Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2808719.2808733acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

MICA: MicroRNA integration for active module discovery

Published:09 September 2015Publication History

ABSTRACT

A successful method to address disease-specific module discovery is the integration of the gene expression data with the protein-protein interaction (PPI) network. Although many algorithms have been developed for this purpose, they focus only on the network genes (mostly on the well-connected ones); totally neglecting the genes whose interactions are partially or totally not known. In addition, they only make use of the gene expression data which does not give the complete picture about the actual protein expression levels. The cell uses different mechanisms, such as microRNAs, to post-transcriptionally regulate the proteins without affecting the corresponding genes' expressions. Due to this complexity, using a single data type is definitely not the correct way to find the correct module(s). Today, the unprecedented amount of publicly available disease-related heterogeneous data encourages the development of new methodologies to better understand complex diseases.

In this work, we propose a novel workflow Mica, which, to the best of our knowledge, is the first study integrating miRNA, mRNA, and PPI information to identify disease-specific gene modules. The novelty of the Mica lies in many directions, such as the early modification of mRNA expression with microRNA to better highlight the indirect dependencies between the genes. We applied Mica on microRNA-Seq and mRNA-Seq data sets of 699 invasive ductal carcinoma samples and 150 invasive lobular carcinoma samples from the Cancer Genome Atlas Project (TCGA). The Mica modules are shown to unravel new and interesting dependencies between the genes. Additionally, the modules accurately differentiate between the case and control samples while being highly enriched with disease-specific pathways and genes.

References

  1. D. Baek, J. Villén, C. Shin, et al. The impact of micrornas on protein output. Nature, 455(7209):64--71, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  2. A.-L. Barabási, N. Gulbahce, and J. Loscalzo. Network medicine: a network-based approach to human disease. Nature Reviews Genetics, 12(1):56--68, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  3. A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural computation, 7(6):1129--1159, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. Blenkiron, L. D. Goldstein, N. P. Thorne, et al. Microrna expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol, 8(10):R214, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  5. K. Broberg, E. Huynh, K. S. Engström, et al. Association between polymorphisms in rmi1, top3a, and blm and risk of cancer, a case-control study. BMC cancer, 9(1):140, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  6. J.-F. Cardoso and A. Souloumiac. Blind beamforming for non-gaussian signals. In IEE Proc. F (Radar and Signal Processing), volume 140, pages 362--370, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  7. K.-L. Chan, P. S. North, and I. D. Hickson. Blm is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. The EMBO journal, 26(14):3397--3409, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  8. X. Chang, T. Xu, Y. Li, and K. Wang. Dynamic modular architecture of protein-protein interaction networks beyond the dichotomy of date and party hubs. Scientific reports, 3, 2013.Google ScholarGoogle Scholar
  9. S. Chavali, S. Bruhn, K. Tiemann, et al. MicroRNAs act complementarily to regulate disease-related mRNA modules in human diseases. RNA, 19(11):1552--1562, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  10. P. Chiappetta, M.-C. Roubaud, and B. Torrésani. Blind source separation and the analysis of microarray data. Journal of Comp Biol, 11(6):1090--1109, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  11. A. Cretu, X. Sha, J. Tront, et al. Stress sensor gadd45 genes as therapeutic targets in cancer. Cancer therapy, 7(A):268, 2009.Google ScholarGoogle Scholar
  12. Y. Cun and H. Fröhlich. Network and data integration for biomarker signature discovery via network smoothed t-statistics. PloS one, 8(9):e73074, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  13. C.-X. Deng. Brca1: cell cycle checkpoint, genetic instability, dna damage response and cancer evolution. Nucleic acids research, 34(5):1416--1426, 2006.Google ScholarGoogle Scholar
  14. S.-l. Ding, J.-C. Yu, S.-T. Chen, et al. Genetic variants of blm interact with rad51 to increase breast cancer susceptibility. Carcinogenesis, 30(1):43--49, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  15. M. T. Dittrich, G. W. Klau, A. Rosenwald, et al. Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinf., 24(13):i223--i231, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. R. Fabian, N. Sonenberg, and W. Filipowicz. Regulation of mRNA translation and stability by microRNAs. Ann. review of bioch., 79:351--379, 2010.Google ScholarGoogle Scholar
  17. A. R. Grosso, S. Martins, and M. Carmo-Fonseca. The emerging role of splicing factors in cancer. EMBO reports, 9(11):1087--1093, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  18. J. Himberg, A. Hyvärinen, and F. Esposito. Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage, 22(3):1214--1222, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  19. A. Hollestelle, J. H. Nagel, M. Smid, et al. Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines. Br. Can. Res. and Treat., 121(1):53--64, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. L. Horn. A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2):179--185, 1965.Google ScholarGoogle ScholarCross RefCross Ref
  21. M.-C. Hsu, K.-T. Lee, W.-C. Hsiao, et al. The dyslipidemia-associated snp on the apoa1/c3/a5 gene cluster predicts post-surgery poor outcome in taiwanese breast cancer patients: a 10-year follow-up study. BMC cancer, 13(1):330, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  22. S.-D. Hsu, F.-M. Lin, W.-Y. Wu, et al. miRTarBase: a database curates experimentally validated microRNA--target interactions. Nucl. Acids Res., 39(suppl 1):D163--D169, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  23. G. T. Huang, C. Athanassiou, and P. V. Benos. mirConnX: condition-specific mRNA-microRNA network integrator. Nucl. Acids Res., 39(suppl 2):W416--W423, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  24. A. Hyvärinen. Fast and robust fixed-point algorithms for independent component analysis. Neural Networks, IEEE Transactions on, 10(3):626--634, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Hyvärinen. Independent component analysis: recent advances. Philos. Trans. of the Royal Soc. A: Math., Phys. and Eng. Sci., 371(1984), 2013.Google ScholarGoogle Scholar
  26. T. Ideker, O. Ozier, B. Schwikowski, and A. F. Siegel. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinf., 18(Suppl 1):S233--S240, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  27. T. Ideker and R. Sharan. Protein networks in disease. Genome Res., 18(4):644--652, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  28. M. V. Iorio and C. M. Croce. microRNA involvement in human cancer. Carcinogenesis, 33(6):1126--1133, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  29. M. Koyutürk. Algorithmic and analytical methods in network biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2(3):277--292, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  30. I. Lal, K. Dittus, and C. E. Holmes. Platelets, coagulation and fibrinolysis in breast cancer progression. Breast Cancer Research, 15(4):1--11, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  31. H.-S. Le and Z. Bar-Joseph. Integrating sequence, expression and interaction data to determine condition-specific mirna regulation. Bioinformatics, 29(13):i89--i97, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  32. M. Lee, M. Daniels, M. Garnett, and A. Venkitaraman. A mitotic function for the high-mobility group protein HMG20b regulated by its interaction with the brc repeats of the brca2 tumor suppressor. Oncogene, 30(30):3360--3369, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  33. F. Lerebours, S. Vacher, C. Andrieu, et al. Nf-kappa b genes have a major role in inflammatory breast cancer. BMC cancer, 8(1):41, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  34. E. Levy-Lahad. Fanconi anemia and breast cancer susceptibility meet again. Nature genetics, 42(5), 2010.Google ScholarGoogle Scholar
  35. L. Li, H.-Z. Chen, F.-F. Chen, et al. Global microrna expression profiling reveals differential expression of target genes in 6-hydroxydopamine injured mn9d cells. Neuromolecular medicine, 15(3):593--604, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  36. P. Li, Y. Lin, Y. Zhang, et al. SSX2IP promotes metastasis and chemotherapeutic resistance of hepatocellular carcinoma. Jr. of Trans. Med., 2013.Google ScholarGoogle ScholarCross RefCross Ref
  37. Y.-O. Li, T. Adalı, and V. D. Calhoun. Estimating the number of independent components for functional magnetic resonance imaging data. Human brain mapping, 28(11):1251--1266, 2007.Google ScholarGoogle Scholar
  38. W. Liebermeister. Linear modes of gene expression determined by independent component analysis. Bioinformatics, 18(1):51--60, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  39. X.-J. Ma, R. Salunga, J. T. Tuggle, et al. Gene expression profiles of human breast cancer progression. Proc. of the Nat. Acad. of Sci., 100(10):5974--5979, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  40. K. Mitra, A.-R. Carvunis, S. K. Ramesh, and T. Ideker. Integrative approaches for finding modular structure in biological networks. Nat. Rev. Gen., 14(10):719--732, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  41. J. D. Osborne, J. Flatow, M. Holko, et al. Annotating the human genome with disease ontology. BMC genomics, 10(Suppl 1):S6, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  42. I. Pucci-Minafra, P. Cancemi, M. R. Marabeti, et al. Proteomic profiling of 13 paired ductal infiltrating breast carcinomas and non-tumoral adjacent counterparts. PROT.-Clin. App., 1(1):118--129, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  43. F. Revillion, J. Bonneterre, and J. Peyrat. ERBB2 oncogene in human breast cancer and its clinical significance. Euro. Jr. of Cancer, 34(6):791--808, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  44. M. Rotival, T. Zeller, P. S. Wild, et al. Integrating genome-wide genetic variations and monocyte expression data reveals trans-regulated gene modules in humans. PLoS gen., 7(12):e1002367, 2011.Google ScholarGoogle Scholar
  45. R. Schachtner, D. Lutter, P. Knollmüller, et al. Knowledge-based gene expression classification via matrix factorization. Bioinf., 24(15):1688--1697, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. M. Scholz, S. Gatzek, A. Sterling, et al. Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinf., 20(15):2447--2454, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. A. D. Singhi, A. Cimino-Mathews, R. B. Jenkins, et al. Myc gene amplification is often acquired in lethal distant breast cancer metastases of unamplified primary tumors. Modern Path., 25(3):378--387, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  48. R. J. Slebos, X. Wang, X. Wang, et al. Proteomic analysis of colon and rectal carcinoma using standard and customized databases. Scientific data, 2, 2015.Google ScholarGoogle Scholar
  49. M.-N. Song, P.-G. Moon, J.-E. Lee, et al. Proteomic analysis of breast cancer tissues to identify biomarker candidates by gel-assisted digestion and label-free quantification methods using LC-MS/MS. Arch. of Pharm. Res., 35(10):1839--1847, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  50. A. E. Teschendorff, M. Journée, P. A. Absil, et al. Elucidating the altered transcriptional programs in breast cancer using independent component analysis. PLoS Comp. Biol., 3(8):e161, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  51. Y. C. Tsai and A. M. Weissman. The unfolded protein response, degradation from the endoplasmic reticulum, and cancer. Genes & cancer, 1(7):764--778, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  52. J. S. Tsang, M. S. Ebert, and A. van Oudenaarden. Genome-wide dissection of microrna functions and cotargeting networks using gene set signatures. Molecular cell, 38(1):140--153, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  53. G. Turashvili, J. Bouchal, K. Baumforth, et al. Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer, 7(1):55, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  54. I. Ulitsky, A. Krishnamurthy, R. M. Karp, and R. Shamir. DEGAS: de novo discovery of dysregulated pathways in human diseases. PLoS One, 5(10):e13367, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  55. N. Wasif, M. A. Maggard, C. Y. Ko, et al. Invasive lobular vs. ductal breast cancer: a stage-matched comparison of outcomes. Ann. of Surg. Oncol., 17(7):1862--1869, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  56. G. Yu. ReactomePA: Reactome Pathway Analysis, 2014. R package version 1.4.0.Google ScholarGoogle Scholar
  57. G. Yu, L. Wang, Y. Han, and Q. He. clusterprofiler: an r package for comparing biological themes among gene clusters. OMICS: A Jr. of Int. Biol., 16(5):284--287, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  58. S. Zhang, Q. Li, J. Liu, and X. J. Zhou. A novel computational framework for simultaneous integration of multiple types of genomic data to identify microrna-gene regulatory modules. Bioinformatics, 27(13):i401--i409, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. S. Zhang, C.-C. Liu, W. Li, et al. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucl. Acids Res., 40(19):9379--9391, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  60. H. Zhao, A. Langerød, Y. Ji, et al. Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol. Biol. of the Cell, 15(6):2523--2536, 2004.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. MICA: MicroRNA integration for active module discovery

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          BCB '15: Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics
          September 2015
          683 pages
          ISBN:9781450338530
          DOI:10.1145/2808719

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 9 September 2015

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          BCB '15 Paper Acceptance Rate48of141submissions,34%Overall Acceptance Rate254of885submissions,29%
        • Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader