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Figure 1: We introduce a method for robot-operated active semantic understanding of unknown indoor scenes, based on online RGBD
reconstruction with semantic segmentation. Our approach performs online volumetric RGBD reconstruction, on which real-time voxel-based
semantic labeling is conducted. The robot is guided by the requirement of fast online segmentation with minimal scanning effort. The image
to the left shows the robot paths computed by our method and the corresponding scene parsing results (correspondence indicated by color)
are shown to the right.

Abstract
We propose a novel approach to robot-operated active understanding of unknown indoor scenes, based on online RGBD re-
construction with semantic segmentation. In our method, the exploratory robot scanning is both driven by and targeting at the
recognition and segmentation of semantic objects from the scene. Our algorithm is built on top of a volumetric depth fusion
framework and performs real-time voxel-based semantic labeling over the online reconstructed volume. The robot is guided by
an online estimated discrete viewing score field (VSF) parameterized over the 3D space of 2D location and azimuth rotation.
VSF stores for each grid the score of the corresponding view, which measures how much it reduces the uncertainty (entropy) of
both geometric reconstruction and semantic labeling. Based on VSF, we select the next best views (NBV) as the target for each
time step. We then jointly optimize the traverse path and camera trajectory between two adjacent NBVs, through maximizing
the integral viewing score (information gain) along path and trajectory. Through extensive evaluation, we show that our method
achieves efficient and accurate online scene parsing during exploratory scanning.

CCS Concepts
• Computing methodologies → Shape analysis; • Computer systems organization → Robotic control;

1. Introduction

With the wide availability of commodity RGBD sensors and the
boosting of 3D deep learning techniques, 3D scene understand-
ing on RGBD data has been emerging as a core problem of 3D
vision and gained much attention from both graphics and vision
community lately [SLX15,GAGM15,NKP19]. The majority of ex-
isting works pursues offline, passive analysis, in which scene un-

† Corresponding authors: Chenyang Zhu (chenyang.chandler.zhu@gmail
.com) and Kai Xu (kevin.kai.xu@gmail.com)

derstanding, encompassing object detection and/or segmentation,
is conducted over already acquired RGBD sequences or their 3D
reconstruction. Unfortunately, this often greatly limits scene under-
standing performance, since data acquisition is decoupled from the
respective scene understanding algorithms; i.e., in some regions,
additional observations might be taken in order to make reliable
semantic predictions.

Online scene understanding is a different paradigm in which acqui-
sition and analysis are intertwined [XHS∗15, LXS∗18, YLL∗18]:
while scene analysis is conducted online based on the progressively
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acquired scene data, scene scanning, on the other hand, is driven by
the requirement of efficient scene understanding. Such a coupled
solution fits well for robot-operated autonomous scene understand-
ing. Here, the robot actively selects scanning views and traversing
paths to cover the regions which may best facilitate scene parsing,
with a minimum traversing and scanning effort.

Online scene understanding can be performed either directly over
online acquired RGBD sequences or based on online RGBD
reconstruction. Most recent works usually adopt the former
due to the deep-learning-friendly representation of RGBD im-
ages [GAGM15]. However, 3D object segmentation should best
be performed over the 3D reconstruction of scene geometry
which facilitates 3D spatial and structural reasoning [ZXTZ14,
XHS∗15]. Modern real-time RGBD reconstruction usually adopts
the volumetric depth fusion approach [NDI∗11, IKH∗11, NZIS13,
WLSM∗15, DNZ∗17], where the depth images acquired in real
time are registered and fused into a volumetirc representa-
tion of scene geomtery, i.e., Truncated Signed Distance Field
(TSDF) [CL96]. Volumetric representation is well-suited for 3D
feature learning based on deep neural networks [WSK∗15].

Inspired by the recent work of semantic scene segmentation with
volumetric representation [JDN19], we propose a method of active
scene understanding based on online RGBD reconstruction with
volumetric segmentation. Based on the online reconstructed TSDF
volume, our method leverages a deep neural network to perform
real-time voxel-based semantic labeling. The network contains a
2D feature extraction module used for extracting 2D features from
multi-view RGB images as well as an incremental 3D feature ag-
gregation module specifically designed for real-time inference. The
3D feature fusion and spatial reasoning based on the online updated
volume lead to reliable online semantic segmentation.

The robot scanning is guided by an online estimated discrete view-
ing score field (VSF) parameterized in the 3D view space of 2D
location and azimuth rotation. VSF stores for each view a score
measuring how much it reduces the uncertainty (entropy) of both
geometric reconstruction and semantic labeling. Based on VSF, we
select the next best views (NBV) as the target for each time step.
We then jointly optimize the traverse path and camera trajectory be-
tween two adjacent NBVs, through maximizing the integral view-
ing score (information gain) along path and trajectory in the view
space. Benefit from our online semantic reconstruction, our method
achieves fast, accurate and complete scene parsing outperforming
the state-of-the-arts. We have also conducted extensive experimen-
tal evaluations and comparisons to show that .

To sum up, the contributions of this work are:

• A new approach to active scene understanding based on online
semantic reconstruction.
• An efficient semantic segmentation network with incremental

volumetric feature aggregation.
• A method for estimating the next best view based on the uncer-

tainty in scene reconstruction and understanding.
• A method for joint optimization of robot path and camera trajec-

tory in three-dimensional view space.

2. Related Works

Scene understanding. Scene understanding has been a long-
standing problem in both vision and graphics. The two main prob-
lems of scene understanding are scene classification and seman-
tic parsing (object detection and/or segmentation). With the de-
velopment of commodity depth sensors, the input of interest has
been shifting from 2D RGB images [LSFFX10], 3D CAD mod-
els [FSH11, XMZ∗14] or 3D point clouds [NXS12], to RGBD
images [GAM13, SX16] and/or their 3D reconstruction [KKS13,
JDN19, MHDL17]. To take the advantage of deep learning, much
attention has been paid on designing suited representation and ef-
ficient neural networks for the task of RGBD-based understand-
ing [SHB∗12, CDF∗17, SYZ∗17, QLJ∗17]. Most existing works
have hereunto been devoted to offline, passive understanding based
on the already acquired scene data. There are surprisingly limited
works studying how to actively acquire scene data which are most
useful for scene understanding, albeit the availability of real-time
RGBD acquisition and reconstruction in nowadays.

Online RGB-D reconstruction. With the introduction of com-
modity depth cameras, we have seen significant advances in on-
line RGB-D reconstruction. KinectFusion [NDI∗11, IKH∗11] was
one of the first to realize a real-time volumetric fusion framework
of [CL96]. In order to handle larger environments, spatial hierar-
chies [CBI13], and hashing schemes [NZIS13,KPR∗15] have been
proposed. At scale, these methods also required robust, global pose
optimizations which are common in offline approaches [CZK15];
however, fast GPU optimization techniques [DNZ∗17] or online re-
localization methods [WLSM∗15] allow for real-time global pose
alignment. Our work builds upon this line of research to achieve
active RGBD-based scene understanding.

Active object recognition. Autonomous object detection and/or
recognition is one of the most important ability of domestic
robots. A common solution to active object recognition is to ac-
tively resolve ambiguities of a certain viewpoint in recognizing
an object [ZXZ∗18]. In cases where the target object is known,
Browatzki et al. [BTM∗12] define characteristic views, on a view
sphere around the object, which are most beneficial in discrim-
inating similar objects. Potthast et al. [PBSS16] introduce an
information-theoretic framework combining two common tech-
niques: online feature selection for reducing computational costs
and view planning for resolving ambiguities and occlusions. Simi-
lar idea was also utilized in [XSZ∗16] for active, fine-grained object
recognition. Song et al. [SZX15] propose an information-theoretic
approach based on 3D volumetric deep learning [WSK∗15]. When
target objects are unknown, detection and recognition need to be
solved simultaneously [LSZ∗19]. Ye et al. [YLL∗18] propose nav-
igation policy learning guided by active object detection and recog-
nition. The work in [LXS∗18] is the most similar in spirit to ours.
They develop a data-driven solution to autonomous object detec-
tion and recognition with one navigation pass in an indoor room.
The problem is formulated as an online scene segmentation with
3D models from a shape database serving as templates. Our work
frames the problem as online volumetric reconstruction and deep-
learning-based voxel labeling.

Active scene segmentation. Semantic segmentation of an indoor
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(a) (b) (c) (d) (e) (f)

Figure 2: An overview of our method. Given the current reconstruction and understanding in (a), the robot performs online progressive
reconstruction and entropy map computation/updating (b). Based on that, the view scoring field (VSF) is generated (c). Based on VSF, it
performs field-guided optimization of robot path and camera trajectory (d). (e) shows the online reconstruction with semantic segmentation
and (f) visualizes the updated entropy map for the next iteration.

scene is critical towards accurate robot-environment interaction.
However, many existing approaches do not involve an online active
view selection [YWT16]. Mishra et al. [MAF09] propose fixation-
based active scene segmentation in which the agent segments only
one image region at a time, specifically the one containing the fix-
ation point by an active observer. Similar method is also studied
in [BK10] which integrates different cues in a temporal framework
for improving object hypotheses over time. Xu et al. [XHS∗15]
present an autoscanning system for indoor scene reconstruction
with object-level segmentation. They adopt a proactive approach
where objects are detected and segmented with the help of physical
interaction (poking). Yang et al. [YXCF17] study interactive indoor
scene segmentation with automatic view selection. In our system,
scene segmentation is achieved by actively selecting the best view
points and traverse paths that maximally determine the volumetric
labeling.

3. Method

3.1. Problem Statement and Overview

Problem statement. Given an indoor scene whose map is un-
known, the objective of our system is to drive a ground robot
mounted with an RGBD camera to explore and actively parse the
scene into semantic objects. It is impossible to plan the complete
scan path in advance since the map of the target scene is unavail-
able at the beginning, which makes it a chicken-and-egg problem.
We therefore have to solve for scene understanding and path plan-
ning simultaneously. Existing approaches to active scene scanning
usually take a “scan and plan” paradigm, which only take geomet-
ric but not semantic information into consideration when planning
the robot scanning. In this work, we frame the problem from on-
line reconstruction with semantic segmentation and propose a novel
“scan, understand, and plan” solution.

Method overview. For the purpose of online scene understanding,
we introduce a semantic segmentation network based on online vol-
umetric reconstruction, inspired by [JDN19]. The basic idea of our
network is to first extract multi-view 2D features and then perform
feature aggregation based on 3D convolution over the online re-
constructed TSDF volume. Different from the offline scene under-
standing in [JDN19], the input for semantic labeling is dynamic
due to the progressive scanning and online reconstruction. There-
fore, the feature aggregation must follow the online reconstructed
TSDF volume. Furthermore, to avoid redundant computation, our

network bypasses the known and unchanged voxels in the TSDF
volume during feature aggregation, thus significantly improving the
online efficiency.

To guide the robot in achieving an fast online semantic recon-
struction with minimal scanning effort, we adopt an information-
theoretic approach to Next-Best-View (NBV) prediction through
minimizing uncertainty (entropy) of semantic reconstruction. The
entropy measures the uncertainty of both geometric reconstruction
and semantic segmentation. In particular, we present a field-guided
optimization of robot path and camera trajectory to maximize the
information gain in traversing and scanning between every two ad-
jacent NBVs.

An overview of the process is given in Algorithm 1. Any scanning
move of the robot would collect some semantic information S of the
unknown scene. An entropy-based (section 3.3) view scoring field
F is generated based on the online reconstructed TSDF with se-
mantic labels D (section 3.2). To maximize the scanning efficiency,
the Next-Best-View (NBV) should enable the robot to reduce the
overall entropy as much as possible in the next move. Based on the
online updated entropy map and occupancy grid T , we compute a
view scoring field F , based on which the robot path and camera ori-
entation can be optimized jointly (section 3.4). The above process
repeats until the terminate condition is met.

3.2. Online Reconstruction with Semantic Segmentation

We measure the quality of a scan view by how much the uncertainty
of scene understanding would be reduced through this move. In our
work, the uncertainty of scene understanding is measured from two
aspects, i.e., geometry reconstruction and semantic segmentation.

RGBD-based reconstruction with volumetric representation.
Given a sequence of RGBD images, we adopt the volumetric rep-
resentation (TSDF) for depth fusion [CL96]. The construction of
TSDF D is incremental. The occupancy uncertainty of each voxel
v is reduced when more images are fused into D. Usually, the oc-
cupancy of v can be modeled based on a 1D half normal distribu-
tion: t(v) = 1−|X | ,X ∼ N(0,σ2(v)). The variance σ

2(v) provides
a measure of reconstruction uncertainty. More specifically, the vari-
ance σ(v)2 is defined based on how many images provide positive
support for the occupancy of v [HWB∗13]. The positive support
here means the camera gets a reflected signal from v when shot a
depth image and vice versa. To make it simple, every positive sup-
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port i would provide σocc(v, i) = 0.85 and every negative support i
would provide penalty σ f ree(v, i) =−0.4.

σ(v) = ∑
i

σocc(v, i)+∑
i

σ f ree(v, i) (1)

Semantic reconstruction network. To incrementally gain seman-
tic information during scanning, we propose a network to predict a
3D semantic segmentation based on the TSDF D. More specifically,
we want to infer the semantic labeling over the TSDF on a per-
voxel basis. The backbone of our network is similar to [JDN19].
We first briefly review the network architecture and then discuss
our improvement over it.

The network is composed of two main components including object
detection and per-voxel labeling prediction. Each of these compo-
nent has its own feature extraction module. Each module is com-
posed of a 2D and 3D feature extraction layers. The extracted 2D
and 3D features are aggregated by a series of 3D convolutional lay-
ers over the TSDF volume. The object detection component com-
prises a 3D region proposal network (3D-RPN) to predict bounding
box locations, and a 3D-region of interest (3D-RoI) pooling layer
followed for classification. The per-voxel mask prediction network
takes geometry as well as the predicted bounding box location as
input. The cropped feature channels are used to create a mask pre-
diction for per-voxel semantic labeling as well as the confidence
score.

However, this network is designed for offline scene understand-
ing where the reconstruction is already given. In our problem set-
ting, the online reconstruction is executed online, with smooth and
progressive RGBD acquisition. This means that there is immense
overlap (> 30%) between the observations of every two adjacent
RGBD frames. Directly applying feature aggregation would result

Algorithm 1: Robot scanning guided by online reconstruc-
tion and semantic segmentation.

Input : Initial TSDF D0, occupancy grid T0 with few random
scans and robot location vr

Output: Semantic label S and optimized scanning path
{Pi,Ci‖i = 0...k}

1 Initialize S0← frec(D0);
2 Initialize entropy map H0 from T0 and S0;
3 Initialize view scoring field F0← H0,T0;
4 repeat

// Path planning and camera rotation optimization based on F
5 Find NBV vi← argmaxv Fi;
6 Find the optimal robot and camera path Pi,Ci from vr to vi;

// Update scene mapping based on given path
7 Scan along Pi,Ci and update semantic map S;
8 Update Si← frec(Di);
9 Update Hi from Ti and Si;

10 Update Fi from Hi,Ti,Hi−1,Ti−1;
// Record current path planning

11 {Pi,Ci‖i = 0...k}← Pi,Ci;
12 until Terminate condition is met;
13 return S, {Pi,Ci‖i = 0...k};

in much computational redundancy. To support real-time applica-
tion, we make a modification to this network to reuse the previous
feature aggregation as much as possible.

Incremental 3D feature aggregation. Most offline scene under-
standing methods do not consider how to process dynamic inputs,
we present an incremental semantic segmentation network specif-
ically designed for online understanding. The key insight of our
approach is that 3D convolution should be performed only on the
newly-observed voxels and reuse the previous result for overlap-
ping areas as much as possible. Figure 4 gives an illustration of
this.

More specifically, we maintain a global data structure to record
the TSDF and 3D features information for all the observed voxels.
When the network gets a new local input, the first step is finding
the overlapped areas between the input and the global record. And
our proposed network would skip the 3D convolution and reuse the
stored information directly for this overlapped areas which can save
a lot of computational time.

Moreover, our network would also reuse the results of the 3D-RPN.
All the box proposals in the overlapped areas would not be pro-
cessed again for a new local input. Note that we only reuse the fea-
tures of those voxels whose convolution is performed completely
inside the overlapping volume. For the boundary voxels where the
feature convolution involves both old and incremental voxels, we
do not reuse but instead recompute their features. Even by doing
this, our method still saves a lot of computation since boundary
voxels represent only a small portion of the overlapping volume.
By removing these redundant proposals, our incremental network
would improve the efficiency one step further. In our experiment,
the incremental process would make our network be 23.6% faster
if the input has 50% overlapped area and 41.1% faster if the input
has 75% overlapped area. More details about out network can be
found in Figure 3.

3.3. Reconstruction and Segmentation Entropy

We adopt Shannon entropy to measure the information gain of
robot scanning. In particular, we estimate the average new infor-
mation the robot can collect under a specific pose. In other words,
we want to measure how much uncertainty would be reduced by a
potential scanning view.

The entropy map H is defined on each voxel in the 3D scene. Differ-
ent from previous method like [BWCE16], we do not only count
the geometry occupancy possibility of each voxel v but also the
predicted semantic label as new information. The general defini-
tion of entropy in our problem is H(v) =−∑ p(v) log p(v) and we
can measure the gained information I as I(v) = H(v)−H(v|vnew).
The key point to evaluate the quality of new information through
I is how to define probability p in H for geometry and semantic
information respectively. Then we can sum these two item up in a
weighted fashion to get final formulation of the gained information.
α and β are constants to weight the geometry term and the semantic
term.

I(v) = αIsemantic(v)+βIgeometry(v) (2)
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Class Label
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Local Input

Global Input
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Global 
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Boxes

Local Overlap Input

Concate
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Figure 3: The architecture of our online semantic segmentation network. Note that the key difference between our network and 3D-SIS
[JDN19] is that our feature aggregation is incremental which fits the online processing more natural. The input of our network contains two
components, which are local and global (red box). We save massive processing time on redundant operations of overlapped areas. More
specifically, the voxels which have been observed in previous steps would not go through the 3D convolution layers and 3D-ROI (blue box)
again. Our network would re-unitize the stored information directly.

3D CNN

Mask prediction
Recover overlap

Figure 4: An illustration of incremental semantic segmentation.

Geometry reconstruction entropy. As introduced in Section 3.2,
the uncertainty of voxel v in geometry reconstruction can be de-
fined as Equation (1). However, the output range of this uncertainty
formulation is [0,∞] which can not be adopted as the probability
function p in a entropy formulation directly. We simply map this
uncertainty function to [0,1] as below and use it in our geometry
reconstruction entropy.

Igeometry(v) = Hg(v)−Hg(v|vnew) (3)

Hg(v) =−pg(v) log pg(v)− (1− pg(v)) log(1− pg(v)), (4)

pg(v) =
eσ

2(v)

1+ eσ2(v)
(5)

Semantic segmentation entropy. To measure the uncertainty of
semantic segmentation, we would like to consider both the pre-
dicted semantic label and corresponded confidence score for a
voxel v into consideration. If the predicted semantic label for v in
current scan move keeps the same as the previous predicted result
and the confidence score becomes higher, then the uncertainty for
semantic segmentation for v is reduced. In another case, we can
gain more information from v if the confidence score is higher even

Low uncertainty

High uncertainty

Geometry item Semantic item Combination entropy map

Figure 5: Visualization of scanning entropy encompassing both ge-
ometric and semantic uncertainty.

the predicted semantic labels are different. Therefore, we have a
following formulation for semantic segmentation entropy, where
ps represents score of semantic prediction given by our semantic
reconstruction network for a specific label s.

Isemantic(v) =


∑s ps(v|vnew) log ps(v|vnew)−∑s ps(v) log ps(v), if Sv = Svnew

−∑s ps(v|vnew) log ps(v|vnew), if Sv 6= Svnew and pv < pvnew

0, otherwise
(6)

where vnew denotes the new observation for voxel v and Sv is se-
mantic label of v.

In Figure 5, we illustrate this idea of combined entropy. Here,
higher entropy value means lower confidence since more informa-
tion is required for more reliable predictions. This becomes clear
when we only consider the geometry term; in this case, the robot
cannot predict a meaningful next step since the uncertainty for the
the geometry reconstruction is similar everywhere. The semantic
term resolves this ambiguity, and as such it provides good guid-
ance about which area the robot should focus on in the next move.
In the concrete case of Figure 5, there is a valid semantic object
(sofa) in the right view.

In order to highlight the benefits of our combined entropy in the
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(a) (b) (c) (d)

𝑟

Figure 6: (a): Illustration of 3D parametric space of location and
orientation. (b,c): Visualization of view scoring field and the opti-
mal path found by A∗ algorithm between two camera poses in the
field. (d): The computed robot trajectory based on field-guided op-
timization.

context of semantic labeling quality, we provide a side-by-side vi-
sual comparison in Figure 7. In this way, the objective of our NBV
prediction is clear now. The NBV should be the view that all the
voxels in it have the highest uncertainty. Based on Equation (2), we
have a formulation for NBV prediction as following where Ω(v,n)
represents all the voxels in current camera view n:

NBV = argmax
n ∑

k∈Ω(v,n)
αIsemantic(k)+βIgeometry(k) (7)

3.4. Field-guided Scan Planning

View scoring field. Our scan planning is composed of two compo-
nents, NBV prediction and path planing with camera optimization.
These two components are implemented upon a 3D field which
records the entropy information described in section 3.3. Please
note that this field is incrementally constructed with the scanning
process.

Besides information gain, the field construction accounts for the
following factors:

• Safety: View point must be in free space and keep a safe
distance away from obstacles;
• Visibility: Views should orient toward objects or frontiers to

maximize information gain;
• Movement cost: Robot traverse path should be as short as

possible.

In this case, we find Equation (7) is not sufficient to find the most
appropriate NBV for our system. In addition to the gained informa-
tion I, we introduce the occupancy grid T to measure the value in
our view scoring field which would be helpful to measure the above
three factors.

To ensure robot safety, we get obstacle information from the 2D
projection of T , and only sample views which can keep a safe dis-
tance 0.35m from obstacles.

We further consider the visibility to frontier. Frontier is the bound-
ary between (known) empty regions and unknown ones, which is a
well known driving factor for robot exploration in robotics. To this
end, we measure the visibility to frontier by counting the frontier
voxels visible in the current view frustum. Specifically, it is esti-
mated based on T :

Low uncertainty

High uncertainty

Initial scans Middle result Final result

Figure 7: The evolution of scanning entropy over increasing scans.

V (v,r) = ∑
k∈Ω(v,r)

T (k), T (v) =

{
1, if voxel v is frontier
0, otherwise

(8)

where r is the given view from voxel v and Ω(v,r) means all the
voxels in this view frustum. We need to ensure that the planned
path is not too long.

Here, we use an approximate distance estimation formulation in

order to enforce this movement constraint. L(v) = e−
dist2(v,vrobot )

2σ2 ,
where vrobot is the current robot location. After formulating all
these factors, we will discuss the details about how to assemble
them to get 3D view scoring field. For each ground grid voxel
v of the given scene, we sample some different views. And the
safety, visibility and movement factor are calculated for each view
ri, i ∈ {0...k} of every v. And we will have the final view score for-
mulation for each grid voxel v with different camera view ri, and
we have a 3D visualization of this field in Figure 6(a):

F(v,rk) =
αV (v,ri)+∑v∈Ω(v,ri) I(k)

L(v)
(9)

Optimization formulation. We will update this view scoring filed
F after each scan move, and the NBV can simply be computed by
the optimization NBV = argmaxv,r F(v,r). The main challenge in
this part lies in how to compute a collision-free path from the cur-
rent robot position vrobot to the NBV , such that the path maximizes
the information gain of semantic reconstruction and minimizes the
traverse distance.

In order to guarantee robot safety and scanning efficiency, the view
scoring filed F plays a significant role in path planning algorithm.
Formally, we define C(P) as the total cost of the optimal path P:

C(P) = inf
π∈Π(vrobot ,vi)

∫
η−F(v,r)dπ(v,r) (10)

s.t. Vrotation >
δπ

δc

where Π(vr,vi) is the set of all possible paths from location vr to
vi, Vrotation is maximum rotation speed of the robot camera and η is
a big constant, which we set to 500 in our experiment. which helps
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to adopt F in our costmap. However, even we consider the safety
factor when designing the view scoring field F , it is still can not
guarantee that the found path through Equation (10) is collision-
free. we introduce a 2D obstacle costmap to enhance F to solve
this problem.

The 2D obstacle map fo is obtained from projection of 3d occu-
pancy grid map T . We generate the obstacle cost map by using
two-dimensional Gaussian distribution.

fo(v) = e−
minvk∈{v‖T (v)=1}dist2(v,vk )

2σ2 (11)

We integrate the 2D obstacle map fo into the view scoring field F
and change the optimization formulation from Equation (10) to the
following:

C(P) = inf
π∈Π(vrobot ,vi)

∫
η−F(v,r)dπ(v,r)+

∫
η fo(v,r)dv (12)

s.t. Vrotation >
δπ

δc

Scan planning by optimization. To solve the path and camera op-
timization defined in Equation (12) , we adopt A∗ algorithm to find
the optimal solution in discrete level. Figure 6 illustrates how we
get the camera view path and the robot path from the optimal path
given by the 3D costmap. We project the optimal path which given
by the A∗ algorithm to θ axis to get the camera rotation sequence
and the projected path on xy plane is the optimal 2D robot path.

This “scan, analyze, and plan” process is repeated until the termi-
nate condition is met, leading to a progressive understanding by the
robot. In our experiment, the robot will stop the exploration if the
overall entropy ∑v I(v) is reduced below a certain threshold, which
is set to 150 in our experiment.

4. Results and Evaluation

There are three primary questions that we seek to answer with our
experiments and evaluations.

• How does our approach compare to previous work in terms
of distance traveled, time cost, and semantic prediction quality?
• How much effect does the semantic entropy item have over

the results?
• How much does field guided path planning improve the

scanning efficiency?

4.1. System and implementation

Simulation setup. The simulation is conducted by using the
Gazebo simulator [KH04]. We adopt a differential drive ground
robot equipped with a virtual RGB-D camera simulating the Kinect
v1 sensor. We assume the sensor has a depth range of [0.5,4.5]m
with Gaussian noise, which µ = 0 and σ = 0.03. The camera is
mounted on top of the robot and has one DoF of azimuth rotation.
In order to achieve a realistic simulation, the ground robot will ob-
tain a noisy pose estimation from the simulator. The simulation runs

Table 1: NBV estimation time comparison between our method
and state-of-art methods, NBO [LXS∗18], BO [BWCE16] and
IG [CKP∗15].

Method Ours NBO BO IG
Cost time 5.5s 7.4s 6.6s 4.3s

on a computer with an Intel I7-5930K CPU (3.5GHZ *12), 32GB
RAM, and an NVIDIA GeForce GTX 1080 Graphics card.

Dataset. Our benchmark dataset is built upon the virtual scene
dataset SUNCG. SUNCG contains 40K human-modeled 3D in-
door scenes with visually realistic geometry and texture. It encom-
passes indoor rooms ranging from single-room studios to multi-
floor houses. We select 180 scenes which are suitable for navigation
and exploration task. These scenes have on average 4.5 rooms and
the average room area is 45m2. Different interiors including offices,
bedrooms, sitting rooms, kitchens, etc. are involved in our dataset
to guarantee the test variety. The dataset also provides ground truth
object segmentation and labeling for the scenes.

Parameters and details. The 3D occupancy grid T is constructed
with a resolution of 0.05m. The resolution of viewing score field
is 0.4m. In our experiments, the upper limit of linear and angular
speed of the robot is 0.3m/s and 40◦ per second, respectively. The
coefficient ratio α is set to 1.0 and β is set to 0.3.

4.2. Comparison and evaluation

In this section, we conduct a series of experiments and compar-
isons which focus on evaluating scanning efficiency and semantic
mapping quality of our method. Since it is impossible to get the
input scene fully labeled in voxel-wise, we evaluate the scanning
efficiency by measuring the time for our system to achieve a given
mass of correctly labeled voxels. To evaluate semantic quality, we
measure the accuracy of final scene segmentation.

Comparison with alternative NBV methods. Our method is
compared to several state-of-the-art NBV techniques: Bayesian
optimization-based exploration method (BO) [BWCE16],
information-theoretic planning approach (IG) [CKP∗15]
and Object-Aware based scene reconstruction algorithm
(NBO) [LXS∗18]. For all these methods, a fixed forward-looking
virtual camera is used.

Scanning efficiency. We compare the scanning time and travel dis-
tance from the four kinds of approaches, while scanning the scenes
virtually. The initial positions and orientations of the robot in all
these methods are the same. The comparison about scanning time
and traveled distance over correctly labeled voxel number are plot-
ted in Figure 9. We observe that the scanning cost time and traveled
distance are increasing as the scene semantic mapping gets more
complete (more and more occupancy voxels get labeled). But the
proposed approach always gets the least time and shortest distance.

To further discuss scanning efficiency of different NBV methods,
we also compare the NBV estimation time (average cost time for
NBV computation) in Table 1, which is averaged over all 180
scenes we have tested. We found that, the most efficient method
is [CKP∗15] due to the low complexity of its algorithm. However,
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Figure 8: Visualization of our active scene understanding process for three different scenes.

Figure 9: Comparing scanning efficiency between our method
(red), NBO (green), BO (magenta), and IG (blue) in different
scenes. It is measured by traveled distance and time over numbers
of correctly labeled voxels.

Figure 10: Comparing segmentation accuracy (left) and object
recognition (right) against NBO, BO, and IG. Note that the num-
bers of total semantic voxels and objects can be obtained from
ground truth labels.

its segmentation performance is the worst. [LXS∗18] is built upon
semantic prediction as our proposed method but it takes the most
computation time and its performance is not as good as our method.

Semantic segmentation performance. To evaluate the quality of
semantic segmentation, we measure the segmentation accuracy and

Figure 11: Effect of various entropy items on semantic segmenta-
tion performance (left) and exploration efficiency (right). The com-
bined entropy leads to faster scene exploration and more complete
segmentation results.

identified objects number (exclude wall, ceiling and floor) respec-
tively. The segmentation accuracy and identified objects number
over traveled distance is plotted in Figure 10. The number of cor-
rectly labeled voxels are increasing while the robot explores more
area, and the accuracy increasing as well. From these results, we
can clearly see that our method achieves the highest semantic ac-
curacy and maximum number of identified objects almost all the
way.

To demonstrate the benefits of our algorithm one step further, we
show visual results of the final semantic segmentation in Figure 14.
The results show that our scanning strategy leads to more complete
and better results. For more visual results, please refer to the sup-
plemental material.

Ablation study on semantic entropy. Occupancy entropy tends to
guide robot to explore more unknown space, while semantic en-
tropy is more likely to guide robot to exploit scanned region. In
this experiment, we investigate the effect of the semantic entropy
item on the semantic segmentation efficiency and quality. Figure 11
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Figure 12: Effect of field-guided path planning on scanning effi-
ciency. The proposed algorithm (red) is compared against classical
Dijstra (blue) method. Using field-guided path planning, the robot
travels less distance and time.

shows the numbers of correctly labeled voxels and all observed
voxels over robot traveled distance, with only occupancy entropy,
with only semantic entropy and with combined entropy.

As shown in the plot, when the observed region is relatively small
in an early stage, the benefit of semantic entropy is significant, due
to the better exploitation of partial scanned scene. When the robot
travels a larger distance, the occupancy entropy starts to take ef-
fect, which leads to faster discovery of unknown space and more
voxels are observed. Since the semantic entropy has no ability to
guarantee discovering more regions, the robot sometimes get stuck
in scanned regions with only semantic entropy. With occupancy
entropy only, the robot is faster to find new regions such that the
total scanned voxels are always the highest. However, when the un-
known space is small at a later state, the robot has difficulty to find
better observations, which leads to poor performance of semantic
segmentation. The combined entropy gets the best performance in
final scanning results, which works well on both exploration and
exploitation jobs. In Figure 13, we compare semantic segmentation
quality of these three different entropy. The visual results verify the
above analysis.

Effect of viewing score field. In the following, we verify the effi-
ciency of our viewing score field-guided path planning approach.
We conduct a number of experiments in four synthetic scenes and
compare our method with classical path planning algorithm of Di-
jkstra. Table 2 reports total scanning time, traveling distance for our
field-guided and Dijkstra path planning on these scenes. The termi-
nation conditions are set the same for both algorithms. Here we
can see that field-guided panning can save more scanning efforts.
To better demonstrate the superiority of our field-guided approach,
we also plot the cost time and traveled distance over the number of
correctly labeled voxels; see Figure 12. We can observer that the
field-guided path planning leads to faster scanning time and less
traveled distance all the way.

In addition to the above results, we show more visual results of our
active scene understanding in Figure 8. In these examples, it is clear
that our scene understanding is guided by collecting more semantic
information. Our method would try to drive the robot discover the
most semantic objects in a local area before it enters a new area
which would maximize the scene understanding efficiency.

Table 2: Comparison between our field-guided method and Di-
jstkra method. Our field-guided method is much more efficient than
the Dijstkra algorithm considering both time cost or explored dis-
tance metrics.

Scene Area (m2)
Field-guided method Dijstkra method

Time (s) Distance(m) Time (s) Distance (m)
1 134.2 1237 169.7 1412 195.1
2 239.1 1480 195.9 1671 215.4
3 106.9 708 92.9 1041 124.4
4 129.5 1057 141.1 1289 171.3

Average 152.3 1121 150.0 1353 176.5

5. Conclusions

We have presented a method for active scene understanding based
on online RGBD reconstruction with volumetric segmentation. Our
method leverages the online reconstructed TSDF volume and learns
a deep neural network for voxel-based semantic labeling.

It attains the following key features: First, the online scene seg-
mentation is conducted over the online reconstruction, thus bene-
fiting from the 3D spatial reasoning. Second, the robot scanning is
guided by the information gain of both geometric reconstruction
and semantic understanding. Third, the online estimated viewing
score field (VSF) facilitates the joint optimization of both moving
path and camera orientation.

We also believe that this work will open up new possibilities for
future research: First, our NBV prediction is based on the VSF
estimated online. A more favorable approach would be training a
network to achieve an end-to-end NBV estimation. The difficulty
lies in how to consider the uncertainty in both reconstruction and
segmentation within one neural network. Second, we would like to
explore the use of the proposed framework on a real robot. Third,
our VSF-based path/trajectory optimization can be extended to sup-
port more flexible scanning setting, for example, a robot holding a
depth camera in its arm, similar to [XZY∗17]. Last, another in-
teresting future direction would be extending our framework to
achieve multi-robot collaborative scene understanding.
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Figure 14: Qualitative comparison of indoor scene semantic segmentation on SUNCG dataset. Note that different colors represent different
semantic labels.
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