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On Spatial Capacity of Wireless Ad Hoc Networks

with Threshold Based Scheduling
Yue Ling Che, Rui Zhang, Yi Gong, and Lingjie Duan

Abstract

This paper studies spatial capacity in a stochastic wireless ad hoc network, where multi-stage probing and

data transmission are sequentially performed. We propose anovel signal-to-interference-ratio (SIR) threshold based

scheduling scheme: by starting with initial probing, each transmitter iteratively decides to further probe or stay idle,

depending on whether the estimated SIR in the proceeding probing is larger or smaller than a predefined threshold.

Since only local SIR information is required for making transmission decision, the proposed scheme is appropriate

for distributed implementation in practical wireless ad hoc networks. Although one can assume that the transmitters

are initially deployed according to a homogeneous Poisson point process (PPP), the SIR based scheduling makes

the PPP no longer applicable to model the locations of retained transmitters in the subsequent probing and data

transmission phases, due to the interference induced coupling in their decisions. As the analysis becomes very

complicated, we first focus on single-stage probing and find that when the SIR threshold is set sufficiently small

to assure an acceptable interference level in the network, the proposed scheme can greatly outperform the non-

scheduling reference scheme in terms of spatial capacity. We clearly characterize the spatial capacity and obtain

exact/approximate closed-form expressions, by proposinga new approximate approach to deal with the correlated

SIR distributions over non-Poisson point processes. Then we successfully extend to multi-stage probing by properly

designing the multiple SIR thresholds to assure gradual improvement of the spatial capacity. Furthermore, we analyze

the impact of multi-stage probing overhead and present a probing-capacity tradeoff in scheduling design. Finally,

extensive numerical results are presented to demonstrate the performance of the proposed scheduling as compared

to existing schemes.

Index Terms

Wireless ad hoc network, threshold based scheduling, spatial capacity, stochastic geometry.

I. INTRODUCTION

Wirelessad hocnetworks have emerged as a promising technology that can provide seamless communication

between wireless users (transmitter-receiver pairs) without relying on any pre-existing infrastructure. In such
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networks, the wireless users communicate with each other ina distributed manner. Due to the lack of centralized

coordinators to coordinate the transmissions among the users, the wireless ad hoc network is under competitive and

interference-dominant environment in nature. Thereby, efficient transmission schemes for transmitters to effectively

schedule/adapt their transmissions are appealing for system performance improvement, and thus have attracted wide

research attentions in the past decade.

Traditionally, each transmitter is enabled to independently decide whether to transmit over a particular channel

based on its own willingness or channel strength [1]-[4], and the transmission rate of each user can be maximized

by finding an optimal transmission probability or an optimalchannel strength threshold, respectively. Although easy

to be implemented, such independent transmission schemes do not consider the resulting user interactions in the

wireless ad hoc networks due to the co-channel interference, and thus do not achieve high system performance in

general cases. Therefore, more complex transmission schemes have been proposed to exploit the user interactions

by exploring the information of signal-to-interference-ratio (SIR). For example, by iteratively adapting the transmit

power level based on the estimated SIR, the Foschini-Miljanic algorithm [5] assures zero outage probability and/or

minimum aggregate power consumption for uplink transmission in a cellular network. In [6], Yates has studied

power convergence conditions for such iterative power control algorithms. Moreover, there have been some recent

studies (e.g. [7] and [8]) that extend the Foschini-Miljanic algorithm to the wireless ad hoc network through

joint scheduling and power control transmission schemes. In addition, by adapting the transmission probability

depending on the received SIR, [9] has studied various random access schemes to improve the system throughput

and/or the user fairness. However, [5]-[9] either require each transmitter to know at least the wireless environment

information of its neighbors, or are of high implementationcomplexity, and thus are not appropriate for practical

large-scale wireless ad hoc networks.

On the other hand, due to the randomized location of each transmitter and the effects of channel fading, the

network-level performance analysis is fundamentally important for the study of wireless ad hoc networks. It

is noted that Gupta and Kumar in [10] studiedscaling laws, which quantified the increase of the volume of

capacity region over the number of transmitters in ad hoc networks. Moreover, to determine the set of active

transmitters that can yield maximum aggregate Shannon capacity in the network, the authors in [11]-[13] addressed

the capacity maximization problem for an arbitrary wireless ad hoc network. However, [10]-[13] did not consider

the impact ofspatial configurationof the ad hoc network, which is a critical factor that determines the ad hoc

network capacity [14]. It came to our attention that as a powerful tool to capture the impact of wireless users’

spatial randomness on the network performance, stochasticgeometry [15] is able to provide more comprehensive
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characterization of the performance of wireless networks,and thus has attracted great attentions from both academy

and industry [14], [16]. Among all the tools provided by stochastic geometry, homogeneous Poisson point process

(PPP) [17] is the most widely used one for network topology modeling and performance analysis. Under the

assumption that the transmitters are deployed according toa homogeneous PPP, the exact/approximate capacity

of a wireless ad hoc network under variousindependenttransmission schemes, such as Aloha-based random

transmission [1], channel-inversion based power control [2], and channel-threshold based scheduling [3], [4], can

all be successfully characterized by using advanced tools from stochastic geometry. However, limited work based

on stochastic geometry has studied SIR-based transmissionschemes, where theuser interactionsare involved. It

is noted that [18] studied a probability-based scheduling scheme, where each transmitter independently adjusts

its current transmission probability based on the receivedSIR in the proceeding iteration. However, [18] only

studied the convergence of the probability-based scheduling, without addressing the network capacity with spatiality

distributed users. To our best knowledge, there has been no existing work on studying the wireless ad hoc

network capacity with a SIR-based transmission scheme. Hence, the impact of SIR-based transmissions is limitedly

understood from the network-level point of view.

A principle goal of this study is to use stochastic geometry to fill the void of wireless network capacity

characterization by an efficient SIR-based transmission scheme.To this end, we propose a novel SIR-threshold

based scheduling scheme for a single-hop slotted wireless ad hoc network. We consider a probe-and-transmit

protocol, where multi-stage probings are sequentially performed to gradually determine the transmitters that are

allowed to transmit data in each slot. Specifically, we assume there are in totalN probing phases and one data

transmission phase in each slot,1 ≤ N < ∞. We sequentially label theN probing phases as P-Phase0, P-Phase1,

..., and P-PhaseN−1, and label the data transmission phase as D-Phase. As illustrated in Fig. 1, if the feedback SIR

from receiveri in P-Phasek− 1, 1 ≤ k ≤ N − 1, is no smaller than a pre-defined threshold, transmitteri decides

to transmit in P-Phasek; otherwise, to improve the system throughput as well as saveits own energy, transmitter

i stays idle in the remaining time of the slot as in [19], so as tolet other transmitters that have higher SIR levels

re-contend the current transmission opportunity. Since each transmitter only requires direct-channel SIR feedback

from its intended receiver for limited times, the proposed scheme is appropriate for distributed implementation

in practical wireless ad hoc networks. In this paper, we characterize the wireless ad hoc network capacity with a

metric calledspatial capacity, which has been used in [20] and gives the average number of successful transmitters

per unit area for any given initial transmitter density. We aim at closed-form spatial capacity characterization and

maximization by exploring the SIR-threshold based transmission.
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Fig. 1. Illustration of the SIR-threshold based transmission in P-Phasek: If the SIR in P-Phasek − 1 is no smaller than the threshold

γk ≥ 0 in P-Phasek, the transmitter decides to transmit in P-Phasek; otherwise, it stays idle in the remaining time of this slot.

The key contributions of this paper are summarized as follows.

• Novel SIR-threshold based scheduling scheme:In Section II, we propose a novel SIR-threshold based transmis-

sion scheme for a single-hop wireless ad hoc network, which can be implemented efficiently in a distributed

manner. Though one can use a homogeneous PPP to model the stochastic locations of the transmitters in

the initial probing phase, we find that due to the iterative SIR-based scheduling, the PPP model is no longer

applicable to model the locations of the retained transmitters in all the subsequent probing or data transmission

phases. Furthermore, since the SIR distributions in all theprobing and data transmission phases are strongly

correlated, it is challenging to analyze/characterize thespatial capacity of the proposed scheme.

• Single-stage probing for spacial capacity improvement:In Section III, we start up with single-stage probing

(N = 1) to clearly decide the SIR threshold for the proposed schemeand characterize the spatial capacity.

We show that a small SIR threshold can efficiently reduce the retained transmitter number and thus the

interference level in the data transmission phase, while a large SIR threshold will overly reduce the retained

transmitter number and does not help improve the spatial capacity. We also propose a new approximate

approach to characterize the spatial capacity in closed-form, which is useful for analyzing performance of

wireless networks with interacted transmitters.

• Multi-stage probing for spatial capacity improvement:In Section IV, we extend proposed scheduling scheme

from the single-stage probing (N = 1) to multi-stage probing (N > 1) for greater spatial capacity improve-

ment. We show that once a sequence of increasing SIR thresholds are properly decided over probing phases, the

spatial capacity is assured to gradually improve. As multi-stage probing can introduce non-ignorable overhead

in each time slot, which reduces the spatial capacity, we study an interesting probing-capacity tradeoff over

the probing-stage numberN .

• Performance evaluations for network design:In both Section III and Section IV, we also provide extensive
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numerical results to further evaluate the impact of key parameters of the proposed scheme. In particular, we

present a density-capacity tradeoff in Section III-C-1), which shows that a small initial transmitter density can

help improve the spatial capacity, while a large one will introduce high interference level and thus reduce the

spatial capacity. To highlight the spatial capacity improvement performance of the proposed scheme, we also

compare the proposed scheme with existing distributed scheduling schemes in Section III-C-2). Moreover, we

consider a practical scenario with SIR estimation and feedback errors and show that the proposed design is

robust to the SIR errors in Section III-C-3) by simulation. In Section IV, we study an example withN = 2

and show the corresponding spatial capacity over both SIR thresholds in P-Phase 1 and D-Phase. Interestingly,

our numerical results show that the former SIR threshold plays a more critical role in determining the spatial

capacity than the latter one, since the former SIR thresholddecides how many transmitters can have a second

chance to contend the transmission opportunity.

It is noted that some of the existing work has addressed the throughput/capacity analysis of a wireless commu-

nication system from the information-theoretic point of view. For example, Tse and Hanly considered a multipoint-

to-point system and characterized the throughput capacityregion and delay-limited capacity region of the fading

multiple-access channel in [21] and [22], respectively, where the optimal power and/or rate allocation that can

achieve the boundary of the capacity regions was derived. Although appealing, both [21] and [22] have assumed

multiuser detection at a centralized receiver and ignored the impact of the random network topology driven by

mobile transmitters and receivers mobility, and thus cannot completely provide network-level system performance

characterization with distributed single-user detection(i.e., treating the multiuser interference as noise) receivers.

Unlike Tse and Hanly’s works in [21] and [22], we use stochastic geometry to model the large-scale random wireless

ad hoc network topology, and novelly analyze the network-level performance of the iterative SIR-threshold based

scheduling.

In addition, it is also noted that some existing work has adopted tools from stochastic geometry to study the non-

PPP based wireless network. For example, by using a PPP to approximate the underlying non-PPP based spatial

distribution of the transmitters’ locations, [23]-[27] have successfully characterized the non-PPP based wireless

network capacity. Unlike [23]-[27], due to the iterative SIR-based scheduling of the proposed scheme, we need

to address not only the non-PPP based spatial distribution of the transmitters’ locations, but also the resulting

strongly-correlated SIR distributions over all probing and data transmission phases. To our best knowledge, such

correlated SIR analysis/chracterization in non-PPP basedwireless networks has not been addressed in the existing

work based on stochastic geometry.
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II. SYSTEM MODEL AND PERFORMANCEMETRIC

In this section, we describe the considered transmission schemes in this paper. We then develop the network

model based on stochastic geometry. At last, we define the spatial capacity as our performance metric.

A. Transmission Schemes

We focus on the proposed scheme with SIR-threshold based scheduling. For comparison, we also consider

a reference scheme without any transmission scheduling. For both transmission schemes, we assume that all

transmitters transmit in a synchronized time-slotted manner. We also assume that all transmitters transmit at the

same power level,1 which is normalized to be unity for convenience.

1) SIR-Threshold Based Scheme:Based on the probe-and-transmit protocol, in each time slot, N probing phases

with 1 ≤ N < ∞ are sequentially implemented before the data transmissionphase. We assumeN is a pre-given

parameter and its effects will be studied later in Section IV-B. Moreover, as shown in Fig. 1, we denote the duration

of a time slot and a probing phase asT and τ , respectively, withτ ≪ T , such thatNτ < T , as in [19]. By

normalizing overT , theeffective data transmission timein a time slot is obtained asT−Nτ
T , which reduces linearly

over N [28]. Furthermore, we assume if a transmitter transmits probing signals in a probing phase, its intended

receiver is able to measure the received signal power over the total interference power, i.e., the SIR, and feeds

it back to the transmitter at the end of the probing phase. Thespecific algorithm design on SIR estimation and

feedback is out of the scope of this paper and is not our focus.To obtain tractable analysis, we assume perfect

SIR estimation and feedback in this paper, and thus the SIR value is exactly known at the transmitter; however,

the impact of finite SIR estimation and feedback errors on thenetwork capacity is important to practical design

and thus will also be evaluated by simulation.

According to the feedback SIR level of its own channel, each transmitter iteratively performs the threshold-based

transmission decision in each P-Phase or D-Phase, for whichthe details are given as follows:

• In the initial probing phase, i.e., P-Phase0, to initialize the communication between each transmitterand

receiver pair, all transmitters independently transmit probing signals to their intended receivers. Each receiver

then estimates the channel amplitude and phase (for possible coherent communication in the subsequent

probing and data transmission phases), and measures the received SIR of the probing signal. Each transmitter

receives the feedback SIR from its intended receiver at the end of P-Phase0.

1In general, each transmitters can transmit at different power levels by iteratively adjusting its transmit power basedon the feedback SIR

information, as in [5] or [6]. However, in this paper, we mainly focus on SIR-based transmission scheduling and thus restrict transmit power

adaptation to be binary for simplicity.
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• In each of the remaining probing phases from P-Phase1 to P-PhaseN −1, by exploiting the feedback SIR in

the proceeding probing phase, each transmitter decides whether to transmit in the current probing phase with

a predefined SIR threshold. Specifically, suppose a transmitter transmits in P-Phasek − 1, 1 ≤ k ≤ N − 1.

As shown in Fig. 1, if the feedback SIR in P-Phasek − 1 is larger than or equal to the predefined SIR-

threshold, denoted byγk ≥ 0 for P-Phasek, the transmitter continues its transmission in P-Phasek and

thus receives the feedback SIR in P-Phasek; otherwise, to improve the system throughput as well as save

its energy, the transmitter decides not to transmit any morein the remaining time of this slot and will seek

another transmission opportunity in the next slot, so as to let other transmitters that have higher SIR levels

to re-contend the current transmission opportunity.

• In the D-Phase, similar to the SIR-threshold based scheduling from P-Phase1 to P-PhaseN−1, if a transmitter

transmits in P-PhaseN − 1 and its feedback SIR in P-PhaseN − 1 is larger than or equal to the predefined

threshold, denoted byγN ≥ 0 for the D-Phase, the transmitter sends data to its intended receiver; otherwise,

the transmitter remains silent in the rest time of this slot.The data transmission is successful if the SIR at

the receiver is larger than or equal to the required SIR level, denoted byβ > 0.

2) Reference Scheme:There is no transmission scheduling in the reference scheme. In each time slot, we assume

all transmitters transmit data directly to their intended receivers in an independent manner. Thus, the effective data

transmission time for the reference scheme is1.2 The data transmission is successful if the SIR at the receiver

is larger than or equal to the required SIR levelβ as the proposed scheme. Note that by implementing an initial

probing phase before the data transmission, the reference scheme can be improved to be a proposed scheme with

single-stage probing.

B. Network Model

In the next, we develop the network model based on stochasticgeometry. For both considered transmission

schemes, we focus on single-hop communication in one particular time slot.

For both schemes, we assume that all transmitters are independently and uniformly distributed in the unbounded

two-dimensional planeR2. We thus model the locations of all the transmitters by a homogeneous PPP with

densityλ. Due to the lack of central infrastructure for coordinationin the wireless ad hoc network, we assume

the transmitters have no knowledge about their surroundingwireless environment, and thus intend to transmit

independently in a time slot with probabilityθ ∈ (0, 1), as in [1]-[4]. Denoteλ0 = λθ as the density of the initial

2It is worth pointing out that for the reference scheme, an initial training is needed prior to data transmission for the receiver to estimate

the channel for coherent communication, similar to the initial probing of the proposed scheme withN = 1, but without the SIR feedback

to the transmitter. Here, we have assumed that such trainingincurs a negligible time overhead as compared to each slot duration.
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transmitters that have the intention to transmit in a particular time slot. According to the Coloring theory [15], the

process of the initial transmitters for both schemes is a homogeneous PPP with densityλ0, which is denoted by

Φ0. Without loss of generality, we assumeλ andθ and henceλ0 are given parameters, and will discuss the effects

of λ0 later in Section III-C. We assume each transmitter has one intended receiver, which is uniformly distributed

on a circle of radiusd meters (m) centered at the transmitter. We denote the locations of thei-th transmitter and

its intended receiver asxi, with xi ∈ Φ0, and ri (not included inΦ0), respectively. The path loss between the

i-th transmitter and thej-th receiver is given bylij = |xi − rj |
−α, whereα>2 is the path-loss exponent. We use

hij to denote the distance-independent channel fading coefficient from transmitteri to receiverj. We assume flat

Rayleigh fading, where allhij ’s are independent and exponentially distributed random variables with unit mean.

We also assume thathij ’s do not change within one time-slot. We denote the SIR at thei-th receiver as SIR(0)i ,

which is given by

SIR(0)
i =

hiid
−α

∑

xj∈Φ0,j 6=i hjilji
. (1)

Note that for the reference scheme without transmission scheduling, SIR(0)i gives the received SIR level at thei-th

receiver for the data transmission of transmitteri. As a result, in the reference scheme, the data transmissionof

transmitteri is successfulif SIR(0)
i ≥β is satisfied.

Unlike the reference scheme, in the proposed scheme, SIR(0)
i only gives the received SIR level at thei-th receiver

in the initial probing phase P-Phase0. We then denote the point process formed by the retained transmitters in

P-Phasek with 1 ≤ k ≤ N − 1, or the D-Phase withk = N , asΦk. We also denote SIR(k)i as the received SIR at

the i-th receiver inΦk. Clearly, we haveΦk = {xi ∈ Φk−1 : SIR(k−1)
i ≥ γk}, where the number of transmitters in

Φk is reduced as compared to that inΦk−1. Thus, it is easy to verify that SIR(k)i ≥SIR(k−1)
i for any givenγk≥0,

∀i ∈ Φk−1 ∩Φk. Moreover, similar to SIR(0)i , for anyΦk, k ∈ {1, ..., N}, we can express SIR(k)i as

SIR(k)
i =

hiid
−α

∑

xj∈Φk,j 6=i hjilji
, k ∈ {1, ..., N}. (2)

It is worth noting that due to the SIR-based scheduling, the transmitters are not retained independently inΦk.

Thus, unlike SIR(0)i in (1), which is determined by the homogeneous PPPΦ0, SIR(k)
i in (2) is determined by

the non-PPPΦk in general [15]. For the proposed scheme, the data transmission of transmitteri is successfulif

SIR(k−1)
i ≥γk, ∀k ∈ {1, ..., N}, and SIR(N)

i ≥β are all satisfied.

C. Spatial Capacity

Due to the stationarity of the homogeneous PPPΦ0, it is easy to verify thatΦk, ∀k ∈ {1, ...N}, is also stationary

[4]. We thus consider a typical pair of transmitter and receiver in this paper. Without loss of generality, we assume
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that the typical receiver is located at the origin. The typical pair of transmitter and receiver is named pair 0, i.e.,

i = 0. Denote thesuccessful transmission probabilityof the typical pair in the data transmission phase of the

proposed scheme withN probing phases or the reference scheme asPp,N
0 or Pr

0 , respectively. We thus have

Pp,N
0 = P(SIR(0)

0 ≥ γ1, ...,SIR(N−1)
0 ≥ γN ,SIR(N)

0 ≥ β). (3)

Pr
0 = P(SIR(0)

0 ≥ β). (4)

We adoptspatial capacityas our performance metric, which is defined as the spatial density of successful

transmissions, or more specifically the average number of transmitters with successful data transmission per unit

area. Considering the effective data transmission time in atime slot, we thus define the spatial capacity by the

proposed scheme withN probing phases and the reference scheme asCp,N andCr, respectively, given by

Cp,N ,
T −Nτ

T
λ0P

p,N
0 , (5)

Cr ,λ0P
r
0 . (6)

For the reference scheme, it is noted thatPr, given in (4), is the complementary cumulative distribution function

(CCDF) of SIR(0)0 taken at the value ofβ. We then have the following proposition.

Proposition2.1: The successful transmission probability in the reference scheme is

Pr
0 = exp(−πλ0d

2β
2

αρ), (7)

whereρ =
∫∞

0
1

1+vα/2 dv. Whenα = 4, we haveρ = π
2 .

The proof of Proposition 2.1 is similar to that of [30, Theorem 2], which is based on the probability generating

functional (PGFL) of the PPP, and thus is omitted here.

Since the network interference level in the D-Phase increases over the initial transmitter densityλ0, we find that

Pr
0 in (7) monotonically decreases overλ0 as expected. Moreover, from (6) and (7), we can obtain the expression

of Cr as

Cr = λ0 exp(−πλ0d
2β

2

αρ). (8)

It is observed from (8) that unlikePr
0 , the spatial capacityCr does not vary monotonically overλ0, sinceCr can

be benefited by increasingλ0 if the resulting interference is acceptable. Moreover, from (7) and (8), it is also

expected that bothPr
0 andCr monotonically decrease over the distanced between each transmitter and receiver

pair, due to the reduced signal power received at the receiver, and decrease over the required SIR levelβ.

Unlike the reference scheme, which is determined by the homogeneous PPPΦ0, the proposed scheme is jointly

determined byΦ0 and a sequence of non-PPPs{Φk}, 1 ≤ k ≤ N , where the resulting SIR distributions are
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correlated. Therefore, it is very difficult to analyze/characterize the spatial capacity of the proposed scheme with

N probing phases. To start up, in the next section, we focus on asimple case with single-stage probing (N = 1)

for some insightful results.

III. SIR-THRESHOLD BASEDSCHEME WITH SINGLE-STAGE PROBING

In this section, we consider the proposed scheme with single-stage probing, i.e.,N = 1. In this case, there is

only one round of SIR-based scheduling, which is implemented with the thresholdγ1. For notational simplicity,

for the case ofN = 1, we omit the superscriptN and usePp
0 and Cp to represent the successful transmission

probability and the spatial capacity of the typical transmitter, respectively. Based on (3), the successful transmission

probability for the case ofN = 1 is reduced to

Pp
0 = P(SIR(0)

0 ≥ γ1,SIR(1)
0 ≥ β) (9)

= P(SIR(0)
0 ≥ γ1)P(SIR(1)

0 ≥ β|SIR(0)
0 ≥ γ1). (10)

Moreover, whenN = 1, the effective data transmission time for the proposed scheme is T−τ
T . Sinceτ ≪ T , we

assume the single-stage probing overhead is negligible; and thus, the effective data transmission time becomes 1

as the reference scheme. Consequently, based on (5), we can express the spatial capacityCp
0 as

Cp =λ0P
p
0 . (11)

Furthermore, by substituting (10) to (11), we can expressCp alternatively as

Cp =λ0P(SIR(0)
0 ≥ γ1)P(SIR(1)

0 ≥ β|SIR(0)
0 ≥ γ1)

=λ1P(SIR(1)
0 ≥ β|SIR(0)

0 ≥ γ1) (12)

whereλ1 = λ0P(SIR(0)
0 ≥ γ1) is the density ofΦ1 in the D-Phase, withλ1 ≤ λ0. Based on Proposition 2.1, by

replacingβ with γ1, it is easy to find that

λ1 = λ0 exp
(

− πλ0d
2γ

2

α

1 ρ
)

. (13)

In the following two subsections, we compare the spatial capacity of the two considered schemes, and characterize

Cp for the proposed scheme.

A. Spatial Capacity Comparison and Closed-form Characterization withγ1 = 0 and γ1 ≥ β

In this subsection, we compare the spatial capacity of the proposed scheme with that of the reference scheme.

We then characterize the spatial capacityCp for the proposed scheme and obtain closed-form expressionsfor the

cases ofγ1 = 0 andγ1 ≥ β.
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First, from (6) and (11), to compareCp andCr, the key is to comparePp
0 andPr

0 . In the reference scheme, denote

the total interference power received at the typical receiver asI0 =
∑

xi∈Φ0,i 6=0 hi0li0. In the proposed scheme,

the received total interference power at the typical receiver in P-Phase 0 is thusI0, while that in the D-Phase is

given byI1 =
∑

xi∈Φ1,i 6=0 hi0li0. For anyγ1 ≥ 0, we haveI0 ≥ I1 sinceΦ1 ⊆ Φ0, and thus SIR(1)i ≥ SIR(0)
i . As

a result, by changing over the value ofγ1∈ [0,∞), we obtain the following proposition.

Proposition3.1: Given the required SIR levelβ>0, for anyγ1∈ [0,∞), we have














Cp > Cr, if 0 < γ1 < β
(

conservativetransmission regime
)

Cp = Cr, if γ1 = 0 or γ1 = β
(

neutral transmission regime
)

Cp < Cr, if γ1 > β
(

aggressivetransmission regime
)

.

(14)

Proof: Please refer to Appendix A.

Remark3.1: Compared to the spatial capacity of the reference scheme, Proposition 3.1 shows that for the

proposed scheme with SIR-threshold based scheduling, due to the reduced interference level in the D-Phase, the

spatial capacity is improved in the conservative transmission regime with0 < γ1 < β. However, in the case of

the aggressive transmission regime withγ1 >β , where the transmitters that are able to transmit successfully in

the D-Phase may also be removed from transmission, the retained transmitters in the D-Phase areoverly reduced.

Consequently, the spatial capacity is reduced in the aggressive transmission regime. It is also noted that in the

neutral transmission regime withγ1=0 or γ1=β, the spatial capacity is identical for the two schemes. At last, it

is worth noting that Proposition 3.1 holds regardless of thespecific channel fading distribution and/or transmitter

location distribution.

Next, we characterize the spatial capacityCp for the proposed scheme withN = 1. We focus on deriving the

successful transmission probabilityPp
0 in (9). Unlike Pr

0 in (4), which is given by the marginal CCDF of SIR(0)0

taken at valueβ, Pp
0 is given by thejoint CCDF of SIR(0)0 and SIR(1)0 taken at values(γ1, β). In the following,

we consider three casesγ1 = 0, γ1 ≥ β, and0 < γ1 < β, and find closed-form spatial capacity expressions for

both cases ofγ1 = 0 andγ1 ≥ β.

Specifically, for the simple case withγ1 = 0, we can infer from Proposition 3.1 directly thatCp = Cr, which is

given in (8). For the case ofγ1 ≥ β, since SIR(1)0 > SIR(0)
0 , we haveP(SIR(1)

0 ≥ β|SIR(0)
0 ≥ γ1) = 1. According

to (10), we thus obtainPp
0 = P(SIR(0)

0 ≥ γ1) in this case. By replacingβ with γ1 in Proposition 2.1, we further

obtain thatPp
0 = exp(−πλ0d

2γ
2

α

1 ρ). As a result, based on (11), we can expressCp for the case ofγ1 ≥ β as

Cp = λ0 exp(−πλ0d
2γ

2

α

1 ρ). (15)

Similar toCr given in (8), it is observed thatCp for both cases ofγ1 = 0 andγ1 ≥ β does not vary monotonically

over λ0, but monotonically decreases over the distanced between each transmitter and receiver pair. Moreover,
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unlike Cr and Cp for γ1 = 0, Cp for γ1 ≥ β is not related to the required SIR levelβ any more, since all the

retained transmitters in the D-Phase meet the condition SIR(1)
i ≥ β in this case.

However, for the case of0<γ1<β, Pp
0 cannot be simply expressed by a marginal CCDF of SIR(0)

0 as in the

above two cases. Moreover, from (9), due to the correlation between SIR(0)0 and SIR(1)0 as well as the underlying

non-PPPΦ1 that determines SIR(1)0 , it is very difficult, if not impossible, to find an exact expression ofPp
0 and

thus Cp in this case. As a result, in the next subsection, we focus on finding a tight approximate toCp with a

tractable expression for the case of0<γ1<β.

B. Approximate Approaches for Spatial Capacity Characterization with0 < γ1 < β

This subsection focuses on approximating the spatial capacity of the proposed scheme for the case of0<γ1<β.

We first propose a new approximate approach forCp and obtain an integral-based expression. Next, to find a

closed-form expression forCp, we further approximate the integral-based expression obtained by the proposed

approach. At last, we apply the conventional approximate approach in the literature and discuss its approximate

performance. The details of the three approximate approaches are given as follows.

1) Proposed Approximation:From (9), to find a good approximate toPp
0 and thusCp, the key is to find

a good approximate to the joint SIR distributions inΦ0 and Φ1. SinceΦ1 ⊆ Φ0, we first divide the initial

PPPΦ0 into two disjoint non-PPPs: one isΦ1, and the other is its complementary setΦc
1 = Φ0 − Φ1, which

is the point process formed by the non-retained transmitters in the D-Phase. We denote the density ofΦc
1 as

λc
1=λ0−λ1. Clearly,Φ1 andΦc

1 are mutually dependent. Denote the received SIR level at thetypical receiver inΦc
1

as SIR(1,c)0 = h00d
−α/

∑

i∈Φc
1
hi0li0. SinceΦ1∪Φ

c
1=Φ0 andΦ1∩Φ

c
1=∅, we have1/SIR(0)

0 = 1
/(

SIR(1)
0 +SIR(1,c)

0

)

.

As a result, (9) can be equally represented by using the jointdistributions of SIR(1)0 and SIR(1,c)0 .

Next, we state an assumption, based on which we can use a homogeneous PPP to approximateΦ1 and Φc
1,

respectively, such that the existing results on PPP interference distribution in the literature can be applied to

approximate the joint distributions of SIR(1)0 and SIR(1,c)0 .

Assumption 1:In the proposed scheme withN = 1, the transmitters are retained independently in the D-Phase,

with probability P(SIR(0)
0 ≥γ1).

By applying Assumption 1, we denote the resulting point processes formed by the retained and non-retained

transmitters in the D-Phase asΦ̂1 andΦ̂c
1, respectively. Clearly, botĥΦ1 andΦ̂c

1 are homogeneous PPPs. Moreover,

the density ofΦ̂1 or Φ̂c
1 is the same as that ofΦ1 or Φc

1, respectively. Since the two homogeneous PPPsΦ̂1 and

Φ̂c
1 are disjoint, they areindependentof each other [15]. DenotêI1 =

∑

i∈Φ̂1
hi0li0 and Îc1 =

∑

i∈Φ̂c
1
hi0li0 as the

received interference power at the typical receiver inΦ̂1 andΦ̂c
1, respectively. We then usefÎ1(x1) andfÎc

1
(x2) to
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denote the probability density functions (pdfs) ofÎ1 and Îc1, respectively. The following lemma gives the general

interference pdf in a homogeneous PPP-based network with Rayleigh fading channels, which is a well-known

result in the literature (e.g., [31]).

Lemma3.1: For any homogeneous PPP of densityλ ≥ 0, if the channel fading is Rayleigh distributed, the pdf

of the received interferenceI at the typical receiver is given by

fI(x)=
1

πx

∞
∑

i=1

(−1)i+1Γ(1+2i/α) sin(2πi/α)

i!

(

λπ22/α

x2/α sin(2π/α)

)i

. (16)

Moreover, whenα = 4, (16) can be further expressed in a simpler closed-form as

fI(x) =
λ

4

(π

x

)3/2
exp

(

−
π4λ2

16x

)

. (17)

As a result, based on Lemma 3.1, by substitutingλ=λ1 to (16) and (17), we can obtainfÎ1(x1) for the cases

of generalα andα=4, respectively. Similarly, withλ=λc
1, from (16) and (17) we can obtainfÎc

1
(x2) for general

α and α = 4, respectively. Therefore, by approximatingΦ1 and Φc
1 by Φ̂1 and Φ̂c

1, respectively, we can easily

approximate the joint distribution of SIR(1)0 and SIR(1,c)0 based on the interference pdfsfÎ1(x1) andfÎc
1
(x2), and

thereby obtain an integral-based approximate toPp
0 in the following proposition.

Proposition3.2: The successful transmission probability by the proposed scheme for the case of0 < γ1 < β is

approximated as

Pp
0 ≈

∫ ∞

0
e−h00

∫
h00
βdα

0
fÎ1(x1)

∫
h00

γ1dα
−x1

0
fÎc

1
(x2) dx2 dx1 dh00. (18)

Proof: Please refer to Appendix B.

Finally, by multiplying λ0 with the right-hand side of (18), we obtain an integral-based approximate toCp for

the case of0 < γ1 < β as

Cp ≈ λ0

∫ ∞

0
e−h00

∫
h00
βdα

0
fÎ1(x1)

∫
h00
γ1dα

−x1

0
fÎc

1
(x2) dx2 dx1 dh00. (19)

Note that the proposed approximate approach considers the correlation between SIR(0)0 and SIR(1)0 , and only

adopts PPP-based approximation to approximateΦ1 andΦc
1 by Φ̂1 andΦ̂c

1, respectively. Since it has been shown in

the literature (e.g., [23]-[26]) that such PPP-based approximation can provide tight approximate to the corresponding

non-PPP, the proposed approximate approach is able to provide tight spatial capacity approximate toCp for the

case of0 < γ1 < β.

2) Closed-form Approximation for (19):Although the spatial capacity expression obtained in (19) is easy to

integrate, it is not of closed-form. Thus, based on (18), we focus on finding a closed-form approximate toPp
0 and

thus Cp. We first increase the upper limit offÎc
1
(x2) in (18) from γ1d

α − x1 to γ1d
α to obtain an upper bound
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for the right-hand side of (18). Then by properly lower-bounding the obtained upper bound based on Chebyshev’s

inequality [32], we obtain a closed-form approximate toPp
0 , which is shown in the following proposition.

Proposition3.3: Based on the integral-based expression given in (18), a closed-form approximate toPp
0 for the

case of0 < γ < β is obtained as

Pp
0 ≈ exp(−πλ1d

2β
2

αρ) exp(−πλc
1d

2γ
2

α

1 ρ). (20)

Proof: Please refer to Appendix C.

From (11), (13) and (20), we obtain a closed-form approximate to spatial capacity of the proposed scheme for

the case of0 < γ1 < β as

Cp ≈λ0 × exp
(

− πλ0d
2γ

2

α

1 ρ
)

× exp
[

− πλ0 exp(−πλ0d
2γ

2

α

1 ρ)d2β
2

αρ
]

× exp
[

πλ0 exp(−πλ0d
2γ

2

α

1 ρ)d2γ
2

α

1 ρ
]

. (21)

3) Conventional Approximation:It is noted that the conventional approximate approach in the literature (e.g.,

[23]-[26]), which only focuses on dealing with the non-PPPΦ1, can often yield a closed-form expression. Thus,

in the following, we apply the conventional approximate approach and discuss its approximate performance toCp.

First, since only the performance inΦ1 is concerned by the conventional approximate approach, it takes

P
(

SIR(1)
0 ≥ β

)

as the successful transmission probability of the typical transmitter in the D-Phase. Next, the

non-PPPΦ1 is approximated by the homogeneous PPPΦ̂1 under Assumption 1. We denote the received SIR at the

typical receiver inΦ̂1 as SIR(1̂)0 = h00d
−α/

∑

i∈Φ̂1
hi0li0. Thus,P

(

SIR(1)
0 ≥ β

)

is approximated byP
(

SIR(1̂)
0 ≥ β

)

.

At last, by adopting the product ofλ1 andP
(

SIR(1̂)
0 ≥ β

)

as an approximate to the spatial capacityCp, a closed-form

approximate toCp for the case of0 < γ1 < β is obtained as

Cp ≈λ1 × P
(

SIR(1̂)
0 ≥ β

)

(22)

(a)
=λ0 exp

(

− πλ0d
2γ

2

α

1 ρ
)

exp
[

− πλ0 exp
(

− πλ0d
2γ

2

α

1 ρ
)

d2β
2

α ρ
]

(23)

where(a) follows by Proposition 2.1 and (13). Note that sinceλ1 = λ0 ×P
(

SIR(0)
0 ≥ γ1

)

, we can rewrite (22) as

Cp ≈ λ0 × P
(

SIR(0)
0 ≥ γ1

)

P
(

SIR(1̂)
0 ≥ β

)

under the conventional method. However, according to the definition of

Cp for N = 1, which is given in (9) and (11), we haveCp = λ0×P
(

SIR(0)
0 ≥ γ1,SIR(1)

0 ≥ β
)

, where the distribution

of SIR(1)
0 is strongly dependent on that of SIR(0)

0 asΦ1 ⊆ Φ0. As a result, the conventional approximate approach

only focuses on the PPP-based approximate toΦ1, but ignores the dependence betweenΦ0 andΦ1. Therefore,

(22) does not hold for representing, or reasonably approximating, the spatial capacity of the proposed scheme.

In addition, by comparing (21) and (23), it is observed that for the case of0 < γ1 < β, given anyλ0 > 0 and
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d > 0, the closed-form spatial capacity obtained based on the proposed approach is always outperformed that by

the conventional approach.

C. Numerical Results

Numerical results are presented in this subsection. According to the method described in [15], we generate a

spatial Poisson process, in which the transmitters are placed uniformly in a square of[0m, 600m]× [0m, 600m].

To take care of the border effects, we focus on sampling the transmitters that locate in the interim square of

[200m, 400m]×[200m, 400m]. We calculate the spatial capacity as the average of the network capacity over 2000

independent network realizations, where for each network realization, the network capacity is evaluated as the ratio

of the number of successful transmitters in the sampling square to the square area of4×102m2. Unless otherwise

specified, in this subsection, we setα = 4, β = 2.5, and d = 10m. We also observe by simulation that similar

performance can be obtained by using other parameters.

In the following, we first validate our analytical results onthe spatial capacity of the proposed scheme and the

reference scheme without scheduling. To highlight the spatial capacity improvement performance of the proposed

scheme, we then compare the spatial capacity achieved by thepropose scheme with that by two existing distributed

scheduling schemes: one is the probability-based scheduling in [18], and the other is the channel-threshold based

scheduling in [3] and [4]. At last, we consider a more practical scenario with SIR estimation and feedback errors,

and show the effects of the SIR errors on the spatial capacityof the proposed scheme.

1) Validation of the Spatial Capacity Analysis:We validate our spatial capacity analysis in Section III-A and

Section III-B for both proposed and reference schemes.

Fig. 2 shows the spatial capacity versus the SIR thresholdγ1, for both the reference scheme without transmission

scheduling and the proposed scheme with SIR-based scheduling. We set the initial transmitter density asλ0 =

0.0025/m2 in both schemes. The analytical spatial capacity of the reference scheme is given in (8). By comparing

the simulation results for the proposed scheme with the analytical results for the reference scheme, we observe that

Cr is constant overγ1 as expected. We also observe that 1) whenγ1<β, Cp>Cr; 2) whenγ1=0 or γ1=β, Cp=Cr;

and 3) whenγ1 >β, Cp< Cr. This is in accordance with our analytical results in Proposition 3.1. Moreover, for

the proposed scheme, we adopt (8) and (15) as the analytical spatial capacity for the cases ofγ1 = 0 andγ1 ≥ β,

respectively, and observe that the analytical results of the spatial capacity fit well to the simulation counterparts.

Furthermore, for the case of0 < γ1 < β of the proposed scheme, where only approximate expressionsfor the

spatial capacity are available, we compare the approximateperformance of the three approximate approaches given

in Section III-B. It is observed that the integral-based expression by the proposed approximate approach, given in
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Fig. 2. Spatial capacity againstγ1 with λ0 = 0.0025 andβ = 2.5.

(19), provides a tight approximate toCp for the case of0 < γ1 < β. In addition, as a cost of expressing in closed-

form, (21) is not as tight as (19), but (21) still provides a close approximate toCp for the case of0 < γ1 < β. At

last, it is observed that the closed-form expression given in (23) by the conventional approximate approach cannot

properly approximateCp for the case of0 < γ1 < β as expected.

Fig. 3 shows the spatial capacity versus the initial transmitter densityλ0 whenγ1 < β. We setγ1=0.6. For the

proposed scheme, similar to the case in Fig. 2, we observe tight and close approximates are provided by (19) and

(21), respectively, based on the proposed approximate approach, while improper approximate is provided by (23)

based on the conventional approximate approach. Moreover,it is observed that the spatial capacity of the proposed

scheme is always larger than that of the reference scheme, given in (8), for all values ofλ0, which is as expected

from Proposition 3.1 sinceγ1 < β in this example. Furthermore, for both the proposed and reference schemes,

we observe an interestingdensity-capacity tradeoff: by increasingλ0, the spatial capacity first increases due to

more available transmitters, but asλ0 exceeds a certain threshold, it starts to decrease, due to the more dominant

interference effect. Thus, to maximize the spatial capacity, under the system scenario set in Fig. 3, the optimalλ0

should be set as0.003/m2.

2) Performance Comparison with Existing Distributed Schemes: We consider two existing distributed scheduling

schemes for performance comparison. The first scheme is the iterative probability-based scheduling as in [18].
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Fig. 3. Spatial capacity againstλ0. γ1 = 0.6. β = 2.5.

Denote the transmission probability for transmitteri in P-Phasek, 1 ≤ k ≤ N − 1, and the D-Phase asφ(k)
i or

φ
(N)
i , respectively. For anyk ∈ {1, .., N}, [18] setsφ(k)

i = min
(

SIR(k−1)
i

β , 1
)

. Intuitively, [18] provides a simple

and proper way to iteratively adjust the transmission probability φ
(k)
i . The second scheme is the channel-threshold

based scheduling with single-stage probing as in [3] and [4], where the received interference power is not involved

in the transmission decision and each transmitter decides to transmit in the D-Phase if its direct channel strength in

P-Phase0 is no smaller than a predefined thresholdγ′1, i.e.,hii≥γ′1. For a fair comparison, we consider single-stage

probing withN = 1 for all the proposed SIR-threshold based scheme, the probability-based scheduling in [18],

and the channel-threshold based scheduling in [3] and [4].

Fig. 4 shows the spatial capacities achieved by the proposedscheme, the probability-based scheduling, the

channel-threshold based scheduling, and the reference scheme without scheduling. To clearly show the effects of

involving interference in the transmission decision for the proposed scheme, we setγ′1=γ1 = 0.4 for the channel-

threshold based scheduling. We obtain the spatial capacityof the channel-threshold based scheduling by applying

its exact expression given in [4]. Due to the lack of an exact spatial capacity expression for the probability-based

scheduling, we obtain its spatial capacity by simulation. We list our observations from Fig. 4 as follows:

• SIR based schemes v.s. channel-threshold based scheme:It is observed that by adapting the transmission

decision to the SIR, the achieved spatial capacities by boththe proposed scheme and the probability-based
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scheduling are always higher than that by the channel-threshold based scheduling, where the interference

information is not exploited. Moreover, the spatial capacity of the channel-threshold based scheduling is

smaller than that of the reference scheme whenλ0 is small, and becomes larger whenλ0 is sufficiently large.

This is in sharp contrast to the cases of the proposed scheme and the probability-based scheduling, which

always guarantee capacity improvement over the reference scheme without scheduling.

• SIR-threshold based scheduling v.s. probability-based scheduling: It is interesting to observe that although

both the proposed scheme and the probability-based scheduling adapt the transmission decision to the SIR,

the achieved spatial capacity by the former scheme is alwayshigher than that by the latter one in this

simulation. This is because that the proposed scheme assures the improvement of the successful transmission

probability of each retained transmitter in the D-Phase, while the probability-based scheduling only assures

such improvement with some probability. Moreover, it is observed that the optimal initial transmitter density

that maximizes the spatial capacity of the proposed scheme is λ∗
0 = 0.0036, which is larger than that for the

probability-based scheduling locating atλ∗
0 = 0.0026.

Note that for the proposed scheme, a lower SIR thresholdγ1 allows more transmitters to retain in the D-Phase,

so as to have a second chance to transmit. Thus, by comparing the simulation results of the proposed scheme in

Fig. 4 with that in Fig. 3, it is observed that the achieved optimal spatial capacity overλ0 with γ1 = 0.4 in Fig. 4
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Fig. 5. Effects of the SIR errors on the spatial capacity of the proposed scheme.γ1 = 0.4. β = 2.5.

is larger than that withγ1 = 0.6 in Fig. 3. In addition, for all the considered schemes in Fig.4, we observe a

density-capacity tradeoff, which is similar to that in Fig.3.

3) Effects of the SIR Estimation and Feedback Errors:We consider a more practical scenario, where SIR

estimation and feedback errors exist in the implementationof the proposed scheme, and show the effects of the

SIR errors on the spatial capacity. Similarly to [29], wherethe channel estimation and feedback errors are assumed

to be zero-mean Gaussian variables, respectively, we assume the SIR estimation and feedback errors follow zero-

mean Gaussian distributions with varianceσ2
est andσ2

fed, respectively. By further assuming that the two types of

SIR errors are mutually independent, the sum of both SIR errors at transmitteri, denoted byni, follows zero-mean

Gaussian distribution with varianceσ2 = σ2
est + σ2

fed. Thus, in the presence of SIR errors, the feedback SIR level

at transmitteri in P-Phase 0 is SIR(0)i + ni. Moreover, if the feedback SIR level SIR(0)i + ni ≥ γ1 for a given

SIR thresholdγ1 in P-Phase 1, transmitteri decides to transmit in P-Phase1; otherwise, it decides to be idle in

the remaining time of this time slot. Similar to its counterpart without SIR errors in Fig. 3 and Fig. 4, the spatial

capacity with SIR errors is calculated as an average value over all the transmitters’ random locations, the random

fading channels, as well as the random SIR errors.

Fig. 5 numerically shows the spatial capacities of the proposed scheme in both cases with and without SIR

errors. We setσ2 = 10−2 andγ1 = 0.4 in this example. It is observed from Fig. 5 that whenλ0 is small, due to
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the resultant small interference in the network, each receiver i feeds back a sufficiently high SIR level SIR(0)
i to

its associated transmitter, such thatni has a small probability to affect the transmitter’s decision. Thus, we observe

that whenλ0 is small, the spatial capacity with SIR errors is tight to that without SIR errors. However, asλ0

increases, due to the decreased SIR(0)
i at each transmitteri, the transmitters become more easily affected by the

SIR errorsni when deciding whether to transmit based on SIR(0)
i +ni ≥ γ1. It is noted that whenλ0 is sufficiently

large, the average SIR level at each transmitter becomes very small; and even if SIR(0)i ≥ γ1 for transmitteri,

SIR(0)
i is close toγ1 with a large probability. Thus, under the case with zero-mean Gaussian distributed errorni,

for the transmitters with SIR(0)i ≥ γ1 in the SIR error-free case, it is more likely that these transmitters become

SIR(0)
i + ni < γ1 than SIR(0)i + ni ≥ γ1 in the SIR error-involved case. Similarly, we can easily findthat for the

transmitters with SIR(0)i < γ1 in the SIR error-free case, it is also more likely that these transmitters maintain

SIR(0)
i + ni < γ1 than SIR(0)i + ni ≥ γ1 in the SIR error-involved case. Thus, the number of transmitters with

SIR(0)
i + ni < γ1 in the SIR error-involved case is larger than that with SIR(0)

i < γ1 in the SIR error-free case in

general. Hence, as compared to the case without SIR errors, more transmitters will be refrained from transmitting

in the D-Phase in the case with SIR errors, which improves thesuccessful transmission probability in the D-Phase

due to the reduced interference. As a result, it is interesting to observe from Fig. 5 that when the initial transmitter

densityλ0 increases to some significant point, the spatial capacity with SIR errors becomes slightly higher than

that without SIR errors; and their gap slowly increases overλ0 after this point. Therefore, inaccurate SIR may

even help improve the SIR-based scheduling performance in more interference-limited regime, which makes the

proposed design robust to SIR errors.

IV. SIR-THRESHOLD BASEDSCHEME WITH MULTI -STAGE PROBING

In this section, we consider the proposed scheme with multi-stage probing, i.e.,N > 1. In this case,N probing

phases are sequentially implemented to gradually decide the transmitters that are allowed to transmit in the data

transmission phase. According to (5), to find the spatial capacity Cp,N with N probing phases, we need to first find

the successful transmission probabilityPp,N
0 given in (3). However, due to the mutually coupled user transmissions

over different probing phases, the successful transmission probability in P-Phasek, 0 < k ≤ N , is related to the

SIR distributions in all the proceeding probing phases (from P-Phase 0 to P-Phasek − 1). Moreover, due to the

different point process formed by the retained transmitters in each probing phase, the SIR correlations of any two

probing phases are different. Thus, it is challenging to express the successful transmission probability and thus

the spatial capacity for the case withN > 1 in general. As a result, instead of focusing on expressing the spatial

capacityCp,N , we focus on studying how the key system design parameters, such as the SIR thresholds and the
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number of probing phasesN , affect the spatial capacity of the proposed scheme withN > 1. In particular, unlike

the case withN = 1, where the single-stage overheadNτ = τ ≪ T is negligible, the multi-stage overheadNτ

with N > 1 may not be negligible. In the following, we first study the impact of multiple SIR thresholds on the

spatial capacity by extending Proposition 3.1 for the case of N = 1 to the case ofN > 1. We then investigate the

effects of the multi-stage probing overhead on the spatial capacity.

A. Impact of SIR Thresholds

From (3) and (5), the spatial capacity of the proposed schemeis determined by the values of SIR thresholds as

well as the time overheadNτ for probing. To focus on the impact of the SIR thresholds, in this subsection, we

assumeNτ is negligible and thus have

Cp,N = λ0P
(

SIR(0)
0 ≥ γ1, ...,SIR(N−1)

0 ≥ γN ,SIR(N)
0 ≥ β

)

(24)

where the distributions of SIR(k)0 ’s, 0 ≤ k ≤ N , are mutually dependent and all theΦk’s, 1 ≤ k ≤ N , are non-PPPs

in general. It is also noted that for any1 ≤ k ≤ N , we haveΦk ⊆ Φk−1 for γk ≥ 0. Thus, the network interference

level in Φk is reduced, as compared to that inΦk−1. As a result, by extending Proposition 3.1 for the case of

N = 1, we obtain the following proposition for the case ofN > 1.

Proposition4.1: Consider two proposed schemes with arbitraryN − 1 and N probing phases, respectively,

N > 1. Suppose the two schemes adopt the same SIR thresholdγk ≥ 0 in eachΦk, ∀k ∈ {1, ..., N − 1}. Then

given β > 0, by varying the SIR thresholdγN ∈ [0,∞) in the data transmission phase for the proposed scheme

with N probing phases, we have the following relationship betweenCp,N andCp,N−1 based on (24):














Cp,N > Cp,N−1, if γN−1 < γN < β
(

conservativetransmission regime
)

Cp,N = Cp,N−1, if 0 ≤ γN ≤ γN−1 or γN = β
(

neutral transmission regime
)

Cp,N < Cp,N−1, if γN > β
(

aggressivetransmission regime
)

.

(25)

Proof: Please refer to Appendix D.

Remark4.1: Similar to the case of Proposition 3.1, in Proposition 4.1, in the conservative transmission regime

with γN−1 < γN < β, we obtain improved spatial capacity; in the aggressive transmission regime withγN > β,

we obtain reduced spatial capacity; and in the neutral transmission region with0 ≤ γN ≤ γN−1 or γN = β, we

obtain unchanged capacity. Moreover, based on the fact thatthe conservative transmission decision is beneficial

for improving the spatial capacity of the proposed scheme, we obtain the following corollary, which gives a proper

method to set the values of all the SIR-thresholds, such thatthe improvement of spatial capacity over the number

of probing phases is assured.
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Fig. 6. Spatial capacity againstγ1 andγ2 for N = 2.

Corollary 4.1: For a proposed scheme withN>1 probing phases with negligible overhead, if the designed SIR

thresholds are properly increased as0 < γ1 < · · · < γN < β, the resulting spatial capacityCp,N increases with

the number of probing phasesN .

It is worth noting that based on (24), for a givenλ0 > 0, Cp,N is only determined by the successful transmission

probabilityPp,N
0 , given in (3). Thus, both Proposition 4.1 and Corollary 4.1 also apply forPp,N

0 .

In the next, we provide a numerical example withN = 2 to further discuss the impact of SIR thresholds on

the spatial capacity. In this example, we setα = 4, β = 2, andd = 10. Fig. 6 shows the corresponding spatial

capacity overγ1 ∈ [0, β] and γ2 ∈ [0, β]. It is observed from Fig. 6 that if0 ≤ γ2 ≤ γ1, the spatial capacity

achieved at(γ1, γ2) remains unchanged overγ2; and if γ2 > γ1, the spatial capacity achieved at(γ1, γ2) is always

larger than that achieved at(γ1, 0). Apparently, this is in accordance with Proposition 4.1. Moreover, among all

the points overγ1 ∈ [0, β] and γ2 ∈ [0, β], such trend is more obviously observed for smallγ1 and smallγ2.

In addition, it is also observed that the spatial capacity varies much faster overγ1 than overγ2, and whenγ1 is

sufficiently large, the resulting spatial capacity does notchange much overγ2. As a result, the SIR thresholdγ1

plays a more critical role in determining the spatial capacity thanγ2, sinceγ1 determines how many transmitters

can have a second chance to contend the transmission opportunity. Furthermore, it is observed thatto achieve

a higher spatial capacity, it is preferred to start with a small γ1 > 0, and then setγ2 < β with an increasing
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step-size, i.e.,γ1− 0 < γ2− γ1. As shown in this example, the maximum spatial capacity is achieved atγ1 = 0.15

andγ2 = 0.8; and the spatial capacity atγ1 = 0.15 reduces very slowly overγ2 ∈ [0.8, β].

B. Effects of Multi-Stage Overhead of Probing

In this subsection, we assume the multi-stage overheadNτ for probing is not negligible and study the effects of

Nτ on the spatial capacity. In this case, it is easy to find from (5) that the effective data transmission time is reduced

over the probing-stage numberN , which reduces the spatial capacity. On the other hand, fromCorollary 4.1, under

the constraint that0 < γ1 < · · · < γN < β, the successful transmission probability increases overN . As a result,

from (5), there exists a probing-capacity tradeoff overN under the condition that0 < γ1 < · · · < γN < β. In the

following, we illustrate the probing-capacity tradeoff bya numerical example (see Fig. 7).

In this example, we show the spatial capacity of the proposedscheme over the number of probing phasesN .

We setα = 4, β = 2, d = 10, and the time slot durationT = 1 second (s). We consider two cases withτ = 0s

and τ = 0.04s, respectively, where the time overhead for probing is zerofor the former case and non-negligible

for the latter one. For both cases, as enlightened by Fig. 6, we start withγ1=0.01 and gradually increaseγk,

2 ≤ k ≤ N , based onγk = γk−1 + 0.01k, which gives an increasing step-size withγk − γk−1 < γk+1 − γk. To

ensureγN < β, the maximum allowableN is obtained as19. As shown in Fig. 7, it is observed that the spatial

capacity increases overN for the case withτ = 0, which validates Corollary 4.1. Moreover, for the case with



24

τ = 0.04, the probing-capacity tradeoff is observed as expected:the spatial capacity first increases overN , due

to the improved performance of successful transmission probability, but afterN = 10, the spatial capacity begins

to decrease overN , due to the more dominant effects of the reduced data transmission time.

V. CONCLUSION

In this paper, we addressed the spatial capacity analysis and characterization in a wireless ad hoc network by an

efficient SIR-threshold based scheme. For single-stage probing, we showed the conditions under which the spatial

capacity of the proposed scheme performs strictly better than that of the reference scheme without scheduling. We

also characterized the spatial capacity of the proposed scheme in closed-form. In particular, we proposed a new

approach to approximate the spatial capacity, which is useful for analyzing performance of wireless networks with

interacted transmitters. For multi-stage probing, we extended the results for the case of single-stage probing, and

gave the condition under which the spatial capacity of the proposed scheme can be gradually improved over the

probing-stage number. We also studied the effects of multi-stage probing overhead and investigated the probing-

capacity tradeoff.

Although the considered on/off power control in this paper is more practical than the multi-level power control

for implementation [33], it is interesting to extend our network-level performance analysis to the multi-level power

control in our future work. One issue needs to be properly addressed is the power convergence in the stochastic

network. Unlike the power convergence studied in [5] and [6]for deterministic wireless networks, the transmit

power level of each transmitter in the current probing phaseis stochastically determined by the SIR distributions in

all the proceeding probing phases. Moreover, due to the different point process formed by the retained transmitter

in each probing phase, the SIR distributions in all the probing phases are mutually different. Although challenging,

it is of our interest to find the condition that assures the power convergence in our considered stochastic network,

and study the spatial capacity in a stable system with converged power level of each transmitter. In addition, we are

also interested to extend our current study on synchronizedtransmission to the asynchronized transmission in our

future work. Unlike the synchronized transmission, due to the newly added transmitters in each probing phase, it is

more difficult to control and analyze the interference in each probing phase. Moreover, note that the asynchronized

transmission may cause unstable communication quality forthe transmitters. It is thus of our interest to design

effective transmission scheme that can assure stable communication quality for all the transmitters, by effectively

controlling the network interference to improve the spatial capacity in our future work.
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APPENDIX A

PROOF OFPROPOSITION3.1

By expressing SIR(0)0 = h00d
−α/I0 and SIR(1)0 = h00d

−α/I1, based on (4), (6), (10) and (11), we have

Cp

Cr
=
P(h00≥γ1d

αI0)×P(h00≥βdαI1|h00≥γ1d
αI0)

P(h00 ≥ βdαI0)
. (26)

In the following, we compareC
p

Cr with 1 by varying γ1 ∈ [0,∞). Clearly, whenγ1 = 0, Cp

Cr = 1. Next, we

consider the case ofγ1 ≥ β. Since I0 ≥ I1, if γ1 ≥ β, we obtainP(h00 ≥ βdαI1|h00 ≥ γ1d
αI0) = 1.

Moreover, for the non-negative and continuous random variables h00 and I0, it is easy to find that ifγ1 > β,

P(h00 ≥ γ1d
αI0) < P(h00 ≥ βdαI0), and if γ1 = β, P(h00 ≥ γ1d

αI0) = P(h00 ≥ βdαI0). As a result, from (26),

if γ1 > β, Cp

Cr < 1, and if γ1 = β, Cp

Cr = 1. At last, we consider the case of0 < γ1 < β. In this case, we have

P(h00 ≥ γ1d
αI0|h00 ≥ βdαI0) = 1, or equivalently,

P(h00≥γ1d
αI0)×P(h00≥βdαI0|h00≥γ1d

αI0)

P(h00≥βdαI0)
=1. (27)

Moreover, sinceγ1 6=0 in this case, we haveFI1(x)>FI0(x), ∀x>0, whereFI0(·) andFI1(·) denote the cumulative

distribution functions (CDFs) ofI0 andI1, respectively. It is then easy to verify thatP(h00≥βdαI1|h00≥γ1d
αI0)>

P(h00≥βdαI0|h00≥γ1d
αI0), for which, by multiplying P(h00≥γ1dαI0)

P(h00≥βdαI0)
on both sides and based on (27), we have

P(h00 ≥ γ1d
αI0)× P(h00 ≥ βdαI1|h00 ≥ γ1d

αI0)

P(h00 ≥ βdαI0)
> 1.

That is, C
p

Cr > 1. Proposition 3.1 thus follows.

APPENDIX B

PROOF OFPROPOSITION3.2

Under Assumption 1, we obtain two independent PPPsΦ̂1 andΦ̂c
1, with Φ̂1 ∪ Φ̂c

1 = Φ0 andΦ̂1 ∩ Φ̂c
1 = ∅. Since

from (9), it follows that

Pp
0 =P(SIR(0)

0 ≥ γ1,SIR(1)
0 ≥ β)

=P

(

∑

i∈Φ0,i 6=0

hi0li0 ≤
h00
γ1dα

,
∑

i∈Φ1,i 6=0

hi0li0 ≤
h00
βdα

)

,

we have

Pp
0 ≈P

(

(

∑

i∈Φ̂1,i 6=0

hi0li0+
∑

i∈ ˆΦ,i 6=0
c

1

hi0li0

)

≤
h00
γ1dα

,
∑

i∈Φ̂1

hi0li0≤
h00
βdα

)

=P

(

Î1 + Îc1 ≤
h00
γ1dα

, Î1 ≤
h00
βdα

)

.
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Due to the independence of̂Φ1 and Φ̂c
1, Î1 is independent of̂Ic1. Givenh00, we thus have

P

(

Î1 + Îc1 ≤
h00
γ1dα

, Î1 ≤
h00
βdα

∣

∣

∣
h00

)

=

∫
h00
βdα

0
fÎ1(x1)

∫
h00
γ1dα

−x1

0
fÎc

1
(x2) dx2 dx1. (28)

By integrating (28) over the (exponential) distribution ofh00, we obtain (18). Proposition 3.2 thus follows.

APPENDIX C

PROOF TOPROPOSITION3.3

In this proof, we first derive an upper bound for the right-hand side of (18), and then by properly lower-bounding

the obtained upper bound, we give a tractable approximate toPp
0 .

First, in (18), by increasing the upper limit offÎc
1
(x2), i.e., γ1dα − x1, to γ1d

α, the tight approximation ofPp
0

is upper-bounded as

Pp
0 ≈

∫ ∞

0
e−h00

∫
h00
βdα

0
fÎ1(x1)

∫
h00

γ1dα
−x1

0
fÎc

1
(x2) dx2 dx1 dh00

<

∫ ∞

0
e−h00

∫
h00
βdα

0
fÎ1(x1)

∫
h00

γ1dα

0
fÎc

1
(x2) dx2 dx1 dh00. (29)

Next, denoteY1(h00) =
∫

h00
βdα

0 fÎ1(x1) dx1 andY2(h00) =
∫

h00
γ1dα

0 fÎc
1
(x2) dx2. We can rewrite (29) as

∫ ∞

0
e−h00

∫
h00
βdα

0
fÎ1(x1)

∫
h00

γ1dα

0
fÎc

1
(x2) dx2 dx1 dh00 = E

[

Y1(h00)Y2(h00)
]

. (30)

Note that bothY1(h00) andY2(h00) are monotonically increasing overh00. Thus, according to the Chebyshev’s

inequality [32], the right-hand side of (30) can be lower-bounded as

E
[

Y1(h00)Y2(h00)
]

≥ E
[

Y1(h00)
]

E
[

Y2(h00)
]

. (31)

For E
[

Y1(h00)
]

in (31), by integratingY1(h00) over the exponential distributedh00, we obtain that

E
[

Y1(h00)
]

=

∫ ∞

0
e−h00

∫
h00
βdα

0
fÎ1(x1) dx1 dh00

=P
(

0 ≤ Î1 ≤
h00
βdα

)

(a)
= exp(−πλ1d

2β
2

αρ), (32)

where(a) is obtained based on Proposition 2.1, by replacingλ0 with λ1. Similarly, we can obtain that

E
[

Y2(h00)
]

= exp(−πλc
1d

2γ
2

α

1 ρ). (33)

Finally, by substituting (32) and (33) into the right-hand side of (31) and then adopting the resulting right-hand

side of (31) to approximatePp
0 , we can obtain a tractable approximate toPp

0 for the case of0 < γ1 < β as in

(20). Proposition 3.3 is thus proved.
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APPENDIX D

PROOF TOPROPOSITION4.1

From (24), we have

Cp,N = λ0P
(

SIR(0)
0 ≥ γ1, ...,SIR(N−1)

0 ≥ γN
)

P
(

SIR(N)
0 ≥ β

∣

∣SIR(0)
0 ≥ γ1, ...,SIR(N−1)

0 ≥ γN
)

. (34)

Thus, based on (24) and (34), we have

Cp,N
0

Cp,N−1
0

=
P
(

SIR(0)
0 ≥ γ1, · · · ,SIR(N−1)

0 ≥ γN
)

P
(

SIR(0)
0 ≥ γ1, · · · ,SIR(N−1)

0 ≥ β
)

P
(

SIR(N)
0 ≥ β

∣

∣SIR(0)
0 ≥ γ1, · · · ,SIR(N−1)

0 ≥ γN
)

. (35)

Since both proposed schemes adopt the same SIR thresholdsγk for any k ∈ {1, ..., N − 1}, the distributions of

these SIR(k)0 ’s are the same for both proposed schemes and thus do not affect the ratio of C
p,N
0

C
p,N−1
0

. Hence, in the

following, we focus on the distribution SIR(N)
0 by varyingγN ∈ [0,∞), and compare C

p,N
0

C
p,N−1
0

with 1. With a proof

similar to that of Proposition 3.1, it is easy to verify that

1) if 0 ≤ γN ≤ γN−1, the distribution of SIR(N)
0 is the same as that of SIR(N−1)

0 ; and thus we haveC
p,N
0

C
p,N−1
0

= 1;

2) if γN ≥ β, P
(

SIR(N)
0 ≥ β

∣

∣SIR(0)
0 ≥ γ1, · · · ,SIR(N−1)

0 ≥ γN
)

= 1, andP
(

SIR(0)
0 ≥ γ1, · · · ,SIR(N−1)

0 ≥

γN
)

≤ P
(

SIR(0)
0 ≥ γ1, · · · ,SIR(N)

0 ≥ β
)

, where “=” holds whenγN = β. Thus, from (35), ifγN > β,

Cp,N
0

C
p,N−1
0

< 1, and if γN = β, Cp,N
0

C
p,N−1
0

= 1;

3) if γN−1 < γN < β, we have

Cp,N
0

Cp,N−1
0

>
P
(

SIR(0)
0 ≥ γ1, · · · ,SIR(N−1)

0 ≥ γN
)

P
(

SIR(0)
0 ≥ γ1, · · · ,SIR(N−1)

0 ≥ β
)

× P
(

SIR(N−1)
0 ≥ β

∣

∣SIR(0)
0 ≥ γ1, · · · ,SIR(N−1)

0 ≥ γN
)

= 1.

Proposition 4.1 thus follows.
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