Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1553374.1553457acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
research-article

Learning from measurements in exponential families

Published:14 June 2009Publication History

ABSTRACT

Given a model family and a set of unlabeled examples, one could either label specific examples or state general constraints---both provide information about the desired model. In general, what is the most cost-effective way to learn? To address this question, we introduce measurements, a general class of mechanisms for providing information about a target model. We present a Bayesian decision-theoretic framework, which allows us to both integrate diverse measurements and choose new measurements to make. We use a variational inference algorithm, which exploits exponential family duality. The merits of our approach are demonstrated on two sequence labeling tasks.

References

  1. Borwein, J. M., & Zhu, Q. J. (2005). Techniques of variational analysis. Springer.Google ScholarGoogle Scholar
  2. Chaloner, K., & Verdinelli, I. (1995). Bayesian experimental design: A review. Statistical Science, 10, 273--304.Google ScholarGoogle ScholarCross RefCross Ref
  3. Chang, M., Ratinov, L., & Roth, D. (2007). Guiding semi-supervision with constraint-driven learning. Association for Computational Linguistics (ACL) (pp. 280--287).Google ScholarGoogle Scholar
  4. Druck, G., Mann, G., & McCallum, A. (2008). Learning from labeled features using generalized expectation criteria. ACM Special Interest Group on Information Retreival (SIGIR) (pp. 595--602). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dudík, M., Phillips, S. J., & Schapire, R. E. (2007). Maximum entropy density estimation. Journal of Machine Learning Research, 8, 1217--1260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Graça, J., Ganchev, K., & Taskar, B. (2008). Expectation maximization and posterior constraints. Advances in Neural Information Processing Systems (NIPS) (pp. 569--576).Google ScholarGoogle Scholar
  7. Haghighi, A., & Klein, D. (2006). Prototype-driven learning for sequence models. North American Association for Computational Linguistics (NAACL) (pp. 320--327). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for segmenting and labeling data. International Conference on Machine Learning (ICML) (pp. 282--289). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Mann, G., & McCallum, A. (2007). Simple, robust, scalable semi-supervised learning via expectation regularization. International Conference on Machine Learning (ICML) (pp. 593--600). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Mann, G., & McCallum, A. (2008). Generalized expectation criteria for semi-supervised learning of conditional random fields. Human Language Technology and Association for Computational Linguistics (HLT/ACL) (pp. 870--878).Google ScholarGoogle Scholar
  11. Quadrianto, N., Smola, A. J., Caetano, T. S., & Le, Q. V. (2008). Estimating labels from label proportions. International Conference on Machine Learning (ICML) (pp. 776--783). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Roy, N., & McCallum, A. (2001). Toward optimal active learning through sampling estimation of error reduction. International Conference on Machine Learning (ICML) (pp. 441--448). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Seeger, M., & Nickisch, H. (2008). Compressed sensing and Bayesian experimental design. International Conference on Machine Learning (ICML) (pp. 912--919). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Learning from measurements in exponential families

                Recommendations

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in
                • Published in

                  cover image ACM Other conferences
                  ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning
                  June 2009
                  1331 pages
                  ISBN:9781605585161
                  DOI:10.1145/1553374

                  Copyright © 2009 Copyright 2009 by the author(s)/owner(s).

                  Publisher

                  Association for Computing Machinery

                  New York, NY, United States

                  Publication History

                  • Published: 14 June 2009

                  Permissions

                  Request permissions about this article.

                  Request Permissions

                  Check for updates

                  Qualifiers

                  • research-article

                  Acceptance Rates

                  Overall Acceptance Rate140of548submissions,26%

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader