Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1830252.1830272acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Frequent subgraph discovery in dynamic networks

Published:24 July 2010Publication History

ABSTRACT

In many application domains, graphs are utilized to model entities and their relationships, and graph mining is important to detect patterns within these relationships. While the majority of recent data mining techniques deal with static graphs that do not change over time, recent years have witnessed the advent of an increasing number of time series of graphs. In this paper, we define a novel framework to perform frequent subgraph discovery in dynamic networks. In particular, we are considering dynamic graphs with edge insertions and edge deletions over time. Existing subgraph mining algorithms can be easily integrated into our framework to make them handle dynamic graphs. Finally, an extensive experimental evaluation on a large real-world case study confirms the practical feasibility of our approach.

References

  1. J. Aach, W. Rindone, and G. M. Church. Systematic Management and Analysis of Yeast Gene Expression Data. Genome Res., 10:431--445, Feb 2000.Google ScholarGoogle ScholarCross RefCross Ref
  2. M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet., 25:25--29, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  3. K. M. Borgwardt, H.-P. Kriegel, and P. Wackersreuther. Pattern Mining in Frequent Dynamic Subgraphs. In ICDM, pages 818--822, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. Cho, M. Campbell, E. Winzeler, L. Steinmetz, A. Conway, L. Wodicka, T. Wolfsberg, A. Gabrielian, D. Landsman, D. Lockhart, and R. Davis. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell, 2:65--73, Jul 1998.Google ScholarGoogle ScholarCross RefCross Ref
  5. D. J. Cook and L. B. Holder. Substructure Discovery Using Minimum Description Length and Background Knowledge. JAIR, 1:231--255, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. P. Desikan and J. Srivastava. Mining Temporally Evolving Graphs. In WebKDD Workshop, 2004.Google ScholarGoogle Scholar
  7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. E. L. Hong, R. Balakrishnan, Q. Dong, K. R. Christie, J. Park, G. Binkley, M. C. Costanzo, S. S. Dwight, S. R. Engel, D. G. Fisk, J. E. Hirschman, B. C. Hitz, C. J. Krieger, M. S. Livstone, S. R. Miyasato, R. S. Nash, R. Oughtred, M. S. Skrzypek, S. Weng, E. D. Wong, K. K. Zhu, K. Dolinski, D. Botstein, and J. M. Cherry. Gene Ontology annotations at SGD: new data sources and annotation methods. Nucleic Acids Res., 36:D577--81, 2008. PMID: 17982175.Google ScholarGoogle ScholarCross RefCross Ref
  9. L. C. K. Hui. Color set size problem with application to string matching. In CPM, pages 230--243, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. Inokuchi, T. Washio, and H. Motoda. Complete Mining of Frequent Patterns from Graphs: Mining Graph Data. Machine Learning, 50(3):321--354, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics, 20(11):1746--1758, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. In ICDM, pages 313--320, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Kuramochi and G. Karypis. Finding Frequent Patterns in a Large Sparse Graph. In SDM, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. Kuramochi and G. Karypis. GREW-A Scalable Frequent Subgraph Discovery Algorithm. In ICDM, pages 439--442, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Lahiri and T. Y. Berger-Wolf. Structure Prediction in Temporal Networks using Frequent Subgraphs. In CIDM, pages 35--42, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  16. J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations. In KDD, pages 177--187, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Remm, C. E. V. Storm, and E. L. L. Sonnhammer. Automatic Clustering of Orthologs and In-paralogs from Pairwise Species Comparisons. J. Mol. Biol., 314:1041--1052, Oct 2001.Google ScholarGoogle ScholarCross RefCross Ref
  18. S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet., 31(1):64--68, May 2002.Google ScholarGoogle ScholarCross RefCross Ref
  19. S. Wernicke. Efficient Detection of Network Motifs. TCBB, 3(4):347--359, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. S. Wuchty, Z. N. Oltvai, and A. L. Barabasi. Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat Genet., 35(2):176--179, Oct 2003.Google ScholarGoogle ScholarCross RefCross Ref
  21. I. Xenarios, L. Salwinski, X. J. Duan, P. Higney, S. M. Kim, and D. Eisenberg. DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res., 30(1):303--305, Jan 2002.Google ScholarGoogle ScholarCross RefCross Ref
  22. X. Yan and J. Han. gSpan: Graph-Based Substructure Pattern Mining. In ICDM, pages 721--724, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Frequent subgraph discovery in dynamic networks

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            MLG '10: Proceedings of the Eighth Workshop on Mining and Learning with Graphs
            July 2010
            185 pages
            ISBN:9781450302142
            DOI:10.1145/1830252

            Copyright © 2010 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 24 July 2010

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Upcoming Conference

            KDD '24

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader