanation fitting over specific data regions (the higher the R2
,

the better the fitting of the function over the underlying area). Moreover, LPM achieves the lowest

NRMSE compared to other methods indicating an accurate predicted explanation over unseen

(yet unexplored) data regions, thus, being appropriate for predictive analytics tasks demanding

explainability of results. Finally, it is important to note that even though this comparison was

made to highlight the fact that LPM can outperform high-order polynomial regression functions

in explanation serving, the use of high-order polynomial functions is not appropriate to this

explainability problem. This is because, such models are no longer interpretable as the polynomial

features are fictitious and do not quantify the statistical importance of the query parameters.
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Fig. 15. Predictive accuracy and explanation fit of the methods: LPM, LR and LR(p) over B2 Higgs dataset;
(left) R2-higher is better, (right) NRMSE-lower is better.

8.3 Experimental Results: Efficiency and Scalability
This section presents results on the efficiency and scalability of our proposed approach. The

hierarchical structure of our solution means that a number of parameters have to be optimized

like the L1/L2 representatives and the parameters of the individual LPMs. Although, the number

of parameters is larger than a single linear regression model or a polynomial regression model,

we note that the lack of interpretability and low accuracy associated with these methods makes

them less favorable candidates for the given problem. In addition, the associated overhead of our

approach is relatively small, as it only takes a number of seconds to completely optimize all the

associated parameters. This fact will be highlighted in this section. It is also important to mention

that this overhead only needs to happen once, as the users/analysts will subsequently use the

trained LPMs for data exploration.

8.3.1 Model Training Performance. To effectively measure how long it takes to complete training

of LPMs, we restrict the workloads used to "G.G" and set the vigilance thresholds for clustering to

the default parameter values of 0.4 for θ and 0.05 for x. These parameters control the number of

clusters created at the L1 and L2 levels and, as it will be shown in our sensitivity analysis section, the

number of clusters follows logarithmic scale w.r.t to the vigilance parameters. For this experiment

we gradually increase the number of training examples and record the time (in seconds) required
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for our framework to complete training of the LPMs. We are investigating the potential impact

of the size of the training examples fed to our model on the training time required. To account

for randomness we repeat the procedure 10 times per number of training examples. Note that

this is part of the Pre-processing step which happens offline and helps to initialize the LPMs. Our

framework is also able to adjust its parameters online to account for new queries being executed

by the back-end analytics engine.
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Fig. 16. Training time for an increasing number of model training examples.

The results are shown at Figure 16, as the number of training examples increases we do not

observe a significant increase in the time required to train all LPMs. The time ranges from 40(s) to

80(s) with some significant variation. We can then conclude that there is no impact of the size of

the training set on the model convergence, which is expected for a given number of clusters. This

therefore demonstrates the robustness of our model in its training period. However, for a holistic

experimentation on the training time, we further investigated the impact of the number of clusters

on the model training time. This investigation reveals that the number of training examples is not

highly correlated with the training time. This is clearly exhibited at Table 2, where correlation
2

varies from [−1, 1] with values closer to 1 indicating strong positive correlation and values closer to

−1 strong negative correlation. Notwithstanding, the number of clusters that formed in L1 and L2

have strong positive correlation with the model training time. And, this is attributed to the fact that

an increasing number of clusters yields that the hyper-tuning procedure was running for longer,

thus, longer expected training time. The hyper-tuning procedure was outlined at Algorithm 1.

L1 clusters L2 clusters Training Examples Training Time (s)

L1 clusters 1.000000 0.990559 -0.018008 0.885539

L2 clusters 0.990559 1.000000 -0.004828 0.886221

Training Examples -0.018008 -0.004828 1.000000 0.218372

Training Time (s) 0.885539 0.886221 0.218372 1.000000

Table 2. Pairwise Pearson’s Correlation Coefficient for number of clusters, number of training examples and
model training time.

To reinforce this finding we perform the same experiment but this time we vary the number

of generated L1/L2 clusters and record the training time. The results are shown at Figure 17. As

2
Pearson’s Correlation Coefficient is used.
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Fig. 17. Training time for an increasing number of training examples with the number of clusters for L1 (left)
and L2 (right).
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Fig. 18. (Left) A CDF of the explanation serving time by varying hyper-parameters that control number of
clusters for L1/L2. (Right) Prediction serving time plotted against an increasing dimensionality of the input
vector q

the number of L1/L2 clusters increase, Training Times also increase even with a small number

of training examples (we used 15000 training examples in this case). This clearly demonstrates

that the main driving factor of the training time is the final number of L1/L2 clusters and not the

number of queries. Intuitively, the aforementioned finding is to be expected as more clusters means

more models have to be trained.

8.3.2 Explanation & Prediction Serving Performance. We now assess the Explanation and Prediction

serving performance of our framework. The explanation functions and any predictions stemming

from the explanation functions (LPMs) have to be returned to the user efficiently. Our goal is to

do that in less than 500 ms as it has been shown that any answer returned over that limit might

hinder productivity [34]. For this experiment we vary the thresholds/vigilance parameters for x
and θ which control the quantization levels and hence the number of clusters. The threshold values

for both parameters x and θ were in the interval of [0.01, 3). Figure 18 shows the results of our
experiments. Two CDFs are plotted, one where we vary the vigilance parameter for x and leave

the vigilance for θ constant and vice versa. The creation of more clusters contributes to the total

explanation serving time as the closest clusters (according to our formulation) have to be identified

for an LPM to be returned to the user. However, the quantization level remains constant after

exceeding particular threshold values, as the optimal number of clusters is identified (optimal w.r.t

SSQE). Consulting the CDFs at Figure 18 we notice that for both cases the explanation serving

time is orders of magnitude less than 500ms. In our experiment with varying the threshold x we
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Fig. 19. Measuring the effects of varying threshold/vigilance parameter for x. (Top) The effects on accuracy
R2 for different workloads and aggregate functions. (Bottom) The effects on the number of L1 clusters for
different workloads and aggregate functions.

saw no significant impact as the quantization level quickly reaches the optimal number of clusters

(found to be 6) s before allowing the number of clusters to increase. Once it reaches that optimal

value the threshold set for parameter x has to be significantly smaller than the SSQE as outlined

in Algorithm 1 to allow for the creation of more clusters. Although we would see an impact in

performance if the number of clusters at L1 increase, we note that this is no more than linear as a

single pass over the LRs of L1 can tell us which one is closer to the query issued by the analyst.

Varying the threshold/vigilance parameter for θ has more effect as we recorded a mean number of

total clusters in L2 of 492 with standard deviation of 211. Still, the explanation serving time is no

more than 0.08 ms, 6250x faster than the proposed cap for explanation serving time set at 500ms.

To measure the Prediction serving time we vary the dimensionality of the input vector as this

would affect the evaluation of the underlying LPM. We used MARS [21] as our ML model and

recorded the time required for making a prediction after given an input vector. We varied the

dimensionality within the range [8, 128]. An input vector with 128 dimensions means that a query

is executed with a multi-dimensional center x ∈ R64 which translates to filtering based on 64

different attributes. This might be a bit of an overstretch but we wish to stress test our system and

see if LPMs can efficiently provide estimations for the answers of unseen queries. The results are

shown at Figure 18(right), with the Prediction time fluctuating however never exceeding 1ms. It is

important to note that this includes the time of finding the closest LPM.

Overall throughout our performance experiments we conclude that the use of our proposed

framework does not hinder productivity. On the contrary, it efficiently informs the user of the

unerlying variation in a statistic using our LPMs. The LPMs are located and returned to the user in

milliseconds which allows for the analyst to continue ther analysis without bottlenecks. In addition,

using LPMs analysts can efficiently get estimates for the answers of any future queries they might

have.

, Vol. 1, No. 1, Article . Publication date: July 2020.



30 Savva, et al.

0 1 2 3

Threshold θ
COUNT

0.0

0.2

0.4

0.6

0.8

1.0

R
2

U.G G.U G.G U.U

0 1 2 3

Threshold θ
AVG

0.0

0.2

0.4

0.6

0.8

1.0

U.G G.U G.G U.U

0 1 2 3

Threshold θ
SUM

0.0

0.2

0.4

0.6

0.8

1.0

U.G G.U G.G U.U

0 1 2 3

Threshold θ
COUNT

500

1000

1500

2000

2500

L
2

C
lu

st
er

s

U.G G.U G.G U.U

0 1 2 3

Threshold θ
AVG

500

1000

1500

2000

2500
U.G G.U G.G U.U

0 1 2 3

Threshold θ
SUM

500

1000

1500

2000
U.G G.U G.G U.U

Fig. 20. Measuring the effects of varying threshold/vigilance parameter for θ . (Top) The effects on accuracy
R2 for different workloads and aggregate functions. (Bottom) The effects on the number of L2 clusters for
different workloads and aggregate functions.

8.4 Experimental Results: Sensitivity
8.4.1 Threshold/Vigilance Query Center Parameter (x). Several experiments have been conducted

to test the sensitivity of our algorithms to the ϵ threshold used in Algorithm 1. As Algorithm 1

is used twice in the Pre-Processing phase we refer to ϵ as the x Threshold and θ Threshold to

distinguish between the thresholds used in the creation of L1/L2 clustering phases. Effectively these

thresholds control the quantization level (the number of clusters). As the thresholds become smaller

we continue the clustering procedure with more clusters K for K-Means until the difference of

SSQE between a quantization level of K and K + 1 is equal to or below the given threshold value.

We varied the threshold for x in the interval of [0.0001, 3). The results for this experiment are

shown at Figure 19. At this figure we see the effects on both the accuracy, Figure 19(top), and the

on the number of clusters at L1, Figure 19(bottom). For all workloads and aggregate functions the

effects taper off as the number of clusters reaches the optimal number. We can see that accuracy

increases and remains constant as the number of clusters converges. So in short, setting the right

threshold has an effect on the accuracy of our framework. In our experiments we first normalize

the data to be at the same scale which makes setting this threshold parameter easier. In addition, a

hyper-tuning procedure could be added for setting this threshold parameter at an optimal value.

However this was out of the scope of our work. In general, we can easily determine a near optimal

value by randomly testing a number of values along a given range also known as Line-Search.

8.4.2 Threshold/Vigilance Query Parameter (θ ). We also vary the threshold for parameter θ and

investigate its effects on the number of clusters for L2 and accuracy measured by R2
. Its effects

are recorded for all workloads and datasets at Figure 20. Figure 20(top) shows that the accuracy

is constant as the threshold varies meaning that partitioning the region sizes has less effect than

optimally partitioning the query locations x. The same effect is observed across aggregates and

workloads. On the other hand, the threshold parameter has more effect on the number of L2 clusters

and as the threshold increases the quantization level becomes more coarse grained and less clusters
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Fig. 21. As the dimensionality of the query vector increases more clusters are needed both in L1 and L2 to
sufficiently reduce SSQE.

are created at the L2 level. The number of L2 clusters shown on the y-axis is the total number of

clusters associated with all L1 clusters.

8.4.3 Dimensionality of Query Input Vector (q). We experiment with an increasing dimensionality

for the query/input vector and investigate its effects on the quantization levels (number of L1/L2

clusters). As evident at Figure 21, the number of L1 and L2 clusters increases w.r.t dimensionality.

There is an exponential increase at the total number of L2 clusters as an increase in L1 clusters has

a multiplicative effect on the number of L2 clusters. Hence, dimensionality has an effect on the

explanation and prediction serving performance as more clusters have to be investigated.

9 CONCLUSIONS & FUTUREWORK
We have defined a novel class of explanations for Aggregate Queries (AQ), which are of particular

importance for exploratory analytics. The proposed AQ explanations are succinct, assuming the

form of explainable functions. As such, they convey rich information to analysts about the queried

data subspaces and as to how the aggregate value depends on key parameters of the queried space.

Furthermore, they allow analysts to utilize these explanation functions for data exploration without

the need to issue more queries to the DBMS. This is because the proposed explanation functions

can be used to estimate the result of an AQ given the parameter values used in an AQ. We have

formulated the problem of deriving AQ explanations as a joint optimization problem over a novel

hetero-associative statistical learning methodology and have provided novel statistical learning

algorithms for its solution. Specifically, the joint optimization problem is deconstructed into three

parts which we solve separately. Their solutions serves as an approximation to the solution of the

original optimization problem.

Our explainability scheme for computing explanations does not require DBMS data accesses

ensuring efficiency and scalability as we use previously executed queries for all phases of our

methodology. In addition, we have shown examples of how the explanation functions can be

leveraged by analysts when performing data exploration. Data analysts can consult the visualisations

constructed using the explanation functions to identify subspaces of interest a-priori without

executing any query against the underlying back-end system. We believe this is a significant step

forward in expediting the data analytics process using frameworks that leverage past knowledge

extracted from previously executed queries.

Our future research agenda includes explainable machine learning models that can learn to

interpret the predicted outcomes of incoming analytics queries, while being able to autonomously

explore and recommend to analysts potentially interested (unknown) data sub-spaces in advance.

Hence, the system can pre-analyze and provide directives for deep exploration to data regions before
being visited/targeted by analysts for the analysts.
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APPENDIX

Table 3. Table of Notation

Parameter Description

a = [a1, . . . ,ad ] d-dimensional data vector

q = (x,θ ) 2d-dimensional range query

D(x,θ ) d-dimensional convex data subspace

x ∈ Rd parameter query center

θ ∈ Rd parameter query length

f explanation/regression function

D, Q data and query vectorial spaces

y scalar aggregate query output

L(f , ˆf ) explanation loss metric

T ,V query (workload) training and testing sets, respectively

S sub-queries set

B Data set

Qk Level 1 (L1) query cluster of Location Representative (LR)

wk ∈ R
d

location representative

Ukl Level 2 (L2) sub-cluster of Region Representative (RR)

ukl ∈ Rd region representative

(β , λ) parameters of PLR explanation function

h(q) MARS basis hinge function

W,U location and region representative sets, respectively
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