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Particle graphics simulations are well suited for modeling complex phenomena such as water, cloth,

explosions, fire, smoke, and clouds. They are normally realized in software as part of an interactive

graphics application. The computational complexity of particle graphics simulations restricts the

number of particles that can be updated in software at interactive frame rates. This article presents

the design and implementation of a hardware particle graphics engine for accelerating real-time

particle graphics simulations. We explore the design process, implementation issues, and limita-

tions of using field-programmable gate arrays (FPGAs) for the acceleration of particle graphics. The

FPGA particle engine processes million-particle systems at a rate from 47 to 112 million particles

per second, which represents one to two orders of magnitude speedup over a 2.8 GHz CPU. Using

three FPGAs, a maximum sustained performance of 112 million particles per second was achieved.
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1. INTRODUCTION

Particle graphics simulations are well suited for modeling complex phenomena
such as water, cloth, explosions, fire, smoke, and clouds [Reeves 1983]. Dynamic
simulations of the physics of large groups of individually simple particles can
create graphical models of objects and phenomena that are otherwise difficult to
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model and render realistically. In these simulations, systems of simple elements
(e.g., point masses) interact with their environment and evolve together, subject
to a set of rules. The properties and evolution of the system are also determined
by randomly varying initial conditions. The visual ensemble of such a group of
particles exhibits a great degree of complexity and detail, closely resembling
the detail and randomness seen in nature. Particle graphics have many appli-
cations, including scientific visualization, movie rendering, and video games. In
the case of video games, the demands on the computation and rendering of the
particle system are relatively tight, due to the “real-time” interactive nature of
the application.

Graphical particle simulations are traditionally implemented in software on
a general-purpose CPU. The computational complexity of particle graphics lim-
its the number of particles that can be computed in a single frame at interactive
rates. In the literature it is reported that CPU implementations are able to han-
dle tens of thousands of particles per frame [Kolb et al. 2004]. Our own software
implementation can calculate approximately 36 thousand particles per frame
at 60 Hz (see Table IV). The number of particles that can be handled will surely
increase with the steady improvement in CPU performance; however, there is a
long way to go before reaching the goal of simulating a million-particle system
in real time on a CPU [Kolb et al. 2004; Latta 2004]. This is significant because
a million-particle system may be used to model a complex effect, or multiple
effects of lower complexity.

Fortunately, particle graphics algorithms exhibit a very high degree of par-
allelism that is easily uncovered and exploited. Many useful particle graphics
effects can safely ignore interparticle interactions, exposing data parallelism
at particle level. Data-level parallelism can be exploited on multiprocessor sys-
tems where each processor is responsible for updating a subset of the particles
[Sims 1990]. In addition to splitting particles among processing elements in a
multiprocessor, hardware accelerators can be applied to speed-up computations
within a given processing element. Accelerators exploit operand-level paral-
lelism with structures such as pipelines and SIMD (single-instruction multiple-
data) arithmetic units.

Recently, there have been a number of successful attempts at implement-
ing particle graphics engines using the programmable stream processors in
graphics processing units (GPUs) on graphics cards [Kipfer et al. 2004; Latta
2004; Krüger et al. 2005]. In this article, we consider an alternative approach
to hardware particle graphics acceleration: field-programmable gate arrays
(FPGAs). We show that custom particle graphics engines on FPGAs are viable
and can achieve very high performance, on the order of millions of particles
per frame. Section 2 gives a brief overview of particle graphics. In Section 3 we
describe the design and FPGA implementation of a hardware particle graphics
accelerator. Section 4 describes a next generation implementation of a particle
graphics accelerator that was coded in a high-level programming language,
avoiding the need for detailed hardware design. Conclusions are offered in
Section 5.

In Beeckler and Gross [2005] we introduced the concept of FPGA particle
graphics engines and gave initial results on FPGA synthesis of such an engine.
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Fig. 1. General flow of particle graphics simulations.

This article expands on details of the design and addresses system performance
issues. In this work we also describe the next generation of our particle graphics
engine, designed in a high-level “C”-like language and implemented on higher-
performance FPGA hardware.

2. PARTICLE GRAPHICS

The general flow of a particle graphics simulation is shown in Figure 1. All par-
ticles in the system are loaded sequentially from memory, updated, rendered,
and then written back to memory. At each frame, a new particle can be cre-
ated with randomly varying initial conditions. Dead particles which have been
alive for their useful lifetime or have reached their final state can be deacti-
vated and replaced by newly initiated particles. For each particle processed, a
set of forces acting on it is calculated, using its current state as well as some
environmental data. These forces might include gravitational, electrical, vor-
tex, wind, viscosity, friction, explosive, and spring forces. From these forces a
particle acceleration is calculated. Next, the particle’s motion is numerically
integrated, giving the new velocity and position of the particle. Subsequently,
collision detection and collision resolution are performed, allowing particles to
collide and interact with their environment. Finally, the particle is rendered.
A particle could be rendered very simply as a single colored pixel, or as a more
complex object such as a cloud or streak.

The type of large particle systems used for real-time graphics applications
are usually first order, meaning that the particles only interact with their envi-
ronment, and not with other particles in the system. Second-order extensions
create special force-carrying particles [Ilmonen and Kontkanen 2003], but the
overall number of interparticle interactions is not proportional to n2. The ben-
efit of a first-order particle system is that all particles in the system can be
updated in a single pass through the particle data, with the processing of each
particle being done independently of all other particles. This means that the
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processing is embarrassingly parallel and can be completed in one pass through
a pipeline.

2.1 Recent Progress in Hardware Particle Engines

There have been a number of promising results using special-purpose hardware
as accelerators for particle systems. One approach is to use the programmable
floating-point stream processors in graphics processing units (GPUs) [Kipfer
et al. 2004; Latta 2004; Krüger et al. 2005]. This technique creates a set of
double-buffered streams of data containing particle position data, particle ve-
locity data, and a depth map for collision detection [Kolb et al. 2004]. The output
data stream is created from an input stream by executing a pixel shader pro-
gram on a GPU. GPUs are reported to enable the implementation of systems
as large as 1024 × 1024 particles. Current GPUs can process systems of up to
8192 × 8192 particles.

Another approach is to build a special-purpose computer for simulating par-
ticle systems. There have been a number of custom hardware implementa-
tions of particle systems reported in the literature, mainly for astrophysical
N-body simulations and molecular dynamics (see e.g., Makino [2006], Azizi
et al. [2004]), but not specifically for particle graphics. The main difference is
that the number of interactions that need to be calculated is O(n2) in N-body
simulations, while in particle graphics it is O(n), where n is the number of
particles in the simulation. The GRAPE (gravity pipe) series of machines were
developed around a custom hardware chip specialized for N-body calculations.
An alternative to developing a custom chip is to use a reconfigurable hardware
device such as a field-programmable gate array (FPGA) [Hamada et al. 1998;
Azizi et al. 2004; Beeckler and Gross 2005]. FPGAs are particularly suitable
for accelerating problems that exhibit data-level parallelism. In this article we
describe the design of a particle graphics engine implemented on an FPGA.
Previous work by other authors in Zemcik et al. [2003, 2004], and Herout and
Zemcik [2005] implemented the rendering pipeline for particles on FPGAs (e.g.,
drawing clouds instead of points), but did not accelerate the physics engine that
performs the computationally expensive determination of the locations of these
particles.

3. DESIGN AND IMPLEMENTATION OF A HARDWARE PARTICLE
GRAPHICS ENGINE

Inspired by the hardware implementations of N-body simulators, we propose us-
ing FPGAs as programmable accelerators for implementing high-performance
particle graphics engines. However, the design of a particle graphics engine is
subject to a different set of criteria than for a general N-body simulation. The
differentiating characteristics are as follows.

(1) Real-Time Constraints. The simulation must update the set of particles at
the frame rate.

(2) Interparticle Interactions. We consider classical first-order particle sys-
tems requiring only one pass through the particle data. This assumption
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Fig. 2. Architecture of the particle graphics accelerator.

significantly reduces the computational complexity, making it easier to meet
the real-time constraint.

(3) Programmability. It must be easy to reconfigure the accelerator to change
the effect. This is one reason why a programmable hardware accelerator
like a GPU or FPGA is required and a custom chip is not suitable. The
ease and method of programmability are also important considerations
since the developers are likely to be software designers and not hardware
engineers.

(4) Precision. The precision of the variables can be reduced, so long as the visual
quality of the effect is preserved.

(5) Cost. Cost plays a larger role in video game platforms than in general sci-
entific computing.

In the remainder of this section, the design of a custom particle graphics
acceleration system for runtime implementation in an FPGA will be described
in detail.

3.1 System Overview

The particle pipeline system shown in Figure 2 is a self-contained hardware
coprocessing system that completely contains, manages, executes, and renders
particle graphics simulations for an application running on the host CPU. The
system is intended for implementation in an FPGA that has access to its own
dedicated RAM, and is able to communicate with the application CPU. The
system is comprised of the following major components: the particle microcon-
troller, particle memory, and particle pipeline. These three major components
will be described in the next three subsections.

3.2 The Particle Microcontroller

The particle microcontroller is the interface between the particle pipeline
and the host (application) CPU. The host CPU sends the particle system pa-
rameters to the particle microcontroller. The latter then continuously creates
and initializes new particles in particle memory between frames, introducing
them into running simulations with the initial conditions created according
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to specified simulation properties. The microcontroller also sets and continu-
ously controls the contents of parameter registers in the particle pipeline, giv-
ing it the ability to dynamically modify the functionality and properties of the
simulation.

3.3 Particle Memory

The particle pipeline system needs high-bandwidth and exclusive access to a
RAM device dedicated to containing a large pool of all available particles for
simulations. This memory, the particle memory shown in Figure 2, should be
part of the FPGA system used to implement the particle pipeline system and
needs to be separate or isolated from main system memory. The pipeline de-
sign is capable of beginning one new particle computation and completing one
in-flight particle computation every FPGA clock cycle. Therefore, to keep the
pipeline full, a particle memory needs to provide sustained read and write ac-
cess rates, given by

Rpmem,read = bp × fpipe, (1)

Rpmem,write = bp × fpipe,

where bp is the width of one particle’s dataset in bits, fpipe is the frequency of
the particle pipeline clock in Hz, and Rpmem,read and Rpmem,write are the required
sustained read and write access rate, respectively, in units of bits per second.
Fortunately, all accesses to particle memory, with the exception of the initial-
ization of new particles, are made in a regular, sequential order. This means
that the burst modes of RAM devices can be fully exploited to help achieve the
required access rate.

Particle data is stored in particle memory as one large packed array. A par-
ticle’s dataset, namely its entry in particle memory, must include all the data
fields needed to create any of the simulations. These fields include a position
vector, velocity vector, color, life count, and a type field. The position and ve-
locity vectors are three-dimensional vectors with each component represented
in the 18-bit format described to follow in Section 3.3.1. The life count is an
integer set when a new particle is initialized and is decremented on every pass
through the pipeline. When a particle’s life count reaches zero, it can be con-
sidered “dead” or inactive, and will no longer contribute to the simulation. The
particle memory entries occupied by inactive particles then become available
for the initialization and creation of new particles by the microcontroller. In-
active particles output from the pipeline are counted by hardware counters,
but do not enter the particle data output buffer to be stored back to particle
memory. This means that an entry in particle memory for each inactivated par-
ticle will float to the top as all active particle data is shifted down in memory,
replacing inactive entries. The inactive space at the top of particle memory is
used for new particles and space remaining after the injection and initialization
of new particles must be cleared to the inactive state, as it still contains data
from other shifted particles. New particles are copied from the microcontroller’s
“nursery” of new particles in the microcontroller data RAM and written to the
empty region of particle memory.
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A number of independent particle effects can coexist in the particle memory,
each identified by a type identifier. The type field of a particle identifies which
group this particle belongs to and controls the functionality of the effect on each
particle as it flows through the pipeline.

3.3.1 Fixed-Point Data Format. A fixed-point representation is chosen for
the particle data format. There are several factors influencing the choice of
fixed-point representation. Primarily, a fixed-point format used in the pipeline
will limit precision and range, which can be tolerated so long as the visual
quality of the effect is preserved. Another factor influencing the decision is the
width of particle memory. It is best for the dataset of each particle to fit exactly in
an integer number of memory words. If the pipeline clock frequency is relatively
slow when compared to the particle memory access time, then particle datasets
can be stored in multiple words of memory. However, if the pipeline frequency
and memory access time are comparable, then each particle data entry will
need to fit in as few words as possible.

The particle pipeline contains numerous fixed-point additions, subtractions,
multiplications, and divisions, all of which are pipelined. These circuits become
more and more complex with larger bit-widths. FPGAs contain dedicated hard-
ware multiplier circuits which the particle pipeline design uses to implement
many high-speed parallel multiplications without using programmable logic re-
sources. Altera Stratix FPGAs and Xilinx Virtex FPGAs both have hardwired
resources for implementing hundreds of 18 × 18-bit multiplications. For these
reasons, an 18-bit (4.14) fixed-point format is used in the pipeline. This format
makes the best use of dedicated FPGA multiplier circuits while still allowing
particle datasets to fit perfectly into a low multiple of 32 bits, making efficient
use of particle memory.

3.4 Particle Pipeline Architecture

The particle pipeline, shown in the center of Figure 2, is a fully pipelined particle
update processor capable of simultaneously updating several particles. The
particle pipeline includes the following four major systems:

(1) force calculation and summation,

(2) integration and updates,

(3) collision detection and response, and

(4) 3D rendering.

Each functional unit or block in the pipeline is enabled, disabled, and cus-
tomized by its own set of parameter registers. Before a particle enters a function
unit or block, a set of values for the unit’s parameter registers, specific to the
type of particle [Latta 2004; Kolb et al. 2004; Kipfer et al. 2004] entering the
function unit, is selected from a table using the particle’s type field as a table in-
dex. This is depicted in Figure 3. These selected parameters then synchronously
pass through the function unit, from register stage to register stage, together
with the particle data.
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Fig. 3. Pipeline parameter selection.

Fig. 4. The force system.

On the application side, to create simulations, application software defines a
number of groups (or types) of particles. By sending commands to the pipeline
microcontroller, application software fills in the values of the parameter tables
for each function unit of the pipe, specifying its configuration for each particle
type. For example, if there is a uniform-force block in the pipeline, its job is
to add a vector to each particle’s sum of forces. Such a block might have two
configuration fields. One would be an enable bit, used to determine if this block
should be enabled for a particle, and another would contain the force vector
to be added. Consider a simulation in which there are three types of particles.
Particles of type a will not experience this force at all. Particles of type b will
experience the (1.0, 0.0, 0.0) force vector, and particles of type c will experience
the (0.0, −2.2, 0.0) force vector. To accomplish this, the parameter tables for this
function unit should be initialized such that the enable bits for particle types
a, b, and c are 0, 1, and 1, respectively.

3.4.1 Forces. The force system, shown in Figure 4, contains a set of parallel
force units. Each force unit receives as input the current particle data, together
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Fig. 5. The viscosity-force unit.

with a set of type-selected force parameters, and outputs a resulting 3D force
vector in the pipe’s fixed-point format. Each force unit’s output vector is delayed
for synchronization and summed to one total force vector.

Examples of easily implementable force units include uniform forces, viscos-
ity forces, vortex forces, attractive and repulsive forces, spring forces, “random
nudge” forces, and many more. Figure 5 gives a detailed look at the imple-
mentation of a viscosity-force unit. The unit calculates a general viscous force
using

�fvisc = kvisc(�vref − �vparticle), (2)

where �fvisc is the viscous-force result, kvisc is the scalar viscosity factor, �vref is
the reference velocity (analogous to the velocity vector of the fluid in which the
particle is immersed), and �vparticle is the velocity vector of the particle.

3.4.2 Acceleration. An acceleration vector must be obtained from the total
force vector. This is done in the force-to-acceleration stage using the well-known
relationship

�a = 1

m
�ftotal. (3)

First, one hardware division obtains the 1
m term from the particle’s mass value.

This term is then multiplied with each component of the total force vector to
obtain the particle’s acceleration. A less flexible particle system may be imple-
mented entirely without this stage, thus eliminating one inversion and three
fixed-point multiplications from the pipeline design. This can be done by forc-
ing all particles to have the same mass and making the proper choice of units.
If it is not practical to include a mass term in the particle datasets, particle
mass may be treated as a type-selected parameter in the acceleration stage.
Each particle type may be assigned a type mass, and this value is stored in
the pipeline parameter tables. In the next generation of the particle pipeline,
described in Section 4, the particle dataset contains the inverse of the particle
mass, eliminating the divider and replacing it with a multiplier.

3.4.3 Integration. Each particle’s path of motion, position, and velocity
over time needs to be integrated and updated according to Eq. (3). The Eu-
ler method is chosen for the integrator. Figure 6 shows the particle pipeline’s
motion integration circuit. The pipeline described in Section 4 implements
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Fig. 6. Euler integration stage.

Fig. 7. Collision detection system.

higher-order Runge-Kutta methods as well. With the Euler method, the po-
sition and velocity vectors are updated as follows.

�vnew = �v + h�a
�rnew = �r + h�v (4)

The problem is scaled such that h is unit time.

3.4.4 Update. The update stage implements various particle update rules,
such as:

—decrementing particle life count;
—fading particle colours by a color step;

—killing particles which satisfy some condition, such as energy or position
beyond a given value; or

— interpolating between colors based on another value, such as time, energy,
or life.

3.4.5 Collision Detection. The collision detection system shown in Figure 7
is comprised of a parallel collection of collision detection units. Each such
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unit detects and reports collision information with one type of geometry. For
example, the plane collision detection unit detects collisions of particles with
a plane, and reports information about that collision if detected. The collision
detection system shares the same modular approach as for the force system,
facilitating the inclusion of new units for custom geometries. Inputs to the
collision detection units include the particle position and a set of type-selected
parameters defining the collision geometry. Each collision detection unit output
contains a collision flag indicating whether a collision was detected, an estimate
for the point of intersection, a surface normal vector at the intersection point,
and surface friction and bounce factors. In our example of the plane detection
unit, parameter registers would define the exact orientation and location of the
plane, and on what side of this plane the particles should collide. They also
provide the surface properties, bounce-, and friction factors which will be used
to respond to a detected collision. Each collision detection unit detects collisions
for a basic geometry. Collision detection for slightly more complex shapes can
be achieved by approximating the desired shape with a hierarchy of several
basic detection units.

As shown in Figure 7, the collision detection units in parallel resemble the
force system. The collision information sets are each delayed and synchronized.
Finally, one set of collision information is selected from the detection unit out-
puts and passed forward to the collision response stage.

3.4.6 Collision Response. Figure 8 shows a simplified version of the col-
lision response system. If there was a collision detected and the collision flag
received as part of the input collision information was set, the collision response
system will need to perform the following tasks.

(1) Replace the particle position by the intersection point estimate.

(2) Calculate the component of particle velocity tangent to the collision surface.

(3) Calculate the component of particle velocity normal to the collision surface.

(4) Scale the tangential particle velocity by the surface friction factor.

(5) If the projection of the particle velocity on the surface normal is negative, the
particle must be “bounced” off the surface by multiplying normal particle
velocity by bounce factor.

(6) Combine the updated normal and tangential particle velocity components
to form a new total velocity vector for the particle.

The first operation in the collision response system, shown in Figure 8, breaks
the particle velocity into a normal velocity vector and tangential velocity vector
(relative to the surface), using the relationships

�vnorm = (�v · n̂surface)n̂surface

�vtang = �v − �vnorm.
(5)

First, the dot-product of the particle velocity �v and surface normal n̂surface is
computed. The result of the dot-product is then used to scale a surface normal
vector, which produces the normal velocity component in vector form. Then,
the result of the scaling, that is, the normal velocity vector, is subtracted from
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Fig. 8. Simplified collision response system.

a delayed version of the original particle velocity, producing the tangential ve-
locity vector.

During the second section of collision response, the tangential velocity vector
is scaled by the friction factor and, in parallel, the normal velocity vector is
scaled by the bounce factor.

�vtang ← kfriction�vtang

�vnorm ← kbounce�vnorm
(6)

The surface friction factor would usually be a fixed-point number between zero
and one, while the surface bounce factor should be a negative number to create
the bounce, a reversing of the normal velocity component.

Recall that the dot-product of the original particle velocity vector and the
surface normal has already been computed during the first section of colli-
sion response. The sign-bit of this result (the bounce flag) is delayed so that it
can be used to determine whether the particle should be bounced. If the sign-
bit is set, the bounced normal velocity just calculated is selected; otherwise,
a delayed version of the original normal velocity is selected. Some examples
of collisions without bounce are: a particle that is sliding along a surface, at
rest on a surface, or that has already bounced but is still in collision with a
surface.

Next, the selected normal velocity, either bounced or not bounced, is com-
bined with the scaled tangential velocity to create a new total velocity vector
which is the proper response to a potential collision. Finally, shown at the end
of the collision response stage in Figure 8, if the collision flag was set, indi-
cating that there was in fact a collision, the particle velocity is replaced with
this new collided velocity, and the particle position is replaced with the in-
tersection position estimate; otherwise, the original position and velocity are
used.

3.4.7 Rendering. A simplification of the pipeline’s rendering system is
shown in Figure 9. Rendering is the last stage of the pipeline. At this stage,
particle data has been completely updated. Graphical information is calculated
using the newly updated particle data together with rendering parameters,
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initialized and updated continuously by the particle microcontroller. The graph-
ical information calculated and output for each particle includes:

—a visibility flag,

—screen-pixel coordinates,

—a frame buffer address or index,

—a color value, and

—a z-buffer depth value.

As shown in Figure 2, after the rendering stage, the rendered graphical infor-
mation and particle data are output together from the pipe. Particle data will be
sent back to particle memory, and rendering results will be sent to the graphics
system for display.

Rendering is described in detail in Shirley et al. [2005]. The first task in
rendering is to find a set of view coordinates for the particles. Simulations exist
in world space, and the particle position vectors are in world space coordinates.
In Figure 9(a), to convert particle position coordinates from world space to view
space, the transform

xview = �rworld · �right + dx

yview = �rworld · �up + dy

zview = �rworld · �dir + dz

(7)

is applied, where �right, �up, and �dir are three vectors defining the camera
orientation in world-space coordinates. The vector �d represents the loca-
tion of the world origin in view-space coordinates. These values are held in
parameter registers which software uses to control the view throughout a
simulation.

After having obtained view space coordinates for the particle position, the
view-space-position vector needs to be projected onto a 2D surface, the view-
ing screen. This is accomplished, as shown in Figure 9(b), using the following
relationships.

xscreen = kxscale xview
1

zview

yscreen = kyscale yview
1

zview

(8)

The previous two equations provide coordinates relative to the center of the
screen. Generally, pixel coordinates are most conveniently specified relative to
the top-left corner of the screen with positive values going down and to the
right. To correct this, as shown in Figure 9(c), there is a transformation of the
screen coordinates into more useful pixel coordinates.

xpixel = xcenter + xscreen

ypixel = ycenter − yscreen
(9)

Finally, the visibility of the particle is determined by comparing the view space
z value to a minimum value, and checking that xpixel and ypixel are within the
valid range.
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Fig. 9. Simplified rendering system.

3.5 System Implementation

A proof-of-concept test system implemented on an Altera Stratix FPGA (Parti-
cle Pipeline 1, or PP1) is shown in Figure 10. In this section we discuss in de-
tail the design and implementation of PP1 and present measured performance
results.

3.5.1 Hardware Library, Configuration, and Simulation. The particle
pipeline, together with its supporting hardware logic, was designed as a mod-
ular, parameterized, and configurable VHDL hardware library. Scripts were
developed for automatic generation and configuration of particular particle
pipeline design instances. These scripts configure data formats, particle dataset
members, and functional unit parameters. These scripts also generate the nec-
essary software header files. Of particular importance is the microcontroller’s
interface to the pipeline parameter bus system. These tables and the param-
eter bus interface are specific to the particular pipeline configuration cre-
ated, and therefore need to be automatically generated by the configuration
system.

A functional-C software model was created in parallel with the development
of the particle pipeline VHDL hardware design. It is a bit-accurate, function-
ally equivalent software model of the particle pipeline that can be used as a
numerical and graphical testbench for testing and verifying particle pipeline
configurations, designing and verifying new hardware units, and developing
and experimenting with new effects, graphically displaying interactive particle
simulations such as the one shown in Figure 11.

This structured design approach allows flexible and efficient customization
and extension of particle pipeline design instances, without extensive knowl-
edge or exhaustive understanding of the particle pipeline. In this way, particle
pipeline systems can be designed and modified in much the same way that tra-
ditional software design can be done, using the framework and functionality of
existing works and libraries.
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Fig. 10. PP1 test system.

Fig. 11. Particle graphics simulation.
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3.5.2 System Configuration. The first step in implementing the particle
pipeline system was to generate a particle pipeline configuration. The test effect
is a water-fountain simulation, as shown in Figure 11 generated by the simu-
lator, and as shown in Figure 10 generated by the PP1 system. The software
pipeline simulator was then used to test and experiment with this configura-
tion, verifying that it was capable of generating the desired effects. Note that
the ribbon cables in Figure 10 connect the FPGA board to a custom-built VGA
interface. An 18-bit fixed-point format was chosen for the particle pipeline’s
internal fixed-point number representation. This was done to best utilize the
Stratix EP1S40 FPGA’s hardwired DSP units, which can be used for either
fifty-six 18×18 or fourteen 36×36 multiplier circuits.

The particle datasets were configured to include the following fields:

—velocity vector: three 18-bit fixed-point values;

—position vector: three 18-bit fixed-point values;

—color: 8 bits (4 bits for blue and 4 bits for green);

—life: 11 bits; and

—type: 1 bit.

With these chosen formats, a packed particle dataset is 128 bits, which can be
read from or written to particle memory in four accesses to a 32-bit-wide RAM
device.

All fixed-point numbers in the particle pipeline, as well as in the parameter
table system, will then use the same 18-bit format. Generation and config-
uration scripts create a particle pipeline hardware design configured to the
specifications, also generating a pipeline parameter table and bus system spe-
cific to the chosen data formats and pipeline configuration. Finally, source-code
is generated or configured, defining the software interfaces used by the Nios
microcontroller to interface to the pipeline and its parameter table system,
particle-loading and -storing hardware, the graphics data output buffer, and
particle memory for the initialization of new particles.

3.5.3 Nios Microcontroller System. The Nios soft-core microcontroller was
used as the particle microcontroller. The Nios system has flexible tools for de-
signing reconfigurable 32-bit microcontroller systems in Altera FPGAs, with
pipelined, multimaster bus architectures. The development board used pro-
vides the FPGA with access to two separate RAM devices. One of these devices,
the smaller SRAM, is used as Nios system memory, holding microprocessor code
and program data, while the other is used as particle memory. A section of the
Nios memory is reserved for use as a video-frame buffer, accessed by both the
Nios microcontroller and the video controller. With the use of two separate on-
chip bus systems and two independent RAM devices, shown in Figures 12 and
13, transfers on the microcontroller bus system will not conflict or compete with
streaming particle data on the particle data bus between particle memory and
the particle pipeline. The Nios microcontroller does, however, also have access
to the particle data bus. Between simulation passes when there is no streaming
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Fig. 12. PP1 system architecture overview.

particle data, the Nios microcontroller will access particle memory to initialize
new particles.

Figures 12 and 13 show that the Nios has access to its own microcontroller
bus system, the particle data bus, and pipeline parameter bus. The Nios micro-
controller bus allows it to access the RAM used for microprocessor code, program
data, and a video-frame buffer. It also allows the microprocessor to configure
and control the various hardware units supporting the pipeline through each
unit’s configuration and control slave interface. These units include the particle-
loading and -storing hardware, the pipe’s output buffers, and the video system’s
configuration port. The Nios has access to particle memory for initialization of
new particles and also for testing purposes. The pipeline parameter bus allows
it to access the pipe’s parameter tables during simulations and initialization.
Finally, the video controller is also a master of the microcontroller bus, giving
it access to the video-frame buffer located in microprocessor data memory.

3.5.4 Particle Data Flow. The flow of particle data represents the biggest
challenge faced when implementing a particle pipeline system. The particle
pipeline is designed to be capable of receiving one input particle dataset and
outputting one updated particle dataset, together with its graphical data, in
every clock cycle. In the case of our test system implementation, data formats
were chosen such that each particle dataset fits into exactly 128 bits, or four
32-bit words. For each particle that goes through the pipeline, four 32-bit words
of particle data must be read from and written to particle memory. To help
achieve the highest possible throughput of particle data, it is necessary to:

—use special hardware for the loading, storing, and transfer of particle data;

—store particle data in a dedicated RAM device, isolated from other bus trans-
actions;
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Fig. 13. PP1 system buses.

—transfer particle data using an isolated and dedicated particle data bus; and

—attempt to fully exploit bus- and RAM-device high-throughput burst modes
by designing buffered hardware which accesses particle memory in bursts of
sequential accesses.

Figure 12 shows how the particle data flows through the particle test system in
its own data path. It is streamed from particle memory into the pipeline by the
particle-loading hardware. From the pipe’s output it enters the pipeline output
FIFO buffers, wherein it will be written back to particle memory by the particle-
storing hardware. This whole process of streaming data through the particle
pipeline occurs independently and in isolation, without direct participation by
the particle microcontroller and its bus. Therefore, it occurs without contending
or competing with the bus traffic of the microcontroller’s video system, parti-
cle initialization system, or parameter bus system. A hardware-loading unit
streams data out of particle memory from a specific address range specified
during initialization, and feeds the data to the input end of the particle pipeline
at a specified rate. Since the width of the particle datasets, and therefore the
width of the pipe’s input port, is 128 bits, or four 32-bit words, the particle
loader will fetch all four words of one particle then apply them together to the
pipe’s input port, forming a valid input cycle. When the loading hardware is not
capable of providing the pipeline with particle data at its throughput rate of
one dataset per pipeline clock cycle, or when it is necessary to decrease the rate
of input data flow to avoid overflowing the pipe’s output buffers, blank entries
or pipeline bubbles are inserted to allow the pipeline to progress when no new
data is available.

As the particle data moves through the pipe, updated particle data (together
with graphics data for visible particles) will stream out of the output end of
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the pipe. This output data must be buffered before it can be handled properly.
The particle data and graphics data need to be buffered separately because
they are processed at different rates and by different mechanisms. Therefore,
as shown in Figure 12, the output end of the particle pipeline feeds into two
FIFO buffers, one for the particle data and one for the graphics data. These
pipeline output buffers contain logic and signals for tracking information about
the number of “valid” and “active” particles output from the pipeline, and for
making this information available to the Nios microcontroller over its control
bus. The state of these FIFOs can be accessed by both the particle-storing hard-
ware (to control the rate of streaming data though the pipe) and by the Nios
microcontroller.

For inactive particles, as well as for those that were determined to be invisible
by the rendering hardware, the graphics data output is flagged as invisible and
will not enter the graphics data output buffer. Similarly, during “invalid” or
stalled cycles, or when particles have an inactive state, they will not enter the
particle data output buffer. Each buffer tracks the number of valid cycles or
datasets that were presented at its input, the number of datasets that have
been read out of the FIFO, the number of datasets currently in the FIFO, and
its empty or full status.

The particle-storing hardware continuously writes data from the pipe’s par-
ticle data output buffer back to particle memory, in the address range specified
by the Nios microcontroller during initialization. Since inactive particles are
not stored back to particle memory, as all valid and active particles are stored
back sequentially to the same block of particle memory from which they were
read, the spaces or entries in particle memory occupied by inactive particles
will be shifted to the top of particle memory. At the end of each simulation pass,
by knowing how many “active” particle datasets were stored back to particle
memory, the microcontroller knows at what address the “inactive” and avail-
able space begins and how large it is. This block of available, inactive space at
the top of particle memory can be used between frames for the initialization
and injection of new particles. Any remaining space in this range which is not
written over with newly initialized particle data must be cleared to an inac-
tive state, as it still contains data from particles left over from the previous
simulation frame.

3.6 Results

The PP1 system provides a functioning and interactive proof-of-concept for use
in pipelined FPGA hardware designs to accelerate and enhance particle graph-
ics techniques in real-time applications.

The PP1 system was implemented using an Altera EP1S40 Stratix FPGA.
Table I shows the FPGA resource utilization. The particle pipeline alone was
synthesized for the aforementioned device to a maximum operating frequency of
130 MHz. The complete test system, including the Nios microcontroller, buses,
controllers, and other components, operates at a system frequency of 80 MHz.
Since the particle pipeline design is capable of updating and rendering one
particle dataset at each clock cycle, the particle pipeline itself has a potential
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Table I. PP1 Stratix EP1S40 FPGA Resource Utilization

Logic Cells Registers 18x18 Mult.

Force System 5,157 (13%) 4,962 (11%) 3 (5%)

Coll. Detection 2,472 (6%) 2,301 (5%) 0 (0%)

Coll. Response 12,699 (31%) 12,031 (27%) 12 (21%)

Integrate Motion 624 (2%) 582 (1%) 0 (0%)

Rendering 8,382 (20%) 7,034 (16%) 13 (23%)

Nios Microcontroller 6,397 (15.5%) 2,424 (5%) 1 (2%)

Pipeline interfaces 2679 (6%) 1303 (3%) 0 (0%)

Total System Design 40,764 (99%) 32,215 (72%) 29 (52%)

Avail. in FPGA 41,250 (100%) 44,860 (100%) 56 (100%)

Table II. PP1 Performance at 75 MHz.

Video Num. of Total Frame

Frame Rate System Particles Rate

30 Hz off 45,000 29.83 Hz

30 Hz on 41,000 29.71 Hz

60 Hz off 22,000 59.86 Hz

60 Hz on 18,000 59.45 Hz

throughput of 130 million particles per second. This corresponds to simulations
and effects with 2.1 million particles in each frame at a frame rate of 60 Hz, or
4.3 million particles per frame at 30 Hz.

These throughputs depend on a particle memory capable of providing the re-
quired access rates, and a system integration capable of processing and display-
ing the generated graphical data. Given a particle-dataset width of 128 bits, to
achieve the pipeline’s maximum throughput, the read rate required of particle
memory is (

128
bits
part.

)
(130 MHz)

(
1

part.
cycle

)
= 2.08

gigabytes
sec

. (10)

This can be realized with standard DDR-SDRAM memory modules. The writes
to memory require the same access rate. A rate of 1.28GB per second is required
to fully utilize the particle pipeline in an 80 MHz test system. This would
correspond to a peak performance of 1.3 million particles per frame at a frame
rate of 60 Hz, or 2.6 million particles per frame at 30 Hz.

Table II shows the actual performance observed from the PP1 system run-
ning demonstration code at 75 MHz, generating the effect shown in Figure 10
while targeting frame rates of 30 and 60 Hz. The system was tested at 75 MHz
to match the 75 MHz clock required for the video-display interface. The largest
particle simulation implementable on the test system contains 45,000 parti-
cles at a frame rate of 30 Hz. The video system, when enabled, reduced the
simulation size to 41,000 particles.

The video-processing and -display capabilities of the test system are low in
performance compared to standard computer hardware. The inability of the test
system as a whole to efficiently process and remove graphical data from the par-
ticle pipeline’s output buffer severely limits the speed and size of simulations.
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Combined with low particle memory access rates, the test system’s performance
is limited to well below the particle pipeline peak performance. The particle
memory copy rate achievable by the PP1 system’s loading and storing hard-
ware has been measured as limited to 0.1365 bytes per clock cycle. With this
in mind, considering that the particle pipeline at maximum throughput would
require a copy rate of 128 bits (16 bytes) per cycle, particle memory starvation is
responsible for limiting particle pipeline utilization to 0.1365 × 8/128 = 0.85%
of its peak performance. During simulations on the test system, the particle
pipeline is actually stalled and not in use for 99.15% of all cycles. As a first im-
plementation of the particle pipeline, and primarily intended for the testing and
verification of the concept and operation of the particle pipeline, the PP1 system
was designed and organized in the most direct way possible. The particle-data-
loading and -storing units were designed as two separate controllers, each a
master on the particle data bus. The storing unit blindly attempts to empty
the particle data output buffer, while the loading unit loads particle data at
a specified rate. Coordination and arbitration between these two bus masters
attempting to simultaneously access particle memory are resolved by the bus
arbitration logic. As the loading and storing units attempt to simultaneously
read and write from the single particle memory device, access is shared be-
tween the two with alternating permission. The result of this simple solution
is that what should be two sequential, pipelined, high-speed bursts (one read
stream and one write stream) becomes alternating random accesses by two
different masters. The bus transfers are not pipelined, the SDRAM controller
cannot reach a burst mode of operation, and the access rates seen by the parti-
cle pipeline are extremely slow. Double-buffering to separate memories is one
solution for this issue.

A better particle data system should be designed to maximize the perfor-
mance of the particle memory, since, as we have seen, access to particle mem-
ory is the major factor limiting particle pipeline performance. For the design of
a high-performance particle pipeline system, the particle loading and storing
units should be merged into a single pipelined design capable of exclusively
bursting sequential data from particle memory, while all pipeline output is
buffered for some duration. Then, the pipeline output should be exclusively
bursted back to particle memory, while the pipeline is either not fed with input
data or is fed from a read buffer. The transfer of data should be separated from
the transfer-of-address and control information to allow multiple, simultane-
ous pending read operations. A particle pipeline system designed in such a way
could be expected to achieve particle memory access rates close to the perfor-
mance limits of the memory device itself, or of the clock frequency and width of
the system bus.

4. HIGH-LEVEL LANGUAGE DESIGN OF A HIGH-PERFORMANCE
HARDWARE PARTICLE ENGINE

In Section 3 we demonstrated that a particle graphics engine capable of process-
ing approximately 2 million particles per frame at 60 Hz could be built using
relatively modest resources in an FPGA. The PP1 system built to exercise the
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pipeline, however, could not support this level of performance. It was calculated
that to achieve maximum performance, about 2GB per second of bandwidth was
required to fill and drain the pipeline, and that this was achievable with com-
modity memory. The FPGA development board we had available at the time was
not adequate to support the required memory bandwidth. In the next phase of
this work, an FPGA board with improved memory bandwidth became avail-
able. In this section, we describe a new version of the particle engine, PP2, that
takes advantage of the memory bandwidth available in the new FPGA board
and extends the previous work. The main features of the new pipeline are listed
next.

(1) The pipeline is interfaced to memory over a high-speed 3.2GB per-second
link.

(2) The pipeline is programmed in a high-level C-like language, which is acces-
sible to software designers and does not require any knowledge of hardware
design.

(3) Floating-point data types are used, instead of fixed-point.

(4) Higher-order integration schemes are used.

(5) The system is scalable to use multiple particle pipelines.

4.1 Hardware Configuration

The test system is an SGI Altix 350 with 16GB of main memory. The CPU is a 1.5
GHz Itanium 2. The system contains four Xilinx Virtex-4 LX200 FPGAs, each
connected to the shared main memory by the NUMALink bus with 3.2GBper-
second unidirectional bandwidth per link. Each FPGA is connected to 32MB of
local high-speed memory, arranged as 2 × 210 × 128-bit words, that serves as a
software-controlled cache.

4.2 Programming

The main barrier to the widespread adoption of FPGAs as processors for graph-
ics acceleration has been the significant barrier-to-entry for programmers. Gen-
erally, programming FPGAs has been the domain of hardware designers work-
ing with hardware description languages such as VHDL or Verilog and tak-
ing into account low-level hardware structures and detailed clock-cycle timing.
Recently, a number of commercial C-like languages for programming FPGAs
have been introduced to make FPGAs more accessible to software programmers
[Styles and Luk 2000; El-Araby et al. 2007; Koo et al. 2007].

The particle pipeline was reprogrammed in Mitrion-C. Mitrion-C is a func-
tional programming language where the programmer describes the data flow of
the algorithm, independent of the underlying hardware implementation. The
compiler then translates the data flow into a hardware configuration for an
FPGA. The language contains several constructs that make expressing paral-
lelism very easy. There are two array types: vectors and lists. Elements in a
vector can be accessed in parallel, while the elements in a list are accessed in
sequence. A parallel for-loop, called foreach, indicates that the iterations of the
loop are independent and can be executed in parallel. Applying a foreach loop
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Table III. PP2 FPGA Resource Utilization

Euler RK2 RK3

Registers (178,176 total) 24283 (13%) 27,821 (15%) 37,999 (21%)

4-LUTs (178,176 total) 21749 (12%) 26,926 (15%) 41,547 (23%)

18x18 Multipliers (96 total) 16 (17%) 25 (26%) 34 (35%)

Block RAMs (336 total) 25 (7%) 28 (8%) 41 (12%)

to a vector creates explicit parallel hardware structures, while a foreach loop
on a list creates a pipeline.

It is straightforward to implement the particle pipeline in Mitrion-C. The
particles are arranged as a list and processed in a foreach loop. This results in
the pipeline structure. Within the processing units of the pipeline (integration,
collision detection, etc.), parallelism is expressed by foreach loops operating
on vectors of data. The description and simulation of the particle pipeline in
Mitrion-C was completed in about 2 weeks, which is significantly faster than
the design time for PP1.

4.3 Implementation

The particle pipeline was described in Mitrion-C and synthesized to a Xilinx
Virtex 4 LX200 device running at 100 MHz. The Mitrion tools produce a circuit
that is always clocked at a fixed frequency of 100 MHz. The configuration of the
pipeline described in Section 3 was upgraded in several areas.

4.3.1 Data Type. The data type used for all variables is the 16-bit (6-bit
exponent and 9-bit mantissa) floating-point type from the OpenEXR libraries
that has also been used in recently reported particle engine implementations
[Krüger et al. 2005]. The 16-bit data size enables one particle’s dataset to fit in
a single 128-bit word of the FPGA local memory.

4.3.2 Integration. To investigate the hardware cost of higher-order inte-
gration schemes, the pipeline can be configured to use Euler, second-order
Runge-Kutta (RK2), or third-order Runge-Kutta (RK3) integrators.

4.3.3 Double-Buffering and Multi-FPGA Scaling. The FPGA reads and
writes its data from and to local SRAM memories. In order to maintain the
pipeline data flow, the memory is split into two independent 128-bit wide banks
of 16MB each. Each of these banks can hold 1024 × 1024 particles, assuming a
128-bit particle representation. To accommodate a larger number of particles,
double-buffering is used. Each of the two 16MB memory banks are split further
into two 8MB regions, one of which is used by the pipeline for data access
and one for supplying (and draining) data from (and to) the NUMALink bus.
This double-buffering technique hides the data transfer times to the FPGA
local memory, with the exception of the first and last blocks to and from the
FPGA.

Even with double-buffering, we found that the available data transfer band-
width, and not the computational bandwidth, was the bottleneck in our imple-
mentation (see Section 4.4). To alleviate this, we scaled the design to use up
to four parallel pipelines, each on a separate FPGA with its own connection to
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Table IV. Particle Engine Performance Comparison (Measured in millions of

particles per second (Mpps))

Implementation Number of Particles Euler RK2 RK3

2.8 GHz Pentium 4 CPU 1,048,576 – 52,428,800 2.14 1.27 0.81

GPU [Krüger et al. 2005] 1,048,576 59 51 41

1 FPGA (PP2) 1,048,576 46.78 47.27 46.84

1 FPGA (PP2) 52,428,800 55.18 55.41 54.79

Table V. Speedup of PP2 FPGA System over a 2.8 GHz

Pentium 4 CPU (52,428,800 particles)

# FPGAs Euler RK2 RK3

1 26 44 68

2 48 81 127

3 52 89 139

4 53 89 139

NUMALink. The double-buffering and multi-FPGA scaling were automatically
handled by SGI libraries.

4.4 Results

The FPGA resource utilization for PP2 is reported in Table III. The PP2 system
performance was measured with hardware timers and includes all overhead
incurred by data transfers between memory and the FPGA and control of the
FPGA. The results are shown in Table IV, expressed in millions of particles
per second. The results are compared with a software implementation running
on a 2.8 GHz Pentium 4 CPU and the GPU implementation in Krüger et al.
[2005]. Note that the GPU performance results in Table IV are for particle up-
dates only and do not include the rendering of the particle sprites. Similarly,
the PP2 implementation does not perform the rendering step. With one FPGA
processing frames with 1,048,576 particles, the PP2 system achieves an av-
erage performance of 47 million particles per second, representing a speedup
over the CPU of 22, 37, and 58 times for Euler, RK2, and RK3 integration,
respectively. It is interesting to note that the clock frequency of the CPU is 28
times higher than the FPGA and the clock frequency of the GPU (525 MHz
ATI X800 XT) in Krüger et al. [2005] is 5.25 times higher than the FPGA.
The CPU achieves at best approximately 0.0008 particles per cycle, the GPU
achieves 0.11 particles per cycle, and the FPGA achieves 0.47 particles per
cycle. The efficiency of the FPGA improves as the size of dataset increases,
due to the diminished impact of the communications overhead. With a data
buffer size of 10242 particles (16MB), the computation time on the FPGA is not
long enough to completely overlap the communications overhead. To test the
limits of PP2, a very large dataset of 52,428,800 particles was tested, achiev-
ing 0.55 particles per cycle and a speedup of 26 to 68 times over the CPU
implementation.

A single PP2 pipeline is therefore able to deliver an order-of-magnitude im-
provement in speed over a software implementation. This is a comparable re-
sult to the GPU implementation from Krüger et al. [2005], which has speedups
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Fig. 14. Performance of PP2 with multiple FPGAs.

ranging from 25 to 56 for floating-point data. However, it is interesting to note
that the GPU performance decreases as the complexity of the particle pipeline
increases, for example, when implementing higher-order integration methods.
This is because the higher-order integrators require multiple passes through
the data. On the other hand, the performance of the FPGA implementation
is the same for all integration methods because the FPGA is able to trade-
off increased area for speed. The FPGA design fully unrolls and pipelines all
loops, requiring a single pass through the pipeline for each particle. The space
increase is modest, however, leaving abundant free space on the device for fur-
ther improvements.

From Table IV the performance of a single FPGA in PP2 is limited to 55
Mpps. The performance bottleneck is the bandwidth limit of a single NUMA-
Link connection. To increase the system performance, we scaled the PP2 system
to up to four FPGAs, each running an identical copy of the PP2 pipeline. Each
FPGA has its own connection to NUMALink. The performance results are pre-
sented in Table V in terms of speedup over the Pentium 4 CPU. The maximum
performance obtained was 139 times speedup, using three FPGAs and RK3 in-
tegration. The characteristics of scaling as a function of the number of FPGAs is
plotted in Figure 14. No discernible difference in performance is measured for
the different integration methods, therefore the value reported is an average
over all methods. The peak performance observed was 112 Mpps with three
or four FPGAs. A million-particle system can achieve 75 Mpps, correspond-
ing to frame rates of up to 71 Hz with two FPGAs. Note that the resources
for two particle pipelines can fit in a single FPGA, and the purpose of multi-
ple FPGAs here is to deliver increased communications bandwidth. We expect
that upcoming improvements in system software from the vendor will further
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increase the PP2 performance towards its maximum value of 100 Mpps per
FPGA.

5. CONCLUSIONS

In this article we explored the design and implementation of an FPGA-based
hardware particle graphics engine. Results show that the FPGA-based engine
achieves up to 139 times speedup over CPUs. Custom hardware implementa-
tions are competitive with GPUs for simple pipeline processing, but gain an
edge when the order of the integration is increased because the FPGA can
process the particles in a single pass, in contrast to the multipass GPU al-
gorithm. A single FPGA could process a million-particle system at a rate of
47 million particles per second, while a system of three FPGAs achieved 112
million particles per second. We showed that the design of a complex physics-
based algorithm could be implemented in hardware using a high-level software
language.

We expect that recent trends in FPGA technology, both in hardware and
software, will make FPGAs an attractive programmable processing element to
augment CPUs and GPUs. Combined with high-performance CPU-FPGA in-
terconnections such as those recently announced as direct connections to CPU
front-side busses [Maxwell 2007], FPGAs offer a potential for low-cost, high-
performance custom hardware accelerators for a host of graphics and physics
algorithms. Future graphics system architectures could integrate FPGAs and
GPUs over a high-bandwidth and low-latency interface. Future work could in-
clude implementing parallel particle pipelines on a single FPGA to take advan-
tage of increased communications and memory bandwidth. This would serve
as a good point of comparison with modern GPUs based on the unified shader
architecture.
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