Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Photoplethysmogram-based Cognitive Load Assessment Using Multi-Feature Fusion Model

Published:23 September 2019Publication History
Skip Abstract Section

Abstract

Cognitive load assessment is crucial for user studies and human--computer interaction designs. As a noninvasive and easy-to-use category of measures, current photoplethysmogram- (PPG) based assessment methods rely on single or small-scale predefined features to recognize responses induced by people’s cognitive load, which are not stable in assessment accuracy. In this study, we propose a machine-learning method by using 46 kinds of PPG features together to improve the measurement accuracy for cognitive load. We test the method on 16 participants through the classical n-back tasks (0-back, 1-back, and 2-back). The accuracy of the machine-learning method in differentiating different levels of cognitive loads induced by task difficulties can reach 100% in 0-back vs. 2-back tasks, which outperformed the traditional HRV-based and single-PPG-feature-based methods by 12--55%. When using “leave-one-participant-out” subject-independent cross validation, 87.5% binary classification accuracy was reached, which is at the state-of-the-art level. The proposed method can also support real-time cognitive load assessment by beat-to-beat classifications with better performance than the traditional single-feature-based real-time evaluation method.

References

  1. Yomna Abdelrahman, Eduardo Velloso, Tilman Dingler, Albrecht Schmidt, and Frank Vetere. 2017. Cognitive heat: Exploring the usage of thermal imaging to unobtrusively estimate cognitive load. Proc. ACM Interact. Mobile Wear. Ubiq. Technol. 1, 3 (2017), 33.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. R. Alty, N. Angaritajaimes, S. C. Millasseau, and P. J. Chowienczyk. 2007. Predicting arterial stiffness from the digital volume pulse waveform. IEEE Trans. Bio-med. Eng. 54, 12 (2007), 2268--75.Google ScholarGoogle ScholarCross RefCross Ref
  3. Pavlo Antonenko, Fred Paas, Roland Grabner, and Tamara Van Gog. 2010. Using electroencephalography to measure cognitive load. Educ. Psychol. Rev. 22, 4 (2010), 425--438.Google ScholarGoogle ScholarCross RefCross Ref
  4. Hasan Ayaz, Meltem Izzetoglu, Scott Bunce, Terry Heiman-Patterson, and Banu Onaral. 2007. Detecting cognitive activity related hemodynamic signal for brain computer interface using functional near infrared spectroscopy. In Proceedings of the 3rd International IEEE/EMBS Conference on Neural Engineering 2007 (CNE’07). IEEE, 342--345.Google ScholarGoogle ScholarCross RefCross Ref
  5. Annemarie Brouwer, Maarten A. Hogervorst, Jan B. F. Van Erp, Tobias Heffelaar, Patrick H Zimmerman, and Robert Oostenveld. 2012. Estimating workload using EEG spectral power and ERPs in the n-back task. J. Neur. Eng. 9, 4 (2012), 045008.Google ScholarGoogle ScholarCross RefCross Ref
  6. Anne-Marie Brouwer, Maarten A. Hogervorst, Michael Holewijn, and Jan B. F. van Erp. 2014. Evidence for effects of task difficulty but not learning on neurophysiological variables associated with effort. Int. J. Psychophysiol. 93, 2 (2014), 242--252.Google ScholarGoogle ScholarCross RefCross Ref
  7. Roland Brunken, Jan L. Plass, and Detlev Leutner. 2003. Direct measurement of cognitive load in multimedia learning. Educ. Psychol. 38, 1 (2003), 53--61.Google ScholarGoogle ScholarCross RefCross Ref
  8. Fang Chen, Natalie Ruiz, Eric Choi, Julien Epps, M. Asif Khawaja, Ronnie Taib, Bo Yin, and Yang Wang. 2012. Multimodal behavior and interaction as indicators of cognitive load. ACM Trans. Interact. Intell. Syst. 2, 4, Article 22 (Jan. 2012), 36 pages. DOI:https://doi.org/10.1145/2395123.2395127Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Y. Cho, N. Bianchi-Berthouze, and S. J. Julier. 2017. DeepBreath: Deep learning of breathing patterns for automatic stress recognition using low-cost thermal imaging in unconstrained settings. In Proceedings of the 2017 7th International Conference on Affective Computing and Intelligent Interaction (ACII’17). IEEE, 456--463. DOI:https://doi.org/10.1109/ACII.2017.8273639Google ScholarGoogle Scholar
  10. Krista E. DeLeeuw and Richard E. Mayer. 2008. A comparison of three measures of cognitive load: Evidence for separable measures of intrinsic, extraneous, and germane load.J. Educ. Psychol. 100, 1 (2008), 223.Google ScholarGoogle ScholarCross RefCross Ref
  11. Jack Dennerlein, Theodore Becker, Peter Johnson, Carson Reynolds, and Rosalind W. Picard. 2003. Frustrating computer users increases exposure to physical factors. In Proceedings of the International Ergonomics Association.Google ScholarGoogle Scholar
  12. Gautier Durantin, J.-F. Gagnon, Sébastien Tremblay, and Frédéric Dehais. 2014. Using near infrared spectroscopy and heart rate variability to detect mental overload. Behav. Brain Res. 259, 1 (2014), 16--23.Google ScholarGoogle ScholarCross RefCross Ref
  13. M. Elgendi. 2012. On the analysis of fingertip photoplethysmogram signals. Curr. Cardiol. Rev. 8, 1 (2012).Google ScholarGoogle ScholarCross RefCross Ref
  14. Yuan Gao, Nadia Bianchiberthouze, and Hongying Meng. 2012. What does touch tell us about emotions in touchscreen-based gameplay? ACM Trans. Comput.-Hum. Interact. 19, 4 (2012), 1--30.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Annebet D. Goedhart, Sophie Van Der Sluis, Jan H. Houtveen, Gonneke Willemsen, and Eco J. C. De Geus. 2007. Comparison of time and frequency domain measures of RSA in ambulatory recordings. Psychophysiology 44, 2 (2007), 203--215.Google ScholarGoogle ScholarCross RefCross Ref
  16. David Grimes, Desney S. Tan, Scott E. Hudson, Pradeep Shenoy, and Rajesh P. N. Rao. 2008. Feasibility and pragmatics of classifying working memory load with an electroencephalograph. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’08). ACM, New York, NY, 835--844. DOI:https://doi.org/10.1145/1357054.1357187Google ScholarGoogle Scholar
  17. Eija Haapalainen, SeungJun Kim, Jodi F. Forlizzi, and Anind K. Dey. 2010. Psycho-physiological measures for assessing cognitive load. In Proceedings of the 12th ACM International Conference on Ubiquitous Computing (UbiComp’10). ACM, New York, NY, 301--310. DOI:https://doi.org/10.1145/1864349.1864395Google ScholarGoogle Scholar
  18. C. W. Harris, J. L. Edwards, A Baruch, W. A. Riley, B. E. Pusser, W. J. Rejeski, and D. M. Herrington. 2000. Effects of mental stress on brachial artery flow-mediated vasodilation in healthy normal individuals. Am. Heart J. 139, 3 (2000), 405--411.Google ScholarGoogle Scholar
  19. Joshua Harrison, Kurtuluş İzzetoğlu, Hasan Ayaz, Ben Willems, Sehchang Hah, Ulf Ahlstrom, Hyun Woo, Patricia A. Shewokis, Scott C. Bunce, and Banu Onaral. 2014. Cognitive workload and learning assessment during the implementation of a next-generation air traffic control technology using functional near-infrared spectroscopy. IEEE Trans. Hum.-Mach. Syst. 44, 4 (2014), 429--440.Google ScholarGoogle ScholarCross RefCross Ref
  20. Nis Hjortskov, Dag Rissén, Anne Katrine Blangsted, Nils Fallentin, Ulf Lundberg, and Karen Søgaard. 2004. The effect of mental stress on heart rate variability and blood pressure during computer work. Eur. J. Appl. Physiol. 92, 1--2 (2004), 84--89.Google ScholarGoogle ScholarCross RefCross Ref
  21. Maarten A. Hogervorst, Anne-Marie Brouwer, and Jan B. F. van Erp. 2014. Combining and comparing EEG, peripheral physiology and eye-related measures for the assessment of mental workload. Front. Neurosci. 8, 1 (2014), 322. DOI:https://doi.org/10.3389/fnins.2014.00322Google ScholarGoogle ScholarCross RefCross Ref
  22. C. Iani, D. Gopher, and P. Lavie. 2004. Effects of task difficulty and invested mental effort on peripheral vasoconstriction. Psychophysiology 41, 5 (2004), 789--798.Google ScholarGoogle ScholarCross RefCross Ref
  23. Meltem Izzetoglu, Scott C. Bunce, Kurtulus Izzetoglu, Banu Onaral, and Kambiz Pourrezaei. 2007. Functional brain imaging using near-infrared technology. IEEE Eng. Med. Biol. Mag. 26, 4 (2007), 38.Google ScholarGoogle ScholarCross RefCross Ref
  24. Thorsten Joachims. 2006. Training linear SVMs in linear time. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’06). ACM, New York, NY, 217--226. DOI:https://doi.org/10.1145/1150402.1150429Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mishel Johns, Srinath Sibi, and Wendy Ju. 2014. Effect of cognitive load in autonomous vehicles on driver performance during transfer of control. In Adjunct Proceedings of the 6th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI’14). ACM, New York, NY, 1--4. DOI:https://doi.org/10.1145/2667239.2667296Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. W. M. Jubadi and S. F. A. Mohd Sahak. 2009. Heartbeat monitoring alert via SMS. In Proceedings of the IEEE Symposium onIndustrial Electronics 8 Applications, 2009. ISIEA 2009. IEEE, 1--5.Google ScholarGoogle ScholarCross RefCross Ref
  27. J. W. H. Kalsbeek and J. H. Ettema. 1963. Continuous recording of heart rate and the measurement of perceptual load. Ergonomics 6 (1963), 306--307.Google ScholarGoogle Scholar
  28. A. Reşit Kavsaoğlu, Kemal Polat, and M. Recep Bozkurt. 2014. A novel feature ranking algorithm for biometric recognition with PPG signals. Comput. Biol. Med. 49, 1 (2014), 1--14. DOI:https://doi.org/10.1016/j.compbiomed.2014.03.005Google ScholarGoogle ScholarCross RefCross Ref
  29. Wayne K. Kirchner. 1958. Age differences in short-term retention of rapidly changing information. J. Exp. Psychol. 55, 4 (1958), 352.Google ScholarGoogle ScholarCross RefCross Ref
  30. Naveen Kumar and Jyoti Kumar. 2016. Measurement of cognitive load in HCI systems using EEG power spectrum: An experimental study. Proc. Comput. Sci. 84, 1 (2016), 70--78.Google ScholarGoogle ScholarCross RefCross Ref
  31. L. Luo, L. Xiao, D. Miao, and X. Luo. 2012. The relationship between mental stress induced changes in cortisol levels and vascular responses quantified by waveform analysis: Investigating stress-dependent indices of vascular changes. In Proceedings of the 2012 International Conference on Biomedical Engineering and Biotechnology. IEEE, 929--933. DOI:https://doi.org/10.1109/iCBEB.2012.437Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yongqiang Lyu, Xiaomin Luo, Jun Zhou, Chun Yu, Congcong Miao, Tong Wang, Yuanchun Shi, and Ken-ichi Kameyama. 2015. Measuring photoplethysmogram-based stress-induced vascular response index to assess cognitive load and stress. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI’15). ACM, New York, NY, 857--866. DOI:https://doi.org/10.1145/2702123.2702399Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Richard E. Mayer and Roxana Moreno. 2003. Nine ways to reduce cognitive load in multimedia learning. Educ. Psychol. 38, 1 (2003), 43--52.Google ScholarGoogle ScholarCross RefCross Ref
  34. D. McDuff, S. Gontarek, and R. Picard. 2014. Remote measurement of cognitive stress via heart rate variability. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2957--2960. DOI:https://doi.org/10.1109/EMBC.2014.6944243Google ScholarGoogle Scholar
  35. D. Mcduff, S. Gontarek, and R. W. Picard. 2014. Improvements in remote cardiopulmonary measurement using a five band digital camera. IEEE Trans. Bio-med. Eng. 61, 10 (2014), 2593--601.Google ScholarGoogle ScholarCross RefCross Ref
  36. Daniel J. McDuff, Javier Hernandez, Sarah Gontarek, and Rosalind W. Picard. 2016. COGCAM: Contact-free measurement of cognitive stress during computer tasks with a digital camera. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI’16). ACM, New York, NY, 4000--4004. DOI:https://doi.org/10.1145/2858036.2858247Google ScholarGoogle Scholar
  37. Calvin K. L. Or and Vincent G. Duffy. 2007. Development of a facial skin temperature-based methodology for non-intrusive mental workload measurement. Occupat. Ergon. 7, 2 (2007), 83--94.Google ScholarGoogle ScholarCross RefCross Ref
  38. Sharon Oviatt. 2006. Human-centered design meets cognitive load theory: Designing interfaces that help people think. In Proceedings of the 14th ACM International Conference on Multimedia (MM’06). ACM, New York, NY, 871--880. DOI:https://doi.org/10.1145/1180639.1180831Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Fred Paas, Juhani E. Tuovinen, Huib Tabbers, and Pascal W. M. Van Gerven. 2003. Cognitive load measurement as a means to advance cognitive load theory. Educ. Psychol. 38, 1 (2003), 63--71.Google ScholarGoogle ScholarCross RefCross Ref
  40. Fred G. W. C. Paas and Jeroen J. G. Van Merriënboer. 1994. Instructional control of cognitive load in the training of complex cognitive tasks. Educ. Psychol. Rev. 6, 4 (1994), 351--371.Google ScholarGoogle ScholarCross RefCross Ref
  41. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 1 (2011), 2825--2830.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Ming Zher Poh, Daniel J. Mcduff, and Rosalind W. Picard. 2011. Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans. Bio-med. Eng. 58, 1 (2011), 7.Google ScholarGoogle ScholarCross RefCross Ref
  43. Yu Shi, Natalie Ruiz, Ronnie Taib, Eric Choi, and Fang Chen. 2007. Galvanic skin response (GSR) as an index of cognitive load. In Extended Abstracts on Human Factors in Computing Systems (CHI EA’07). ACM, New York, NY, 2651--2656. DOI:https://doi.org/10.1145/1240866.1241057Google ScholarGoogle Scholar
  44. K. G. Shin and P. Ramanathan. 1994. Real-time computing: A new discipline of computer science and engineering. Proc. IEEE 82, 1 (Jan. 1994), 6--24. DOI:https://doi.org/10.1109/5.259423Google ScholarGoogle ScholarCross RefCross Ref
  45. Erin T. Solovey, Marin Zec, Enrique Abdon Garcia Perez, Bryan Reimer, and Bruce Mehler. 2014. Classifying driver workload using physiological and driving performance data: Two field studies. In Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems (CHI’14). ACM, New York, NY, 4057--4066. DOI:https://doi.org/10.1145/2556288.2557068Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Willem B. Verwey and Hans A. Veltman. 1996. Detecting short periods of elevated workload: A comparison of nine workload assessment techniques.J. Exp. Psychol. Appl. 2, 3 (1996), 270--285.Google ScholarGoogle ScholarCross RefCross Ref
  47. L. Wang, Emma Pickwell-Macpherson, Y. P. Liang, and Y. T. Zhang. 2009. Noninvasive cardiac output estimation using a novel photoplethysmogram index. In Proceedings of the International Conference of the IEEE Engineering in Medicine 8 Biology Society. IEEE, 1746.Google ScholarGoogle Scholar
  48. Shouyi Wang, Jacek Gwizdka, and W. Art Chaovalitwongse. 2016. Using wireless EEG signals to assess memory workload in the -back task. IEEE Trans. Hum.-Mach. Syst. 46, 3 (2016), 424--435.Google ScholarGoogle ScholarCross RefCross Ref
  49. Jianhua Zhang, Zhong Yin, and Rubin Wang. 2015. Recognition of mental workload levels under complex human--machine collaboration by using physiological features and adaptive support vector machines. IEEE Trans. Hum.-Mach. Syst. 45, 2 (2015), 200--214.Google ScholarGoogle ScholarCross RefCross Ref
  50. G. Zhao, Y. J. Liu, and Y. Shi. 2018. Real-time assessment of the cross-task mental workload using physiological measures during anomaly detection. IEEE Trans. Hum.-Mach. Syst. 48, 2 (Apr. 2018), 149--160. DOI:https://doi.org/10.1109/THMS.2018.2803025Google ScholarGoogle ScholarCross RefCross Ref
  51. Ferdinand Rudolf Hendrikus Zijlstra. 1993. Efficiency in Work Behaviour: A Design Approach for Modern Tools. Ph.D. Dissertation. Delft University, Delft.Google ScholarGoogle Scholar

Index Terms

  1. Photoplethysmogram-based Cognitive Load Assessment Using Multi-Feature Fusion Model

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Applied Perception
          ACM Transactions on Applied Perception  Volume 16, Issue 4
          October 2019
          72 pages
          ISSN:1544-3558
          EISSN:1544-3965
          DOI:10.1145/3364318
          Issue’s Table of Contents

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 23 September 2019
          • Revised: 1 June 2019
          • Accepted: 1 June 2019
          • Received: 1 July 2018
          Published in tap Volume 16, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format