Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3313831.3376286acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

MoveVR: Enabling Multiform Force Feedback in Virtual Reality using Household Cleaning Robot

Authors Info & Claims
Published:23 April 2020Publication History

ABSTRACT

Haptic feedback can significantly enhance the realism and immersiveness of virtual reality (VR) systems. In this paper, we propose MoveVR, a technique that enables realistic, multiform force feedback in VR leveraging commonplace cleaning robots. MoveVR can generate tension, resistance, impact and material rigidity force feedback with multiple levels of force intensity and directions. This is achieved by changing the robot's moving speed, rotation, position as well as the carried proxies. We demonstrated the feasibility and effectiveness of MoveVR through interactive VR gaming. In our quantitative and qualitative evaluation studies, participants found that MoveVR provides more realistic and enjoyable user experience when compared to commercially available haptic solutions such as vibrotactile haptic systems.

Skip Supplemental Material Section

Supplemental Material

paper159vf.mp4

mp4

55.3 MB

paper159pv.mp4

mp4

10.6 MB

a159-wang-presentation.mp4

mp4

58.1 MB

References

  1. 3dsystems. 2017. Touch X. https://www.3dsystems.com/haptics-devices/touch-x. (2017).Google ScholarGoogle Scholar
  2. 3dsystems. 2019. Phantom Premium Haptic Feedback Device. https://www.3dsystems.com/haptics-devices/ 3d-systems-phantom-premium. (2019).Google ScholarGoogle Scholar
  3. Muhammad Abdullah, Minji Kim, Waseem Hassan, Yoshihiro Kuroda, and Seokhee Jeon. 2017. HapticDrone: An Encountered-Type Kinesthetic Haptic Interface with Controllable Force Feedback: Initial Example for 1D Haptic Feedback. In Adjunct Publication of the 30th Annual ACM Symposium on User Interface Software and Technology (UIST '17). ACM, NY, NY, USA, 115--117. DOI: http://dx.doi.org/10.1145/3131785.3131821Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Abdullah, M. Kim, W. Hassan, Y. Kuroda, and S. Jeon. 2018. HapticDrone: An encountered-type kinesthetic haptic interface with controllable force feedback: Example of stiffness and weight rendering. In 2018 IEEE Haptics Symposium (HAPTICS). 334--339. DOI: http://dx.doi.org/10.1109/HAPTICS.2018.8357197Google ScholarGoogle ScholarCross RefCross Ref
  5. Parastoo Abtahi, Benoit Landry, Jackie (Junrui) Yang, Marco Pavone, Sean Follmer, and James A. Landay. 2019. Beyond The Force: Using Quadcopters to Appropriate Objects and the Environment for Haptics in Virtual Reality. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19). ACM, NY, NY, USA, Article 359, 13 pages. DOI: http://dx.doi.org/10.1145/3290605.3300589Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bruno Araujo, Ricardo Jota, Varun Perumal, Jia Xian Yao, Karan Singh, and Daniel Wigdor. 2016. Snake Charmer: Physically Enabling Virtual Objects. In Proceedings of the TEI '16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction (TEI '16). ACM, NY, NY, USA, 218--226. DOI: http://dx.doi.org/10.1145/2839462.2839484Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Akash Badshah, Sidhant Gupta, Daniel Morris, Shwetak Patel, and Desney Tan. 2012. GyroTab: A Handheld Device That Provides Reactive Torque Feedback. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '12). ACM, NY, NY, USA, 3153--3156. DOI: http://dx.doi.org/10.1145/2207676.2208731Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Grigore C. Burdea. 1996. Force and Touch Feedback for Virtual Reality. John Wiley & Sons, Inc., New York, NY, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Inrak Choi, Heather Culbertson, Mark R. Miller, Alex Olwal, and Sean Follmer. 2017. Grabity: A Wearable Haptic Interface for Simulating Weight and Grasping in Virtual Reality. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology (UIST '17). ACM, NY, NY, USA, 119--130. DOI: http://dx.doi.org/10.1145/3126594.3126599Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. I. Choi, E. W. Hawkes, D. L. Christensen, C. J. Ploch, and S. Follmer. 2016. Wolverine: A wearable haptic interface for grasping in virtual reality. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 986--993. DOI: http://dx.doi.org/10.1109/IROS.2016.7759169Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Inrak Choi, Eyal Ofek, Hrvoje Benko, Mike Sinclair, and Christian Holz. 2018. CLAW: A Multifunctional Handheld Haptic Controller for Grasping, Touching, and Triggering in Virtual Reality. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI '18). ACM, NY, NY, USA, Article 654, 13 pages. DOI: http://dx.doi.org/10.1145/3173574.3174228Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Frisoli, F. Rocchi, S. Marcheschi, A. Dettori, F. Salsedo, and M. Bergamasco. 2005. A new force-feedback arm exoskeleton for haptic interaction in virtual environments. In First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference. 195--201. DOI: http://dx.doi.org/10.1109/WHC.2005.15Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Antonio Gomes, Calvin Rubens, Sean Braley, and Roel Vertegaal. 2016. BitDrones: Towards Using 3D Nanocopter Displays As Interactive Self-Levitating Programmable Matter. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI '16). ACM, NY, NY, USA, 770--780. DOI: http://dx.doi.org/10.1145/2858036.2858519Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jun Gong, Da-Yuan Huang, Teddy Seyed, Te Lin, Tao Hou, Xin Liu, Molin Yang, Boyu Yang, Yuhan Zhang, and Xing-Dong Yang. 2018. Jetto: Using Lateral Force Feedback for Smartwatch Interactions. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI '18). ACM, NY, NY, USA, Article 426, 14 pages. DOI: http://dx.doi.org/10.1145/3173574.3174000Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Xiaochi Gu, Yifei Zhang, Weize Sun, Yuanzhe Bian, Dao Zhou, and Per Ola Kristensson. 2016. Dexmo: An Inexpensive and Lightweight Mechanical Exoskeleton for Motion Capture and Force Feedback in VR. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI '16). ACM, NY, NY, USA, 1991--1995. DOI: http://dx.doi.org/10.1145/2858036.2858487Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Zhenyi He, Fengyuan Zhu, Aaron Gaudette, and Ken Perlin. 2017b. Robotic Haptic Proxies for Collaborative Virtual Reality. CoRR abs/1701.08879 (2017). http://arxiv.org/abs/1701.08879Google ScholarGoogle Scholar
  17. Zhenyi He, Fengyuan Zhu, and Ken Perlin. 2017a. PhyShare: Sharing Physical Interaction in Virtual Reality. In Adjunct Publication of the 30th Annual ACM Symposium on User Interface Software and Technology (UIST '17). ACM, NY, NY, USA, 17--19. DOI: http://dx.doi.org/10.1145/3131785.3131795Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Seongkook Heo, Christina Chung, Geehyuk Lee, and Daniel Wigdor. 2018. Thor's Hammer: An Ungrounded Force Feedback Device Utilizing Propeller-Induced Propulsive Force. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI '18). ACM, NY, NY, USA, Article 525, 11 pages. DOI: http://dx.doi.org/10.1145/3173574.3174099Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Hirose, K. Hirota, T. Ogi, H. Yano, N. Kakehi, M. Saito, and M. Nakashige. 2001. HapticGEAR: the development of a wearable force display system for immersive projection displays. In Proceedings IEEE Virtual Reality 2001. 123--129. DOI: http://dx.doi.org/10.1109/VR.2001.913778Google ScholarGoogle ScholarCross RefCross Ref
  20. H. Iwata. 1993. Pen-based haptic virtual environment. In Proceedings of IEEE Virtual Reality Annual International Symposium. 287--292. DOI: http://dx.doi.org/10.1109/VRAIS.1993.380767Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Seungzoo Jeong, Naoki Hashimoto, and Sato Makoto. 2004. A Novel Interaction System with Force Feedback Between Real - and Virtual Human: An Entertainment System: "Virtual Catch Ball". In Proceedings of the 2004 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology (ACE '04). ACM, NY, NY, USA, 61--66. DOI: http://dx.doi.org/10.1145/1067343.1067350Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. G. Lee, S. Hur, and Y. Oh. 2017. High-Force Display Capability and Wide Workspace With a Novel Haptic Interface. IEEE/ASME Transactions on Mechatronics 22, 1 (Feb 2017), 138--148. DOI: http://dx.doi.org/10.1109/TMECH.2016.2624263Google ScholarGoogle ScholarCross RefCross Ref
  23. CyberGlove Systems LLC. 2017. CyberGrasp. http://www.cyberglovesystems.com/cybergrasp/. (2017).Google ScholarGoogle Scholar
  24. Azumi Maekawa, Shota Takahashi, MHD Yamen Saraiji, Sohei Wakisaka, Hiroyasu Iwata, and Masahiko Inami. 2019. Naviarm: Augmenting the Learning of Motor Skills Using a Backpack-type Robotic Arm System. In Proceedings of the 10th Augmented Human International Conference 2019 (AH2019). ACM, NY, NY, USA, Article 38, 8 pages. DOI: http://dx.doi.org/10.1145/3311823.3311849Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. W. A. McNeely. 1993. Robotic graphics: a new approach to force feedback for virtual reality. In Proceedings of IEEE Virtual Reality Annual International Symposium. 336--341. DOI: http://dx.doi.org/10.1109/VRAIS.1993.380761Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. C. Pacchierotti, S. Sinclair, M. Solazzi, A. Frisoli, V. Hayward, and D. Prattichizzo. 2017. Wearable Haptic Systems for the Fingertip and the Hand: Taxonomy, Review, and Perspectives. IEEE Transactions on Haptics 10, 4 (Oct 2017), 580--600. DOI: http://dx.doi.org/10.1109/TOH.2017.2689006Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Mathias Parger, Joerg H. Mueller, Dieter Schmalstieg, and Markus Steinberger. 2018. Human Upper-Body Inverse Kinematics for Increased Embodiment in Consumer-Grade Virtual Reality. In Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology (VRST'18). Association for Computing Machinery, New York, NY, USA, Article Article 23, 10 pages. DOI: http://dx.doi.org/10.1145/3281505.3281529Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Jake Rubin. 2017. What Is Haptics? https://haptx.com/what-is-haptics-really/. (2017).Google ScholarGoogle Scholar
  29. Jotaro Shigeyama, Takeru Hashimoto, Shigeo Yoshida, Taiju Aoki, Takuji Narumi, Tomohiro Tanikawa, and Michitaka Hirose. 2018. Transcalibur: Weight Moving VR Controller for Dynamic Rendering of 2D Shape Using Haptic Shape Illusion. In ACM SIGGRAPH 2018 Emerging Technologies (SIGGRAPH '18). ACM, NY, NY, USA, Article 19, 2 pages. DOI: http://dx.doi.org/10.1145/3214907.3214923Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Alexa F. Siu, Eric J. Gonzalez, Shenli Yuan, Jason B. Ginsberg, and Sean Follmer. 2018. shapeShift: 2D Spatial Manipulation and Self-Actuation of Tabletop Shape Displays for Tangible and Haptic Interaction. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI '18). ACM, NY, NY, USA, Article 291, 13 pages. DOI: http://dx.doi.org/10.1145/3173574.3173865Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Statista. 2019. Robotic vacuum cleaner unit shipment worldwide from 2015 to 2025. https://www.statista.com/statistics/1022967/worldwide-robotic-vacuum-cleaner-shipment/. (2019).Google ScholarGoogle Scholar
  32. Evan Strasnick, Christian Holz, Eyal Ofek, Mike Sinclair, and Hrvoje Benko. 2018. Haptic Links: Bimanual Haptics for Virtual Reality Using Variable Stiffness Actuation. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI '18). ACM, NY, NY, USA, Article 644, 12 pages. DOI: http://dx.doi.org/10.1145/3173574.3174218Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yuqian Sun, Shigeo Yoshida, Takuji Narumi, and Michitaka Hirose. 2019. PaCaPa: A Handheld VR Device for Rendering Size, Shape, and Stiffness of Virtual Objects in Tool-based Interactions. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19). ACM, NY, NY, USA, Article 452, 12 pages. DOI: http://dx.doi.org/10.1145/3290605.3300682Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Hsin-Ruey Tsai, Jun Rekimoto, and Bing-Yu Chen. 2019. ElasticVR: Providing Multilevel Continuously-Changing Resistive Force and Instant Impact Using Elasticity for VR. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19). ACM, NY, NY, USA, Article 220, 10 pages. DOI: http://dx.doi.org/10.1145/3290605.3300450Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Dzmitry Tsetserukou, Katsunari Sato, and Susumu Tachi. 2010. ExoInterfaces: Novel Exosceleton Haptic Interfaces for Virtual Reality, Augmented Sport and Rehabilitation. In Proceedings of the 1st Augmented Human International Conference (AH '10). ACM, NY, NY, USA, Article 1, 6 pages. DOI: http://dx.doi.org/10.1145/1785455.1785456Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. H. Yano, M. Yoshie, and H. Iwata. 2003. Development of a non-grounded haptic interface using the gyro effect. In 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings. 32--39. DOI: http://dx.doi.org/10.1109/HAPTIC.2003.1191223Google ScholarGoogle ScholarCross RefCross Ref
  37. Y. Yokokohji, J. Kinoshita, and T. Yoshikawa. 2001. Path planning for encountered-type haptic devices that render multiple objects in 3D space. In Proceedings IEEE Virtual Reality 2001. 271--278. DOI: http://dx.doi.org/10.1109/VR.2001.913796Google ScholarGoogle ScholarCross RefCross Ref
  38. A. Zenner and A. KrÃijger. 2017. Shifty: A Weight-Shifting Dynamic Passive Haptic Proxy to Enhance Object Perception in Virtual Reality. IEEE Transactions on Visualization and Computer Graphics 23, 4 (April 2017), 1285--1294. DOI: http://dx.doi.org/10.1109/TVCG.2017.2656978Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. MoveVR: Enabling Multiform Force Feedback in Virtual Reality using Household Cleaning Robot

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          CHI '20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
          April 2020
          10688 pages
          ISBN:9781450367080
          DOI:10.1145/3313831

          Copyright © 2020 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 23 April 2020

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate6,199of26,314submissions,24%

          Upcoming Conference

          CHI PLAY '24
          The Annual Symposium on Computer-Human Interaction in Play
          October 14 - 17, 2024
          Tampere , Finland

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format