Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2808719.2812219acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

Efficient learning of association rules from human phenotype ontology

Published:09 September 2015Publication History

ABSTRACT

Biomedical ontologies are commonly used to structure and organize formal knowledge about biological and biomedical concepts. Terms structured within ontologies are usually associated to biomedical entities in a process referred to as annotation. The Human Phenotype Ontology (HPO) is a standardized, controlled vocabulary that contains phenotypic information about genes or product genes. Due to the recent introduction of the HPO, problem to check annotation consistency of HPO annotations, has not been formally investigated differently from other ontologies, such as Gene Ontology (GO). In a previous work we introduced a framework to learn association rules from Gene Ontology demonstrating its usefulness to improve annotation consistency. Here we extend those results in HPO and we present a novel framework to learn association rules from HPO. The framework is based on a multithreaded tool able to learn rules in an efficient way. Results demonstrate its usefulness, by extracting rules that connect two or more terms of HPO, currently under investigation.

References

  1. G. Agapito, M. Cannataro, P. H. Guzzi, and M. Milano. Using go-war for mining cross-ontology weighted association rules. Computer methods and programs in biomedicine, 120(2):113--122, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. G. Agapito, M. Cannataro, P. H. Guzzi, and M. Milano. Using GO-WAR for mining cross-ontology weighted association rules. Computer Methods and Programs in Biomedicine, 120(2):113--122, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. G. Agapito, M. Milano, P. H. Guzzi, and M. Cannataro. Improving annotation quality in gene ontology by mining cross-ontology weighted association rules. In Bioinformatics and Biomedicine (BIBM), 2014 IEEE International Conference on, pages 1--8. IEEE, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  4. R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD Rec., 22(2):207--216, June 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. G. Alterovitz, M. Xiang, D. P. Hill, J. Lomax, J. Liu, M. Cherkassky, J. Dreyfuss, C. Mungall, M. A. Harris, M. E. Dolan, et al. Ontology engineering. Nature Biotechnology, 28(2):128--130, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  6. Y.-R. Cho, M. Mina, Y. Lu, N. Kwon, and P. H. Guzzi. M-finder: Uncovering functionally associated proteins from interactome data integrated with go annotations. Proteome Sci, 11(Suppl 1):S3, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  7. D. Faria, A. Schlicker, C. Pesquita, H. Bastos, A. E. N. Ferreira, M. Albrecht, and A. O. FalcÃčo. Mining go annotations for improving annotation consistency. PLoS ONE, 7(7):e40519, 07 2012.Google ScholarGoogle ScholarCross RefCross Ref
  8. T. Groza, S. Kohler, D. Moldenhauer, N. Vasilevsky, G. Baynam, T. Zemojtel, L. M. Schriml, W. A. Kibbe, P. N. Schofield, T. Beck, D. Vasant, A. J. Brookes, A. Zankl, N. L. Washington, C. J. Mungall, S. E. Lewis, M. A. Haendel, H. Parkinson, and P. N. Robinson. The human phenotype ontology: Semantic unification of common and rare disease. The American Journal of Human Genetics, 97(1):111--124, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  9. P. Guzzi, M. Mina, C. Guerra, and M. Cannataro. Semantic similarity analysis of protein data: assessment with biological features and issues. Briefings in bioinformatics, 13(5):569--585, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  10. P. H. Guzzi, M. Milano, and M. Cannataro. Mining association rules from gene ontology and protein networks: Promises and challenges. In D. Abramson, M. Lees, V. V. Krzhizhanovskaya, J. Dongarra, and P. M. A. Sloot, editors, Proceedings of the International Conference on Computational Science, ICCS 2014, Cairns, Queensland, Australia, 10--12 June, 2014, volume 29 of Procedia Computer Science, pages 1970--1980. Elsevier, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  11. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In W. Chen, J. Naughton, and P. A. Bernstein, editors, 2000 ACM SIGMOD Intl. Conference on Management of Data, pages 1--12. ACM Press, May 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD Rec., 29(2):1--12, May 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Harispe, D. Sánchez, S. Ranwez, S. Janaqi, and J. Montmain. A framework for unifying ontology-based semantic similarity measures: A study in the biomedical domain. Journal of biomedical informatics, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. P. Manda, F. McCarthy, and S. M. Bridges. Interestingness measures and strategies for mining multi-ontology multi-level association rules from gene ontology annotations for the discovery of new go relationships. Journal of biomedical informatics, 46(5):849--856, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Milano, G. Agapito, P. H. Guzzi, and M. Cannataro. Biases in information content measurement of gene ontology terms. In H. J. Zheng, W. Dubitzky, X. Hu, J. Hao, D. P. Berrar, K. Cho, Y. Wang, and D. Gilbert, editors, 2014 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2014, Belfast, United Kingdom, November 2--5, 2014, pages 9--16. IEEE, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  16. S. Naulaerts, P. Meysman, W. Bittremieux, T. N. Vu, W. Vanden Berghe, B. Goethals, and K. Laukens. A primer to frequent itemset mining for bioinformatics. Briefings in Bioinformatics, 2013.Google ScholarGoogle Scholar
  17. P. N. Robinson, S. Kohler, S. Bauer, D. Seelow, D. Horn, and S. Mundlos. The human phenotype ontology: a tool for annotating and analyzing human hereditary disease. The American Journal of Human Genetics, 83(5):610--615, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  18. D. Sánchez, M. Batet, and D. Isern. Ontology-based information content computation. Know.-Based Syst., 24:297--303, Mar. 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. W. Wang, J. Yang, and P. S. Yu. Efficient mining of weighted association rules (war). In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 270--274. ACM, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Efficient learning of association rules from human phenotype ontology

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        BCB '15: Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics
        September 2015
        683 pages
        ISBN:9781450338530
        DOI:10.1145/2808719

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 9 September 2015

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        BCB '15 Paper Acceptance Rate48of141submissions,34%Overall Acceptance Rate254of885submissions,29%
      • Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader