Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Common-source-line array: An area efficient memory architecture for bipolar nonvolatile devices

Published:25 October 2013Publication History
Skip Abstract Section

Abstract

Traditional array organization of bipolar nonvolatile memories such as STT-MRAM and memristor utilizes two bitlines for cell manipulations. With technology scaling, such bitline pair will soon become the bottleneck for further density improvement. In this article we propose a novel common-source-line array architecture, which uses a shared source-line along the row, leaving only one bitline per column. We elaborate the array design to ensure reliability, and demonstrate its effectiveness on STT-MRAM and memristor memory arrays. Our study results show that with comparable latency and energy, the proposed common-source-line array can save 34% and 33% area for Memristor-RAM and STT-MRAM respectively, compared with corresponding dual-bitline arrays.

References

  1. ASU. Predictive Technology Model (PTM). http://www.eas.asu.edu/∼ptm/.Google ScholarGoogle Scholar
  2. Barth, J., Plass, D., Nelson, E., Hwang, C., Fredeman, G., Sperling, M., Mathews, A., Reohr, W., and Nair, K. 2010. A 45nm soi embedded dram macro for power7 32mb on-chip l3 cache. In Proceedings of the International Solid-State Circuits Conference. 342--343.Google ScholarGoogle Scholar
  3. Borghetti, J., Strukov, D., et al. 2009. Electrical transport and thermometry of electroformed titanium dioxide memristive switches. J. Appl. Phys. 106.Google ScholarGoogle ScholarCross RefCross Ref
  4. Cadence. 45nm Generic PDK data sheet and device models.Google ScholarGoogle Scholar
  5. Chung, S., Rho, K.-M., Pickett, M. D., Yang J. J., Stewart, D. R., and Williams, R. S. 2010. Fully integrated 54nm stt-ram with the smallest bit cell dimension for high density memory application. In Proceedings of the International Electron Devices Meeting. 304--307.Google ScholarGoogle Scholar
  6. Halupka, D., Huda, S., Song, W., Sheikholeslami, A., Tsunoda, K., Yoshida, C., and Aoki, M. 2010. Negative-resistance read and write schemes for STT-MRAM in 0.13μm cmos. In Proceedings of the International Solid-State Circuits Conference. 256--257.Google ScholarGoogle Scholar
  7. Ho, Y., Huang, G., and Li, P. 2009. Nonvolatile memristor memory: Device characteristics and design implications. In Proceedings of the International Conference on Computer-Aided Design. 485--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hosomi, M., Yamagishi, H., et al. 2005. A novel nonvolatile memory with spin torque transfer magnetization switching: Spin-ram. In Proceedings of the International Electron Devices Meeting. 459--462.Google ScholarGoogle ScholarCross RefCross Ref
  9. Hu, C. 1996. Gate oxide scaling limits and projection. In Proceedings of the International Electron Devices Meeting. 319--322.Google ScholarGoogle Scholar
  10. ITRS 2011. International Technology Roadmap for Semiconductors (ITRS) Report. http://www.itrs.net.Google ScholarGoogle Scholar
  11. Kang, S., Cho, W. Y., et al. 2007. A 0.1-um 1.8-v 256-mb phase-change random access memory (pram) with 66-mhz synchronous burst-read operation. IEEE J. Solid-State Circuits 42, 1, 210--218.Google ScholarGoogle ScholarCross RefCross Ref
  12. Kawahara, T., Takemura, R., et al. 2007. 2mb spin-transfer torque ram (spram) with bit-by-bit bidirectional current write and parallelizing-direction current read. In Proceedings of the International Solid-State Circuits Conference. 480--481.Google ScholarGoogle ScholarCross RefCross Ref
  13. Kishi, T., Yoda, H., et al. 2008. Lower-current and fast switching of a perpendicular TMR for high speed and high density spin-transfer-torque MRAM. In Proceedings of the International Electron Devices Meeting.Google ScholarGoogle ScholarCross RefCross Ref
  14. Kumar, M., Steigerwalt, M., et al. 2003. A simple and high-performance 130 nm SOI eDRAM technology using floating-body pass-gate transistor in trench-capacitor cell for system-on-a-chip (SoC) applications. In Proceedings of the International Electron Devices Meeting. 419--422.Google ScholarGoogle ScholarCross RefCross Ref
  15. Kund, M., Beitel, G., Pinnow, C.-U., Rohr, T., Schumann, J., Symanczyk, R., Ufert, K.-D., and Muller, G. 2005. Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20nm. In Proceedings of the International Electron Devices Meeting. 754--757.Google ScholarGoogle Scholar
  16. Li, H. and Chen, Y. 2009. An overview of non-volatile memory technology and the implication for tools and architectures. In Proceedings of the Conference on Design, Automation and Test in Europe. 731--736. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Muller, G., Happ, T., Kund, M., Lee, G. Y., Nagel, N., and Sezi, R. 2004. Status and outlook of emerging nonvolatile memory technologies. In Proceedings of the International Electron Devices Meeting. 567--570.Google ScholarGoogle Scholar
  18. Nebashi, R., Sakimura, N., et al. 2009. A 90nm 12ns 32Mb 2t1MTJ MRAM. In Proceedings of the International Solid-State Circuits Conference. 462--463.Google ScholarGoogle ScholarCross RefCross Ref
  19. Sakimura, N., Sugibayashi, T., Honda, T., Miura, S., Numata, H., Hada, H., and Tahara, S. 2003. A 512kb cross-point cell MRAM. In Proceedings of the International Solid-State Circuits Conference. 278--279.Google ScholarGoogle Scholar
  20. Shakeri, K. and Meindl, J. 2005. Compact physical ir-drop models for chip/package co-design of gigascale integration (gsi). IEEE Trans. Electron Devices 52, 6, 1087--1096.Google ScholarGoogle ScholarCross RefCross Ref
  21. Somasekhar, D., Srinivasan, B., Pandya, G., Hamzaoglu, F., Khellah, M., Karnik, T., and Zhang, K. 2010. Multi-phase 1 GHz voltage doubler charge pump in 32 nm logic process. IEEE J. Solid-State Circuits 45, 4, 751--758.Google ScholarGoogle ScholarCross RefCross Ref
  22. Strukov, D., Snider, G., Stewart, D., and Williams, S. 2008. The missing memristor found. Nature 453, 80--83.Google ScholarGoogle ScholarCross RefCross Ref
  23. Sun, G., Dong, X., Xie, J., Li, J., and Chen, Y. 2009. A novel architecture of the 3D stacked MRAM l2 cache for CMPs. In Proceedings of the International Symposium on High Performance Computer Architecture. 239--249.Google ScholarGoogle Scholar
  24. Takemura, R., Kawahara, T., et al. 2010. A 32-Mb Spram with 2T1R memory cell, localized bidirectional write driver and ‘1’/‘0’ dual-array equalized reference scheme. IEEE J. Solid-State Circuits 45, 4, 869--879.Google ScholarGoogle ScholarCross RefCross Ref
  25. TSMC. 0.18 μm and 0.13μm process data sheets and device models.Google ScholarGoogle Scholar
  26. Tsuchida, K., Inaba, T., et al. 2010. A 64Mb MRAM with clamped-reference and adequate-reference schemes. In Proceedings of the International Solid-State Circuits Conference. 258--259.Google ScholarGoogle ScholarCross RefCross Ref
  27. Yoshida, M., Asaka, K., et al. 1999. An embedded 0.405 μm2 stacked DRAM technology integrated with high-performance 0.2 μm CMOS logic and 6-level metalization. In International Electron Devices Meeting. 41--44.Google ScholarGoogle Scholar

Index Terms

  1. Common-source-line array: An area efficient memory architecture for bipolar nonvolatile devices

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Design Automation of Electronic Systems
          ACM Transactions on Design Automation of Electronic Systems  Volume 18, Issue 4
          Special Section on Networks on Chip: Architecture, Tools, and Methodologies
          October 2013
          380 pages
          ISSN:1084-4309
          EISSN:1557-7309
          DOI:10.1145/2541012
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 25 October 2013
          • Accepted: 1 June 2013
          • Revised: 1 March 2013
          • Received: 1 December 2012
          Published in todaes Volume 18, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader