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Memory-Aware Social Learning under Partial
Information Sharing

Michele Cirillo, Virginia Bordignon, Vincenzo Matta, and Ali H. Sayed

Abstract—This work examines a social learning problem,
where dispersed agents connected through a network topology
interact locally to form their opinions (beliefs) as regards certain
hypotheses of interest. These opinions evolve over time, since the
agents collect observations from the environment, and update
their current beliefs by accounting for: their past beliefs, the
innovation contained in the new data, and the beliefs received
from the neighbors. The distinguishing feature of the present
work is that agents are constrained to share opinions regarding
only a single hypothesis. We devise a novel learning strategy
where each agent forms a valid belief by completing the partial
beliefs received from its neighbors. This completion is performed
by exploiting the knowledge accumulated in the past beliefs,
thanks to a principled memory-aware rule inspired by a Bayesian
criterion. The analysis allows us to characterize the role of
memory in social learning under partial information sharing, re-
vealing novel and nontrivial learning dynamics. Surprisingly, we
establish that the standard classification rule based on selecting
the maximum belief is not optimal under partial information
sharing, while there exists a consistent threshold-based decision
rule that allows each agent to classify correctly the hypothesis of
interest. We also show that the proposed strategy outperforms
previously considered schemes, highlighting that the introduction
of memory in the social learning algorithm is critical to overcome
the limitations arising from sharing partial information.

Index Terms—Social learning, Bayesian update, information
diffusion, partial information.

I. INTRODUCTION

Inspired by realistic social dynamics, social learning refers
to a family of algorithmic strategies through which agents
update and propagate beliefs within a network [2]–[14]. All
agents observe a common phenomenon of interest, which
can be explained by discrete-valued states or hypotheses. The
belief of an agent summarizes its opinion regarding these
hypotheses. In order to update its belief, each agent collects
evidence from the phenomenon of interest in the form of
streaming observations, which depend on the unknown true
state of nature. Conceived initially as a model for opinion
formation within groups, social learning has evolved to en-
compass engineered decision-making systems. An example of
a system is a network of connected weather sensors measuring
different meteorological attributes and updating their confi-
dence regarding possible weather forecasts, e.g., “imminent
rain”, “clear skies”, “thunderstorm”.

Non-Bayesian social learning solutions [4], [5], [9]–[14]
overcome the exceeding computational complexity associated
with fully Bayesian approaches [15], [16] and allow agents
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to aggregate information in a two-step procedure: i) a local
Bayesian update is used to incorporate information contained
in the stream of observations; and ii) a combination step incor-
porates the knowledge contained in the beliefs of neighboring
agents. In all these strategies, a common assumption is that
each agent has access to the full beliefs of all neighbors.
However, this condition is not verified in several contexts.

From a behavioral point of view, it is often the case that
individuals limit their shared opinions to a single candidate
state. For example, consider the process of choosing the best
product among brands {θ1, θ2, θ3}. A new product has been
recently released by brand θ1, and then a group of individuals
interacts by exchanging reviews regarding the new release. The
information contained in these reviews is limited to a single
candidate product and ignores the remaining hypotheses θ2, θ3.

Partial sharing of information is also motivated from an
engineering point of view, as we are increasingly interested in
designing communication-efficient systems [17], [18]. More-
over, withholding information from other agents is often
motivated by privacy reasons and regulation constraints.

In the realm of communication-efficient social learning,
we can distinguish distinct simultaneous efforts. In [19], the
authors propose sharing quantized belief ratios to decrease
the communication load. In [20], the authors propose an
event-triggered algorithm, which reduces communication to
instants when there is sufficient innovation in the beliefs. Other
approaches used to reduce communication in social learning
allow agents to exchange beliefs with only one randomly-
sampled component or neighbor at a time [21], [22].

A partial information strategy for social learning is intro-
duced in [23], [24], where it is assumed that agents can only
transmit their beliefs concerning a single hypothesis of interest
denoted by θTX. In the proposed solution, upon receiving
partial beliefs, agents have to fill in the missing information
regarding the non-transmitted components, and they do so
by adopting a uniform approach, i.e., by assuming the non-
transmitted belief components have equal mass. In the present
work, we propose alternatively that the local memory of each
agent should be used to fill in the missing belief entries of its
neighbors.

In this work, we characterize the learning behavior of the
agents under the proposed strategy. We show that when the
shared hypothesis is not the true one, all agents are able
to correctly discard it with full confidence, i.e., the belief
regarding θTX converges to 0 as the number of observations
grows. The key condition required in this case is the classical
global identifiability assumption, which prescribes that the net-
work as a whole possesses sufficient information to solve the
inference problem, even if the agents are unable to learn well
individually. [23], [24]. When the shared hypothesis is equal to
the true one, we first show that agents achieve full confidence
around the truth, i.e., the belief regarding θTX converges to
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1, if there exists at least one agent that would be able to
learn in isolation. Then, we establish that the existence of
such a powerful agent is actually unnecessary since, under the
simpler condition of global identifiability, we show that there
exists a decision rule that allows us to classify correctly the
nature (true/false) of the hypothesis of interest. Remarkably,
this rule is not based on maximization of the belief, as is
common practice in the literature. We actually ascertain that
under partial information sharing, standard maximization of
the belief is not optimal for achieving correct classification.
We further show that the proposed strategy outperforms the
existing schemes.

Notation. We use boldface fonts to represent random vari-
ables. The symbols a.s.−−→ and

p−→ indicate respectively almost
sure convergence and convergence in probability [25], as the
time index i goes to infinity.

II. PARTIAL INFORMATION SHARING

Consider a network of K agents, which are trying to identify
the true state of nature θ0 from a set of discrete hypotheses
Θ , {1, 2, . . . ,H}. To solve the inference problem, each
agent k receives at instant i an observation ξk,i ∈ Xk and
possesses a set of likelihoods Lk(ξ|θ) for ξ ∈ Xk and
θ ∈ Θ, which are agent-dependent models for the distribution
of observations ξk,i given each hypothesis θ. Technically,
Lk(ξ|θ) is a likelihood function when regarded as a function
of θ. It is instead a probability density or mass function
(depending on whether the observations are continuous or
discrete, respectively) when regarded as a function of ξ. The
observations ξk,i are distributed according to the true model
Lk(ξ|θ0) and are assumed to be independent and identically
distributed (iid) over time, i.e., over i, but can be dependent
across agents, i.e., over k.

The network is represented by a graph, in which nodes play
the role of agents and the edges symbolize the communication
links between agents. Each of these edges, e.g., from agent
` to agent k, is assigned a nonnegative weight a`k, which
quantifies the confidence that agent k has in the information
coming from its neighbor `. These weights can be conveniently
arranged into a left-stochastic matrix A = [a`k] satisfying:

1
>A = 1

>, a`k ≥ 0, a`k = 0 if ` /∈ Nk, (1)

where Nk denotes the set of neighbors of agent k, including
agent k itself.

Traditional social learning allows the network of agents
to update and propagate opinions (or beliefs) regarding the
possible hypotheses and to learn the truth, i.e., to find the true
state θ0, in a decentralized manner [4], [5], [9], [10], [12]. At
each instant i, agent k updates its belief vector µk,i, which is a
probability mass function over the set of possible hypotheses,
i.e., µk,i ∈ ∆H , where ∆H denotes the probability simplex
with dimension H . Its θ-th component µk,i(θ) quantifies how
confident agent k is at instant i that θ is the true state of nature.

In traditional social learning, each agent k starts with its
own initial belief vector µk,0 and, for i = 1, 2, . . . , iteratively
updates its belief vector µk,i using the following two-step
procedure:

ψk,i(θ) ∝ Lk(ξk,i|θ)µk,i−1(θ), (2a)

µk,i(θ) ∝
∏
`∈Nk

[ψ`,i(θ)]
a`k . (2b)

Fig. 1. Diagram of the social learning algorithm with partial information.

As is standard in the Bayesian framework, the proportion-
ality sign hides the proportionality constant that is neces-
sary to guarantee the conditions:

∑
θ∈Θψk,i(θ) = 1 and∑

θ∈Θ µk,i(θ) = 1. Step (2a) is a local Bayesian update.
Specifically, agent k implements Bayes’ rule to build an
intermediate belief vector ψk,i, by combining: i) the prior
information contained in the previous belief vector µk,i−1; and
ii) the likelihood Lk(ξk,i|θ) that exploits the fresh information
contained in ξk,i. The intermediate beliefs are subsequently
transmitted across the network. In step (2b), agent k updates
the belief vector by combining its own intermediate belief
vector ψk,i and the ones received from its neighborhood Nk
into a weighted geometric average with combination weights
a`k.

The algorithm described above has been thoroughly studied
in the literature [9], [12], [13]. It has been shown that, under
some mild technical conditions, all agents learn the truth with
probability one as i→∞, that is, µk,i(θ0)

a.s.−−→ 1.
One limitation of traditional social learning is that at each

iteration i each agent k receives from its neighbors the com-
plete belief vectors {ψ`,i}`∈Nk . Motivated, e.g., by behavioral,
communication, or privacy constraints, agents might not be
willing to share their entire belief vectors. To address this sce-
nario, a variation of this algorithm has been proposed in [24].
In this new setting, agents share a single component of their
beliefs, corresponding to some hypothesis of interest θTX ∈ Θ.
Formally, the new algorithm consists of the following three
steps, iterated by each agent k for i = 1, 2, . . .:

ψk,i(θ) ∝ Lk(ξk,i|θ)µk,i−1(θ) (3a)

ψ̂`k,i = Fk
(
ψ`,i(θTX)

)
, for ` ∈ Nk (3b)

µk,i(θ) ∝
∏
`∈Nk

[ψ̂`k,i(θ)]
a`k (3c)

Step (3a) is still a Bayesian update. The main novelty is in
step (3b): agent ` ∈ Nk sends the belief component ψ`,i(θTX)
to agent k, which, in turn, builds a complete estimated belief
vector ψ̂`k,i. This is the estimated belief vector constructed
by agent k relative to its neighbor `, in the sense that,
starting from the received component ψ`,i(θTX), agent k
fills the missing entries according to a local transformation
Fk : R 7→ ∆H . We remark that in our treatment Fk will be
allowed to be a random transformation as it can depend on
the random beliefs possessed by agent k. Finally, step (3c)
performs the same averaging operation as (2b), but using the
estimated beliefs ψ̂`k,i in place of the complete beliefs ψk,i.

Figure 1 shows a block diagram of this procedure, highlight-
ing in red the novelties introduced by the partial information
scenario. The choice of the filling strategy Fk is critical to
achieve correct learning.

A. Filling Strategies

We now show how the filling strategy can be derived from
a Bayesian approach. Agent k receives from agent ` ∈ Nk the
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intermediate belief component ψ`,i(θTX). In the construction
of the estimated belief ψ̂`k,i, agent k trusts agent ` and, hence,
it sets ψ̂`k,i(θTX) = ψ`,i(θTX). Once we assume this equality,
the remaining mass assigned to the set T , {θ 6= θTX} must
necessarily be 1 − ψ`,i(θTX). From Bayes’ rule, this implies
that the belief ψ̂`k,i must fulfill, for all θ 6= θTX, the equation:1

ψ̂`k,i(θ) = b(θ|T)(1−ψ`,i(θTX)), (5)

where b(θ|T) is the belief conditioned on set T. To complete
the filling strategy, it is necessary to choose the form of b(θ|T).

In [24], the agnostic maximum-entropy choice

b(θ|T) =
1

H − 1
, (6)

is proposed, where agent k assumes no knowledge available to
determine b(θ|T). In this work, we propose instead to exploit
the most up-to-date knowledge that agent k has accumulated
up to time i. As a matter of fact, the most up-to-date belief
available at agent k at time i is ψk,i, which leads to the
conditional belief given T:

b(θ|T) =
ψk,i(θ)

1−ψk,i(θTX)
. (7)

We see that (7) diversifies the allocation of the conditional
belief mass across the non-transmitted hypotheses, based on
the available knowledge stored in the intermediate belief vector
ψk,i. In contrast, strategy (6) opts for a uniform allocation,
thus forgetting any evidence that agent k accumulated in the
past. We shall accordingly refer to (6) as the memoryless
strategy, and to (7) as the memory-aware strategy.

Note also that with strategy (7) agent k is automatically
self-aware, which means that for ` = k we get ψ̂kk,i = ψk,i.
Conservation of the belief available at agent k is a compelling
property, and it is interesting to remark that it arises naturally
from our Bayesian interpretation of the filling strategy, once
we allow it to incorporate the information contained in ψk,i. In
comparison, note that in strategy (6) agent k is not self-aware.

In preparation for the forthcoming analysis, it is convenient
to write compactly the two obtained strategies:

Memoryless filling strategy

ψ̂`k,i(θ) =

ψ`,i(θTX), θ = θTX,
1

H − 1

(
1−ψ`,i(θTX)

)
, θ 6= θTX.

(8)

Memory-aware filling strategy

ψ̂`k,i(θ) =

ψ`,i(θTX), θ = θTX,
ψk,i(θ)

1−ψk,i(θTX)

(
1−ψ`,i(θTX)

)
, θ 6= θTX.

(9)

1To interpret (5), consider a random variable θ ∈ Θ. For all θ ∈ T:

P[θ = θ] = P[θ = θ,θ ∈ T] = P[θ = θ|θ ∈ T]P[θ ∈ T], (4)

where the first equality holds since θ ∈ T, while the second equality is
Bayes’ rule. We see from (4) that the belief of a particular value θ ∈ T
can be expressed as the product of a conditional belief times the total belief
assigned to set T.

III. ASSUMPTIONS

In this section we collect the assumptions involved in our
analysis. We start with a standard assumption on the network
connectivity.

Assumption 1 (Strongly-Connected Network). The network
is strongly connected, which means that, given any pair
of nodes (`, k), paths with nonzero weights exist in both
directions, i.e., from ` to k and vice versa (the two paths need
not be the same) and that at least one agent k in the entire
network has a positive self-weight (akk > 0). �

Since A is left-stochastic, strong connectivity implies that
A is a primitive matrix [27], [28]. Then, the Perron-Frobenius
theorem implies the existence of a vector v, a.k.a. the Perron
eigenvector, which satisfies the following conditions [27], [28]:

Av = v, 1
>v = 1, v � 0, (10)

where � indicates element-wise strict inequality.
Next we introduce two regularity conditions involving the

likelihood models and the initial beliefs.

Assumption 2 (Finiteness of KL Divergences). For each k =
1, 2, . . . ,K and each pair of hypotheses θ, θ′,

DKL(Lk,θ||Lk,θ′) <∞. (11)

�

Assumption 3 (Positive Initial Beliefs). For each k =
1, 2, . . . ,K and each θ ∈ Θ, µk,0(θ) > 0. �

We remark that Assumption 2 implies that the likelihood
Lk(ξk,i|θ) can be equal to zero only for an ensemble of
realizations ξk,i having zero probability. Accordingly, starting
from Assumption 3, we see inductively that, with probability
1, the beliefs ψk,i(θ) and µk,i(θ) are strictly positive: i)
from (3a) we see that, if µk,i−1(θ) > 0, then ψk,i(θ) > 0
with probability 1; and ii) from (3c), since the combination
weights are nonnegative and convex, we have µk,i(θ) > 0
with probability 1.

We continue by introducing the classical assumption of
global identifiability adopted in social learning. Let us define,
for each agent k, the set of indistinguishable hypotheses:

Dk , {θ ∈ Θ : DKL(Lk,θ0 ||Lk,θ) 6= 0} , (12)

where DKL(·‖·) denotes the Kullback-Leibler (KL) diver-
gence [26]. Note that, for ease of notation, when working with
KL divergences, we use the notation Lk,θ in place of Lk(ξ|θ).
Likewise, the set of indistinguishable hypotheses is:

Ik , {θ ∈ Θ \ {θ0} : DKL(Lk,θ0 ||Lk,θ) = 0} . (13)

In practice, the fact that an agent has two identical likeli-
hoods Lk,θ0 and Lk,θ means that its data {ξk,i} originate
from the same mechanism under θ0 or θ. For example, if
a sensor can only measure the amplitude of a sinusoidal
signal, its measurements will have the same characteristics
under two distinct signal phases θ0 and θ. We note that agents
with nonempty indistinguishable sets are unable to solve the
inference problem on their own. One advantage of social
learning algorithms is that agents can overcome their local
identifiability limitations by solving the inference problem in
a collaborative manner. In particular, identifiability limitations
of the individual agents can be overcome at the network level:
if agent k is able to distinguish one hypothesis θ from the true
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one (i.e., if θ ∈ Dk), then the entire network can potentially
take advantage of this ability, including some other agent `
for which θ ∈ I`. These concepts are summarized in the
assumption of global identifiability.

Assumption 4 (Global Identifiability). For each θ 6= θ0,
there exists at least one agent k for which θ ∈ Dk, which
means that

⋂K
k=1 Ik = ∅. �

Finally, the next assumption rules out the case where at
some agent the likelihood of the true hypothesis is equal to a
convex combination of the likelihoods of the distinguishable
hypotheses.

Assumption 5 (Likelihood Models). For all agents whose set
of distinguishable hypotheses Dk is nonempty, the likelihood
Lk,θ0 is not a convex combination of the likelihoods of the dis-
tinguishable hypotheses, i.e., for all vectors α = [α(θ)]θ∈Dk

with nonnegative entries that add up to 1, we have:

Lk,θ0 6=
∑
θ∈Dk

α(θ)Lk,θ. (14)

�

Assumption 5 is a sufficient condition that is useful to
prove our results. It is typically verified when the agents
employ parametric families of likelihoods, where different
hypotheses are identified by different values of the parameters.
For example, in a Gaussian, exponential, or binomial family
it is not possible to represent one likelihood within the class
as the convex combination of other likelihoods in the same
class. To gain further insight on how likely it is to violate
Assumption 5, it is also useful to consider the following
unstructured setting, where the likelihoods are chosen in a
completely random manner. Specifically, let Xk be a discrete
finite space, and recall that a probability mass function on
Xk is a point lying in the probability simplex ∆|Xk|. Assume
that the likelihoods are picked uniformly at random from the
probability simplex. We now show that when the cardinality
of the observation space Xk is larger than the cardinality of
the distinguishable set Dk, the probability of picking a set of
likelihoods that violate Assumption 5 is zero. This is because
the dimensionality of the probability simplex is d1 = |Xk|−1,
whereas the dimensionality of the convex hull generated by
|Dk| likelihoods is at most d2 = |Dk| − 1 < d1. Therefore,
if we pick some points uniformly at random in a continuous
space of dimensionality d1, the probability that they fall into
a space of dimensionality d2 < d1 is zero.

IV. MAIN THEOREMS

In this section we study the asymptotic behavior of al-
gorithm (3a)–(3c) when adopting the memory-aware strategy
in (9).

In the following treatment we will use the following nota-
tion:

µk,i(S) ,
∑
θ∈S

µk,i(θ), ψk,i(S) ,
∑
θ∈S

ψk,i(θ), (15)

for any subset S ⊆ Θ, with the convention that µk,i(∅) =
ψk,i(∅) = 0. We are now ready to present our main results.

Preliminarily, it is useful to introduce some descriptors of
the learning problem that will be useful to state our results.
We define for each agent k the ratio:

ρk ,
µk,0(Ik)

µk,0(θ0)
. (16)

The ratio ρk quantifies the initial displacement between the
mass assigned by agent k to the indistinguishable hypotheses
w.r.t. to the true hypothesis. High values of ρk are thus
not beneficial for the agent, since they tend to favor the
indistinguishable hypotheses. Conversely, small values of ρk
favor the true hypothesis θ0. Exploiting (15), we see that the
uniform prior assignment µk,0(θ) = 1/H for all θ ∈ Θ leads
to:

ρk =
µk,0(Ik)

µk,0(θ0)
=

∑
θ∈Ik(1/H)

(1/H)
= Jk, (17)

namely, with a flat prior the ratio ρk coincides with the
cardinality of the indistinguishable set Jk , |Ik|. According
to the above interpretation, we will refer to ρk as the confusion
ratio.

In our social learning environment, it is also useful to
consider a measure of confusion at the network level. We
accordingly introduce the network confusion ratio:

ρ ,
K∏
k=1

ρvkk , (18)

which is a weighted geometric average of the individual
confusion ratios {ρk}, with weights given by the entries of
the Perron eigenvector. Likewise, we introduce the weighted
geometric average of the cardinalities of the indistinguishable
sets:

J ,
K∏
k=1

Jvkk . (19)

Before stating our main theorems, it is useful to recall
that under partial information sharing the agents exchange
information relative to a single hypothesis of interest θTX.
Accordingly, under partial information sharing we will say
that a social learning strategy learns well if each agent is able
to establish whether θTX is true or false [24].

Our first theorem examines the learning behavior of the
memory-aware strategy when θTX 6= θ0.

Theorem 1 (Belief Convergence when θTX 6= θ0). Let θTX 6=
θ0 and let Assumptions 1–5 hold. Then, for all k = 1, 2, . . . ,K
we have the following properties:
• Transmitted hypothesis.

µk,i(θTX)
a.s.−−→ 0. (20)

• Non-transmitted, distinguishable hypotheses θ ∈ Dk \
{θTX}.

µk,i(θ)
a.s.−−→ 0. (21)

• True hypothesis and non-transmitted, indistinguish-
able hypotheses θ ∈ {θ0} ∪

(
Ik \ {θTX}

)
.

Letting Ik,TX , {θ0}∪
(
Ik \{θTX}

)
, from (20) and (21)

we have that the total belief of Ik,TX accumulates all the
residual mass:

µk,i(Ik,TX)
a.s.−−→ 1. (22)

Moreover, the allocation of this mass preserves the initial
conditional belief of θ given Ik,TX:

µk,i(θ)

µk,i(Ik,TX)
=

µk,0(θ)

µk,0(Ik,TX)
. (23)

Proof: See Appendix B.
The fundamental message from Theorem 1 is that all agents

are able to learn well when θTX 6= θ0, since they end
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up placing zero mass on the (false) transmitted hypothesis.
In addition, the theorem shows that all distinguishable non-
transmitted hypotheses are discarded, and that the whole mass
is then distributed over the true and the indistinguishable
non-transmitted hypotheses. Equation (23) reveals that the
conditional beliefs given these hypotheses are static, i.e., they
are equal to the conditional prior beliefs. This makes perfect
sense, since: i) the observations cannot help agent k distin-
guish between the true and the indistinguishable hypotheses;
and ii) no information on the non-transmitted hypotheses is
diffused across the network. Therefore, regarding the true and
the indistinguishable non-transmitted hypotheses, the informa-
tion available to agent k is in fact the same information present
at the beginning of the learning process.

Let us switch to the case θTX = θ0, which is covered by
the next theorem.

Theorem 2 (Belief Convergence when θTX = θ0). Let θTX =
θ0, let ρ be the network confusion ratio defined in (18), and
let Assumptions 1–5 hold. Then, for all k = 1, 2, . . . ,K we
have the following properties:
• Transmitted hypothesis.

µk,i(θTX)
a.s.−−→ 1

1 + ρ
. (24)

• Distinguishable hypotheses θ ∈ Dk.

µk,i(θ)
a.s.−−→ 0. (25)

• Indistinguishable hypotheses θ ∈ Ik.

From (24) and (25), the total belief of Ik accumulates the
residual mass:

µk,i(Ik)
a.s.−−→ ρ

1 + ρ
. (26)

Moreover, the allocation of this mass preserves the initial
conditional belief of θ given Ik:

µk,i(θ)

µk,i(Ik)
=

µk,0(θ)

µk,0(Ik)
. (27)

Proof: See Appendix C.
Theorem 2 provides insightful formulas to capture the

learning mechanism of the memory-aware strategy. We now
examine the main conclusions revealed by these formulas. In
traditional social learning with full information sharing, the
belief of the true hypothesis converges to 1 as i → ∞. In
order to reproduce the same behavior under partial information
sharing, we see from (24) that the network confusion ratio
ρ must be zero. From (18) we know that ρ is a weighted
geometric average of the single-agent confusion ratios {ρk}
defined in (16). Accordingly, ρ can be zero, provided that
at least one agent k has ρk = 0, which means that the
indistinguishable set Ik is empty. This does not mean that the
problem must be locally identifiable at any agent; this must
be the case for just one powerful, clear-sighted agent. For
example, we can have a problem that is not locally identifiable
at K−1 agents, which are unable to discriminate θ0 from some
of the other hypotheses. By exploiting cooperation across the
network, these agents can profit from the strong agent and
overcome their individual limitations.

When such a powerful agent does not exist, we have
instead ρ > 0. In this case, while (25) reveals that zero
mass is still assigned to the distinguishable hypotheses, the
residual mass is now split between θ0 and the indistinguishable

hypotheses, since the belief of the true hypothesis converges
to a value strictly less than 1. This splitting is ruled by (25)
and (27), implying that the behavior of the memory-aware
social learning strategy depends on the initial beliefs and in
particular that different initial beliefs at different agents can
lead to different behavior across agents. This conclusion is
in contrast with traditional social learning, whose asymptotic
behavior is instead independent of the initial belief (provided
that nonzero mass is assigned to all hypotheses). However,
in the last discussion we compared social learning under
partial information sharing against traditional social learning
by implicitly focusing on the requirement that the belief of
θTX converges to 1 when θTX = θ0. Is this condition really
necessary to classify correctly θTX? We will answer this
fundamental question in Sec. V. Before doing that, it is useful
to gain further insights by examining the interesting case of
unbiased initialization.

A. Unbiased Initialization

The most interesting scenario to capture the authentic learn-
ing mechanism of the memory-aware strategy is the unbiased
case where the initial beliefs are all uniform. It is useful to
summarize the results for this case in the following corollary.

Corollary 1 (Belief Convergence with Uniform Initial
Beliefs). Let Assumptions 1–5 hold, and consider, for each
agent k, the uniform prior assignment µk,0(θ) = 1/H for all
θ ∈ Θ.

When θTX 6= θ0, Eqs. (20) and (21) hold as they are.
Equations (22) and (23) specialize to, for all k = 1, 2, . . . ,K:

µk,i(θ)
a.s.−−→ 1

|Ik,TX|
, (28)

i.e., the mass is asymptotically equipartitioned over the set
comprising θ0 and the non-transmitted indistinguishable hy-
potheses.

When θTX = θ0, for all k = 1, 2, . . . ,K we have the
following properties.
• True hypothesis.

µk,i(θ0)
a.s.−−→ 1

1 + J
. (29)

• Distinguishable hypotheses θ ∈ Dk.

µk,i(θ)
a.s.−−→ 0. (30)

• Indistinguishable hypotheses θ ∈ Ik.

µk,i(θ)
a.s.−−→

(
J

Jk

)
1

1 + J
. (31)

Proof: The claims follow from Theorems 1 and 2 by
setting µk,0(θ) = 1/H for all θ ∈ Θ and all k = 1, 2, . . . ,K.

Corollary 1 allows us to investigate more closely the role
of cooperation in the memory-aware strategy. The particular
case J = 0 (i.e., ρ = 0) has been discussed in the comments
on Theorem 1. Let us then focus on the case J > 0.

Observe that the geometric average of a set of numbers is
bounded by the minimum and maximum values in the set.
Recalling that J is an average cardinality, in the network we
have in general agents with Jk > J and agents with Jk ≤ J .
Consider first the agents with a number of indistinguishable
hypotheses Jk larger than the average J , i.e., with (J/Jk) < 1.
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In view of (29) and (31), this implies that, with probability 1
for sufficiently large i:

Jk > J : µk,i(θ0) > µk,i(θ), for all θ ∈ Θ \ {θ0}. (32)

Conversely, agents with (J/Jk) ≥ 1 end up with:

Jk ≤ J : µk,i(θ0) ≤ µk,i(θ), for all θ ∈ Θ \ {θ0}. (33)

This behavior has an interesting implication on the role of
cooperation. We see that, after cooperation, the agents that
were individually more confused (Jk > J , see (32)) truly
benefit from cooperation, and end up with a belief that is
maximized at the true hypothesis. However, the situation is
reversed for the agents that were individually less confused
(Jk < J , see (33)) but then end up with a belief that is
no longer maximized at the true hypothesis. Note that in the
boundary case Jk = J we have multiple indistinguishable
maxima. In summary, cooperation appears to be not beneficial
for all agents, as the belief is not necessarily maximized at
the true hypothesis. However, the aforementioned discussion
is based on the implicit assumption that maximization of the
beliefs is what one should aim for in order to classify the
transmitted hypothesis. Is maximization of the belief really
necessary to classify correctly θTX? The next section will
provide an unexpected answer to this question.

V. A FUNDAMENTAL DICHOTOMY IN MEMORY-AWARE
SOCIAL LEARNING

Examining jointly Theorems 1 and 2, we can explain
the learning behavior of the memory-aware social learning
strategy and the reason why a dichotomy arises between the
cases θTX 6= θ0 and θTX = θ0.

Consider first the case θTX 6= θ0. For what concerns the
distinguishable non-transmitted hypotheses θ ∈ Dk \ {θTX},
agent k would be able to distinguish them even if working
in isolation, by definition of Dk. We conclude from (21)
that the social learning strategy does not affect this ability of
agent k, which remains able to discard any θ ∈ Dk \ {θTX}
in the distributed context. For what concerns the transmitted
hypothesis θTX 6= θ0, agent k working in isolation would
not be able to discard it properly if it were indistinguishable.
On the other hand, we know from global identifiability that
there exists at least one agent in the network that is able
to distinguish θTX from the true hypothesis and, hence, to
discard it. Equation (20) reveals that, thanks to information
diffusion across the network, the ability of this particular agent
is transferred to all agents, which become able to discard the
transmitted hypothesis with full confidence.

Consider now the case θTX = θ0. The behavior regarding
the distinguishable hypotheses is the same as before — see
(25). Also the behavior of the indistinguishable hypotheses is
the same as before — see (27). Regarding the true transmitted
hypothesis θTX = θ0, we see from (24) that the belief of θTX

converges to a positive quantity, albeit not necessarily to 1,
nor to the maximum belief.

Collecting the results for θTX 6= θ0 and θTX = θ0, we see
the following fundamental dichotomy arising:

Corollary 2 (Asymptotic Classification of θTX). Under
Assumptions 1–5, the memory-aware strategy satisfies the
following convergences:

µk,i(θTX)
a.s.−−→ 0, if θTX 6= θ0,

µk,i(θTX)
a.s.−−→ 1

1 + ρ
, if θTX = θ0.

(34)

Proof: The claim follows from (20) and (24).
The asymptotic strictly-positive gap exhibited by the belief

of θTX under the two possible cases suggests that it is always
possible to devise a decision rule that makes each agent k
capable of classifying correctly θTX with probability 1 as
i→∞. More precisely, we need to define a decision rule for
each time i, and examine the online behavior of the resulting
decisions as i → ∞. When the belief of θTX converges to 1
if θTX = θ0 and to 0 otherwise, correct classification of the
transmitted hypothesis is obvious. For example, the standard
rule that selects the hypothesis maximizing the belief ends
up correctly accepting θTX when it is true and rejecting it
otherwise. However, we have observed that if µk,i(θTX) does
not converge to 1 when θTX = θ0, the rule maximizing the
belief can fail in this case, since the maximum mass can be
allocated on the indistinguishable hypotheses.

We propose instead to employ the following threshold test:{
µk,i(θTX) ≤ τ ⇒ reject θTX,

µk,i(θTX) > τ ⇒ accept θTX,
0 < τ <

1

1 + ρ
,

(35)
which, in view of (34), guarantees that the probability of
classifying correctly θTX converges to 1 as i→∞.

For rule (35) to work properly, it is necessary to ensure
that τ is smaller than 1/(1 + ρ). From definition (18), we see
that to compute ρ each agent needs to know the initial belief
assignments of all agents, as well as the Perron eigenvector.
When this knowledge is available, the threshold can be surely
set. However, there are several situations where this knowledge
is not available. We now show that it is possible to set a
threshold τ < 1/(1+ρ) with a much coarser prior information.
To this end, we start by observing from (16) that we can write:

ρk =
µk,0(Ik)

µk,0(θ0)
≤ 1− µk,0(θ0)

µk,0(θ0)
=

1

µk,0(θ0)
−1 ≤ 1

µmin,0
−1,

(36)
where

µmin,0 = min
k=1,2,...,K

θ∈Θ

µk,0(θ). (37)

The average confusion ratio ρ is upper bounded by the
maximum confusion ratio across the agents, which in view
of (36) yields:

ρ ≤ 1

µmin,0
− 1⇒ µmin,0 ≤

1

1 + ρ
, (38)

further implying that the choice

τ = µmin,0 − ε, with ε < µmin,0, (39)

guarantees that τ < 1/(1 + ρ). Accordingly, with (39) the
transmitted hypothesis is accepted provided that the observed
belief exceeds (but for a small ε) the smallest initial belief
of all agents and all hypotheses. In particular, in the case of
unbiased initialization Eq. (39) becomes:

τ =
1

H
− ε, with ε <

1

H
, (40)



7

which essentially means that a belief larger than the uniform
belief is sufficient to accept the transmitted hypothesis.

Note that to implement (39), the agents must know µmin,0.
This requires, for example, that the agents share their initial
beliefs in a preliminary phase of the algorithm, or that the
initial beliefs are assigned with a protocol known to all agents
beforehand. Remarkably, with an unbiased initialization, see
(40), the only quantity necessary to set the threshold is the
number of hypotheses, which is obviously known to all agents.

Before concluding this section, it is useful to contrast the
truth-learning concept employed in traditional social learning
with the decision rule (35). In both cases, each agent is able
to make the right choice with probability 1 as i → ∞.
However, there is a difference that can emerge depending
on the particular application context. Following traditional
social learning, we might require that the belief µk,i(θTX)
converges to 1 or 0 if the transmitted hypothesis is true or
false, respectively. This viewpoint is important in applications
where the agents are humans or animals, since it reflects the
natural behavior by which individuals express the strength of
their opinions, and this strength is expected to increase as more
evidence is collected. In particular, the choice of accepting the
transmitted hypothesis can be naturally formulated in terms of
selecting the maximum belief.

On the other side, when allowing ρ > 0 in Theorem 2,
the situation changes, since the belief of the transmitted
hypothesis is allowed to be even smaller than the belief of
some indistinguishable hypothesis. This notwithstanding, we
showed that the decision rule (35) allows to achieve correct
decisions. This is because to accept θTX this rule does not
require that µk,i(θTX) converges to 1, nor that it is the
maximum belief! We showed that it is sufficient to fulfill
the milder requirement that µk,i(θTX) exceeds the minimum
initial belief. One explanation for this behavior is as follows.
When θTX = θ0, the shared hypothesis is by definition not
statistically different from the indistinguishable hypotheses.
However, what makes the shared hypothesis different from
the indistinguishable hypotheses is the way it is treated by
the social learning algorithm, since it is the only hypothesis
the agents exchange information about. This induces the
agents to treat θTX in a “privileged” way. In other words,
by using the decision rule (35) in place of the maximum-
belief rule, the agents introduce a bias in favor of θTX, which
is used to overcome the limitations of partial information
sharing. This requires that the agents are aware of how the
underlying algorithm works, since to learn correctly they must
combine this additional knowledge with their beliefs. From a
practical viewpoint, this is definitely possible when agents are
programmable devices.

VI. COMPARISON AGAINST OTHER SCHEMES

A. Comparison Against the Standalone Algorithm

Another fundamental aspect is how the social collaboration
influences the choices of the agents. To this end, we shall
compare the proposed learning algorithm with the standalone
algorithm, where there is no information exchange and the
agents iteratively update their beliefs as:

µk,i(θ) ∝ Lk(ξk,i|θ)µk,i−1(θ). (41)

The results achieved by the standalone scheme can be derived
using similar analytical tools as used in [13], [29], and we
report them without proof in the following theorem.

Theorem 3 (Standalone Learning Algorithm). Consider
the standalone learning algorithm (41), and let ρk be the
confusion ratio of agent k defined in (16). Then, under
Assumptions 2 and 3, we have the following properties holding
for all k = 1, 2, . . . ,K:

• True hypothesis.

µk,i(θ0)
a.s.−−→ 1

1 + ρk
. (42)

• Distinguishable hypotheses θ ∈ Dk.

µk,i(θ)
a.s.−−→ 0. (43)

• Indistinguishable hypotheses θ ∈ Ik. From (24) and
(25) we have that the total belief of Ik accumulates the
residual mass:

µk,i(Ik)
a.s.−−→ ρk

1 + ρk
. (44)

Moreover, the allocation of this mass preserves the initial
conditional belief of θ given Ik:

µk,i(θ)

µk,i(Ik)
=

µk,0(θ)

µk,0(Ik)
. (45)

�
We see a nice symmetry between Theorems 2 and 3,

with the the network confusion ratio ρ (memory-aware social
learning) being replaced by the individual confusion ratio ρk
(standalone learning). Despite this symmetry, the presence of
the network indicator ρ in place of the individual indicator ρk
makes a significant difference, as we now explain.

One fundamental distinction between the standalone and
the social learning algorithms resides in the way they treat
indistinguishable hypotheses. In the standalone algorithm, we
see that the true hypothesis and the indistinguishable hy-
potheses are in general assigned distinct beliefs. Since from
the perspective of the standalone agent, the data does not
convey useful information to discriminate between θ0 and the
indistinguishable hypotheses, distinct beliefs are caused by the
initial belief. In other words, if the prior convictions bias the
agent in favor of some hypothesis, this bias persists even in
the long term. Consistently with this view, if the prior belief
is uniform, from (42), (44), and (45) we conclude that the
belief of θ0 and the belief of the indistinguishable hypotheses
converge to the same value 1/(1+Jk), i.e., indistinguishability
persists in the long term. No matter which decision rule is
used, the standalone algorithm will be unable to discern.

The situation is significantly different for the social learning
algorithm. Theorem 1 revealed that, when θTX 6= θ0, cooper-
ation leads each agent k to correctly discard the transmitted
hypothesis, irrespective of the initial beliefs, and even when
θTX would have been indistinguishable for a standalone agent
k. We saw in Sec. V that the capability of rejecting the
indistinguishable hypotheses enables the design of a decision
rule that achieves correct learning.

Moreover, Theorem 3 reveals that agent k in isolation can
place full mass on θ0 and zero mass on a hypothesis θ 6= θ0

only if ρk = 0, i.e., if the problem is locally identifiable at
agent k. In contrast, we learned from the previous analysis that
an agent k with a locally unidentifiable problem (i.e., ρk 6= 0)
can place full mass on θTX = θ0 by cooperating with a single
agent that experiences local identifiability.
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Fig. 2. Dynamics of the beliefs of the transmitted hypothesis, µ(θTX). We have H = 10 hypotheses and the network of K = 20 agents shown in the first
panel. The agents are initialized with uniform beliefs µk,0(θ) = 1/H . Second and third panels. The algorithm is run with indistinguishable sets {I`}K`=1
provided in (51); therefore, global identifiability holds. Fourth panel. Case ρ = J = 0 enforced by letting I1 = ∅.

B. Comparison Against the Memoryless Strategy

Now, we draw a parallel between the learning behavior
achieved by the memoryless strategy (8) proposed in [24]
and the memory-aware strategy (9). It was shown in [24]
that with the memoryless strategy, the social learning problem
can be interpreted as a binary detection problem involving
the comparison between the likelihood of the true hypothesis,
Lk(ξ|θ0) and a fictitious distribution:

fk(ξ) =
1

H − 1

∑
τ 6=θTX

Lk(ξ|τ). (46)

Then, the two main ingredients to ascertain the learning
behavior are the following KL divergences:

dTX ,
K∑
k=1

vkDKL(Lk,θ0‖Lk,θTX
), (47)

dfict ,
K∑
k=1

vkDKL(Lk,θ0‖fk). (48)

Our analysis revealed that the memory-aware strategy is al-
ways able to classify correctly the hypothesis of interest. This
is not the case for the memoryless strategy. In particular, when
θTX = θ0, the memoryless strategy always learns well [24]. In
contrast, when θTX 6= θ0, the memoryless strategy requires the
condition dTX > dfict to achieve correct learning [24, Theorem
3]. This means that, to discard θTX, the true distribution
must be more similar to the fictitious distribution than to
the distribution of the shared hypothesis. In addition, the
memoryless strategy exhibits an undesirable behavior when
dTX < dfict, since the belief of θTX converges to 1, i.e., the
strategy is completely fooled and ends up placing full mass
on the wrong hypothesis [24].

VII. SIMULATION RESULTS

In this experimental section we consider the following setup.
We generate a strongly-connected network with K = 20
agents according to the Erdős-Rényi model with connection
probability p = 1/3, and consider the Metropolis combination
matrix [28]:

a`k =

{
1/max{|N`|, |Nk|}, ` ∈ Nk \ {k},
a`k = 0, ` /∈ Nk,

(49)

with akk = 1−∑`∈Nk a`k. Note that the Perron eigenvector is
uniform since A is doubly stochastic. The generated network
is shown in the first panel of Fig. 2. The choice in (49) yields
a doubly-stochastic combination matrix, which has uniform

Perron eigenvector, i.e., vk = 1/K for all k. We run on top
of this network the social learning algorithm in (3a)–(3c) with
strategy (9) and uniform initial beliefs µk,0(θ) = 1/H , and
with:

H = 10, Θ = {1, 2, . . . ,H}, θ0 = 1. (50)

For each agent k, we let Lk(ξ|θ) be the Gaussian distribution
with unit variance and mean equal to θ0 if θ ∈ {θ0}∪ Ik, and
equal to θ otherwise. We recall that the input measurements
{ξk,i}i≥1 of agent k are generated according to Lk(ξ|θ0).

Moreover, we randomly generate the set of indistinguishable
hypotheses {Ik}Kk=1 with a rule guaranteeing:

|Ik| =

 4, for k ∈ [1, 10],
8, for k ∈ [11, 15],
2, for k ∈ [16, 20],

and
K⋂
k=1

Ik = ∅. (51)

These constraints imply that global identifiability is satisfied.
Moreover, since the Perron eigenvector has equal entries vk =
1/20, we have:

J =
(

410 × 25 × 85
)1/20

= 4. (52)

In order to illustrate Theorems 1 and 2, we consider the follow-
ing experiments. The first experiment is run with θTX 6= θ0,
and the second panel of Fig. 2 illustrates the dynamics of the
beliefs of agents relative to the transmitted hypothesis. We see
that, according to (20), the beliefs all converge to 0 due to the
global identifiability property guaranteed by (51).

In the third panel of Fig. 2 we illustrate the results for the
experiment when θTX = θ0. We see that the beliefs of all
agents for θTX, as predicted by (29), and recalling (52), is
such that:

µk,i(θ0)→ 1

1 + J
=

1

5
. (53)

We also consider a variation of the previous experiment where
we enforce the condition ρ = 0 by letting I1 = ∅. We run
the social learning algorithm for θTX = θ0 and, as shown
in the fourth panel of Fig. 2, we see that the beliefs of all
agents converge to the truth, i.e., µk,i(θ0)→ 1 for each k, as
predicted by (24).

Finally, in the second and third panels of Fig. 2 we also draw
with dashed blue line the threshold 1/H (we neglect the small
ε in (40)) that should be used by the decision rule proposed in
Sec. V. We see that the theoretical analysis is confirmed since:
i) when θTX 6= θ0, as i increases the beliefs fall below the
threshold and the transmitted hypothesis is correctly discarded;
and ii) when θTX = θ0, the beliefs end up staying above the
threshold and the transmitted hypothesis is correctly accepted.



9

VIII. CONCLUSION

We have examined the problem of social learning when
agents share information only about a hypothesis of interest
(partial information sharing). The main novelty introduced in
this work is a memory-aware filling strategy, which each agent
implements to turn the partial information received from its
neighbors into a valid belief, to be used in the middle of the
social learning updates. The analysis revealed the fundamental
learning mechanism of memory-aware social learning with
partial information sharing. Under the standard mild require-
ment of global identifiability, we established that there exists
a decision rule that allows each agent to classify correctly
the hypothesis of interest, with probability tending to 1 as the
number of iterations grows. Notably, the standard maximum-
belief rule is shown to fail in general under partial information
sharing. Finally, the obtained results highlight the benefits
of the memory-aware strategy over previous implementations.
The bottom line is that, under partial information sharing, the
insertion of memory into the social learning mechanism is
critical for a correct classification of the hypothesis of interest.

APPENDIX A
PRELIMINARY RESULTS

Lemma 1 (Useful Submartingales). Let Assumptions 2 and 3
hold. Let Sk be any nonempty agent-dependent set of hypothe-
ses such that:

Sk ⊆ {{θ0} ∪ Ik} \ {θTX}, (54)

and let S , {S1, S2, . . . , SK}. Define the nonpositive se-
quences:

mi ,
K∑
k=1

vk logµk,i(θ0), ni(S) ,
K∑
k=1

vk logµk,i(Sk),

(55)
and:

δk(α) , DKL

(
Lk,θ0

∥∥∥∑
τ∈Θ

α(τ)Lk,τ

)
, (56)

where α is a convex combination vector with dimension H .
The following properties hold for any choice of θTX.

1) The random sequences mi and ni(S) fulfill:

E[mi|Fi−1] ≥mi−1 +

K∑
k=1

vkδk(µk,i−1), (57)

E[ni(S)|Fi−1] ≥ ni−1(S) +

K∑
k=1

vkδk(µk,i−1), (58)

where {Fi}∞i=0 is the filtration generated by the (de-
terministic) initial belief vector and by the input vector
sequence {ξk,i}Kk=1, for i ≥ 1.

2) Both mi and ni(S) are nonpositive submartingales with
respect to {Fi}∞i=0 and there exist random variables m∞
and n∞(S) such that:

mi
a.s.−−→m∞, ni(S)

a.s.−−→ n∞(S). (59)

3) The expectations E[mi] and E[ni(S)] have finite limit.

Proof: We first prove the claim for mi. Applying the
arithmetic/geometric mean inequality we can write [30]:∑

τ∈Θ

K∏
`=1

[
ψ̂`k,i(τ)

]a`k
≤
∑
τ∈Θ

K∑
`=1

a`kψ̂`k,i(τ) = 1. (60)

Therefore, in view of (3c) and (60) we get:

µk,i(θ0) =

K∏
`=1

[
ψ̂`k,i(θ0)

]a`k
∑
τ∈Θ

K∏
`=1

[
ψ̂`k,i(τ)

]a`k ≥
K∏
`=1

[
ψ̂`k,i(θ0)

]a`k
,

(61)
which, using the definition of ψ̂`k,i from (9), yields:

µk,i(θ0) ≥



K∏
`=1

[ψ`,i(θ0)]
a`k , if θTX = θ0,

ψk,i(θ0)

K∏
`=1

[1−ψ`,i(θTX)]
a`k

1−ψk,i(θTX)
, if θTX 6= θ0.

(62)
Exploiting the identity

∑
k a`kvk = v`, from (62) we get,

independently of the choice of θTX:

mi =

K∑
k=1

vk logµk,i(θ0) ≥
K∑
k=1

vk logψk,i(θ0), (63)

which, further using (3a), implies:

mi ≥mi−1 +

K∑
k=1

vk log
Lk(ξk,i|θ0)∑

τ∈Θ

Lk(ξk,i|τ)µk,i−1(τ)
. (64)

Now, taking the conditional expectation E [ · |Fi−1] on both
sides of (64), we obtain:

E [mi|Fi−1] ≥mi−1 +

K∑
k=1

vkδk(µk,i−1), (65)

where δ(·) is defined in (56). This proves part 1) for mi. Since
δk(µk,i−1) ≥ 0 (it is a KL divergence), we also have that mi

is a submartingale:

E [mi|Fi−1] ≥mi−1. (66)

Therefore, calling upon the martingale convergence theo-
rem [25], the sequence mi converges almost surely. This
proves part 2) for mi. Finally, part 3) for mi follows by
taking the total expectation on both sides of (66):

0 ≥ E [mi] ≥ E [mi−1] ≥ · · · ≥ m0, (67)

which implies that the sequence of expectations converges
(since it is nondecreasing and bounded from above).

Now we focus on ni(S). In view of (3c), (15) and (60):

µk,i(Sk)=
∑
θ∈Sk

K∏
`=1

[
ψ̂`k,i(θ)

]a`k
∑
τ∈Θ

K∏
`=1

[
ψ̂`k,i(τ)

]a`k ≥
∑
θ∈Sk

K∏
`=1

[
ψ̂`k,i(θ)

]a`k
(68)

and since from the definition of Sk in (54) we see that θTX /∈
Sk for any agent k, by applying (9) and (15) we obtain:

µk,i(Sk) ≥ ψk,i(Sk)

K∏
`=1

[
1−ψ`,i(θTX)

]a`k
1−ψk,i(θTX)

, (69)



10

which, using the identity
∑
k a`kvk = v`, implies the inequal-

ity:

ni(S) ≥
K∑
k=1

vk logψk,i(Sk)

= ni−1(S) +

K∑
k=1

vk log
Lk(ξk,i|θ0)∑

τ∈Θ

Lk(ξk,i|τ)µk,i−1(τ)
,

(70)

where the equality follows from (3a) and the fact that for
θ ∈ Sk we have Lk,θ = Lk,θ0 . The proof can be completed
by repeating the same steps made to prove (65)–(67) starting
from (64).

Corollary 3 (Expectation of Log-Beliefs). Let Assumptions 2
and 3 hold. For all k = 1, 2, . . . ,K and all i ≥ 1 we have:

E
[
log

1

ψk,i(θ0)

]
≤ |m0|

vk
, E

[
log

1

ψk,i(Sk)

]
≤ |n0(S)|

vk
.

(71)

Proof: Let us first prove the claim for mi. Using (3a)
and (56), we have that:

E
[
log

1

ψk,i(θ0)

]
= E

[
log

1

µk,i−1(θ0)

]
− E [δk(µk,i−1)]

≤ E
[
log

1

µk,i−1(θ0)

]
, (72)

where the inequality follows from the fact that δk(µk,i) is
nonnegative (it is a KL divergence). Noting that by definition
vk logµk,i−1(θ0) ≥mi−1, and using (67), we have:

E
[
log

1

µk,i−1(θ0)

]
≤ −E[mi−1]

vk
≤ −m0

vk
=
|m0|
vk

, (73)

and by replacing (73) into (72) we get the claim for mi. Now,
using (3a) and (15), and noting that Lk,θ = Lk,θ0 for θ ∈ Sk,
we have:

E
[
log

1

ψk,i(Sk)

]
= E

[
log

1

µk,i−1(Sk)

]
− E[δk(µk,i−1)].

(74)

The proof can be completed by repeating the same steps made
to obtain (73) from (72).

Lemma 2 (All Agents Discard Distinguishable Hypotheses).
Let Dk 6= ∅ and let Assumptions 2, 3 and 5 hold. For all
k = 1, 2, . . . ,K and all τ ∈ Dk:

µk,i(τ)
p−→ 0. (75)

Proof: We prove the claim by considering an arbitrary
agent k with |Dk| > 0. Since from (65) we have:

0 ≤
K∑
k=1

vkE [δk(µk,i−1)] ≤ E[mi]− E[mi−1]. (76)

Then, in view of part 3) of Lemma 1, and using the squeeze
theorem, we have:

lim
i→∞

K∑
k=1

vkE [δk(µk,i−1)] = 0. (77)

Recalling that vk > 0, we conclude that δk(µk,i−1) converges
to zero in mean, and therefore also in probability:

δk(µk,i−1)
p−→ 0. (78)

Introducing the total variation distance ‖f − g‖ between the
probability measures associated to two distributions f and g,
and applying Pinsker’s inequality [26], we can lower bound
the KL divergence δk(µk,i−1) as follows:

δk(µk,i−1)≥ 1

2

∥∥∥Lk(θ0)−
∑
τ∈Θ

µk,i−1(τ)Lk(τ)
∥∥∥2

=
1

2

( ∑
θ∈Dk

µk,i−1(θ)
)2∥∥∥Lk(θ0)−

∑
τ∈Dk

α(τ)Lk(τ)
∥∥∥2

,

(79)

where the equality holds since:

Lk(θ0)−
∑
τ∈Θ

µk,i−1(τ)Lk(τ)

=

(
1−

∑
τ∈Ik∪{θ0}

µk,i−1(τ)

)
Lk(θ0)−

∑
τ∈Dk

µk,i−1(τ)Lk(τ)

=
∑
τ∈Dk

µk,i−1(τ)

(
Lk(θ0)−

∑
τ∈Dk

α(τ)Lk(τ)

)
, (80)

having defined α(τ) =
µk,i−1(τ)∑

θ∈Dk
µk,i−1(θ) . Observe now that

Assumption 5 requires that the true likelihood is different from
any convex combination of the distinguishable hypotheses.
Since it can be shown that the total variation distance:∥∥∥Lk(θ0)−

∑
τ∈Dk

α(τ)Lk(τ)
∥∥∥ (81)

is continuous with respect to α, we conclude that the minimum
value b of this distance is taken at some point(s) α, and this
minimum must be strictly positive, otherwise we would have
an α for which Lk(θ0) could be written as a convex combina-
tion of the distinguishable likelihoods, violating Assumption 5.
Therefore, we can write:∥∥∥Lk(θ0)−

∑
τ∈Dk

α(τ)Lk(τ)
∥∥∥ ≥ b > 0, (82)

which, by substituting into (79), yields

δk(µk,i−1) ≥ b2

2

(∑
θ∈Dk

µk,i−1(θ)

)2

, (83)

and the proof is complete in view of (78).

Lemma 3 (Evolution of Non-Transmitted Hypotheses). Let
Assumptions 2 and 3 hold. Assume that {{θ0} ∪ Ik} \ {θTX}
is nonempty. For any τ ∈ Dk \ {θTX}:

µk,i(τ)
a.s.−−→ 0. (84)

Proof: Let us consider τ ∈ Dk \ {θTX} and θ ∈
{{θ0} ∪ Ik} \ {θTX}. Using (3a), (3c), and (9), we can write
the recursion:

log
µk,i(θ)

µk,i(τ)
= log

µk,i−1(θ)

µk,i−1(τ)
+ log

Lk(ξk,i|θ0)

Lk(ξk,i|τ)
(85)

and unfolding it we get:

log
µk,i(θ)

µk,i(τ)
= log

µk,0(θ)

µk,0(τ)
+

i∑
j=1

log
Lk(ξk,j |θ0)

Lk(ξk,j |τ)
. (86)

Now divide (86) by i and take the limit as i goes to infinity.
In view of Assumptions 2 and 3, and since τ ∈ Dk, the strong
law of large numbers yields to the finite, strictly positive limit:

1

i
log

µk,i(θ)

µk,i(τ)

a.s.−−→ DKL(Lk,θ0‖Lk,τ ), (87)
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and therefore log
µk,i(θ)
µk,i(τ)

a.s.−−→ +∞, leading to the claim.

Lemma 4 (Ratios of Beliefs of Distinguishable and Indis-
tinguishable Hypotheses). Let θTX = θ0, and let Assump-
tions 2, 3 and 5 hold. For each k, the sequence ψk,i(Dk)

ψk,i(Ik) is a
nonnegative martingale with respect to the filtration {Fi}∞i=0

generated by the (deterministic) initial belief vector and by
the input vector sequence {ξk,i}Kk=1 for i ≥ 1. Moreover, this
martingale vanishes almost surely.

Proof: In view of (3a) and (15) we have:

ψk,i(Dk)

ψk,i(Ik)
=

∑
τ∈Dk

ψk,i(τ)∑
τ∈Ik

ψk,i(τ)

=
1

µk,i−1(Ik)

∑
τ∈Dk

µk,i−1(τ)
Lk(ξk,i|τ)

Lk(ξk,i|θ0)
, (88)

and since for each τ ∈ Θ:

E
[
Lk(ξk,i|τ)

Lk(ξk,i|θ0)

]
= 1, (89)

we conclude that the random sequence ψk,i(Dk)
ψk,i(Ik) is a martin-

gale:

E
[
ψk,i(Dk)

ψk,i(Ik)

∣∣∣∣Fi−1

]
=

1

µk,i−1(Ik)

∑
τ∈Dk

µk,i−1(τ)E
[
Lk(ξk,i|τ)

Lk(ξk,i|θ0)

]
=
µk,i−1(Dk)

µk,i−1(Ik)
=
ψk,i−1(Dk)

ψk,i−1(Ik)

×
∏K
`=1 [1− ψ`,i−1(θ0)]

a`k

1− ψk,i−1(θ0)

1− ψk,i−1(θ0)∏K
`=1 [1− ψ`,i−1(θ0)]

a`k︸ ︷︷ ︸
=1

,

(90)

where the last equality follows from (3a) and (9). Therefore,
the sequence ψk,i(Dk)

ψk,i(Ik) converges almost surely [25], and to
prove that the limit is 0 it suffices to show that:

ψk,i(Dk)

ψk,i(Ik)

p−→ 0. (91)

The convergence in (91) comes from [24, Lemma 7], where
i) the sequence ψk,i(Dk) plays the role of xi, since from
Lemma 2 and Assumption 2 we know that it converges to 0
in probability; and ii) the sequence 1

ψk,i(Ik) plays the role of
yi, since calling upon Markov’s inequality and Corollary 3 for
Sk = Ik we have:

P
[

1

ψk,i(Ik)
> M

]
= P

[
log

1

ψk,i(Ik)
> log(M)

]
≤ 1

log(M)
E
[
log

1

ψk,i(Ik)

]
≤ 1

log(M)

|n0(S)|
vk

M→∞−→ 0.

(92)

APPENDIX B
PROOF OF THEOREM 1

Since θTX 6= θ0, then {{θ0} ∪ Ik} \ {θTX} is nonempty
and (21) follows directly from Lemma 3. Therefore, since:

µk,i(θTX)+µk,i({{θ0}∪Ik}\{θTX})+µk,i(Dk\{θTX})=1,
(93)

and since (20) is an immediate consequence of (21) and (23),
it remains to prove (23).

Under global identifiability we have θTX ∈ Dh for some
agent h, and therefore from Lemma 2 we have:

µh,i(θTX)
p−→ 0. (94)

Now, define:

ui ,
Lh(ξh,i|θTX)

Lh(ξh,i|θ0)
, (95)

vi ,
µh,i−1(θTX)∑

τ∈Dh

Lh(ξh,i|τ)

Lh(ξh,i|θ0)
µh,i−1(τ) +

(
1− µh,i−1

(
Dh

)) .
(96)

Calling upon Slutsky’s theorem we have [31]:

ψh,i(θTX) = uivi
p−→ 0. (97)

In fact: i) term ui, which is well defined due to Assump-
tion 2, has constant distribution over time, whereas ii) term vi
vanishes in probability, as one can verify from (75), (94) and
using Slutsky’s theorem a second time to obtain:∑

τ∈Dh

Lh(ξh,i|τ)

Lh(ξh,i|θ0)
µh,i−1(τ)

p−→ 0. (98)

Consider now an agent k for which ahk > 0. Using (3c)
and (9) we can write:

µk,i(θTX) ≤ µk,i(θTX)

1− µk,i(θTX)
=

K∏
`=1

(
ψ`,i(θTX)

1−ψ`,i(θTX)

)a`k
≤ [ψh,i(θTX)]

ahk
K∏
`=1

(
1

ψ`,i(θ0)

)a`k
, (99)

where we used the fact that:

1−ψ`,i(θTX) ≥ ψ`,i(θ0) (100)

since θTX 6= θ0. Now we apply [24, Lemma 7] to the RHS
of (99) with: i) the sequence [ψh,i(θTX)]

ahk in the role of xi,
since it converges in probability to zero according to (97); and
ii) the sequence

∏K
`=1

(
1

ψ`,i(θ0)

)a`k
in the role of yi, since

exploiting Markov’s inequality and Corollary 3 we have:

P

[
K∏
`=1

(
1

ψ`,i(θ0)

)a`k
> M

]

= P

[
K∑
`=1

a`k log
1

ψ`,i(θ0)
> logM

]

≤ 1

logM

K∑
`=1

a`kE
[
log

1

ψ`,i(θ0)

]

≤ |m0|
logM

K∑
`=1

a`k
v`

M→∞−→ 0. (101)

Therefore, from [24, Lemma 7] we conclude that the RHS of
(99) vanishes in probability, implying that µk,i(θTX)

p−→ 0.
Since the network is strongly connected (Assumption 1), by
iterating the above reasoning we conclude that µk,i(θTX)

p−→ 0
for all agents, which, combined with (21) and (93), yields:

µk,i({{θ0} ∪ Ik} \ {θTX}) p−→ 1. (102)
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By further using (54) and (55) with the choice Sk = {{θ0} ∪
Ik} \ {θTX}, from (102) we get: ni(S)

p−→ 0. From part 2) of
Lemma 1, this convergence must take place almost surely:

ni(S) =

K∑
k=1

vk logµk,i(Sk)
a.s.−−→ 0, (103)

and since vk > 0 for all k, we must have:

µk,i(Sk) = µk,i(Ik \ {θTX}) + µk,i(θ0)
a.s.−−→ 1, (104)

for every agent k. Finally, since from (3c) we have that for
any indistinguishable hypothesis θ ∈ Ik \ {θTX}:

µk,i(θ)

µk,i(θ0)
=

µk,0(θ)

µk,0(θ0)
, (105)

which implies (23) in view of (15), and the proof is complete.

APPENDIX C
PROOF OF THEOREM 2

We consider separately the cases ρ = 0 and ρ > 0.
I. Case ρ = 0. First of all, note that for ρ = 0 we must

prove only (24). In view of (18), if ρ = 0 we must have a
“strong” agent h with ρh = 0, a condition that, in view of
(16) and Assumption 3, implies Ih = ∅. From Lemma 2 we
have that:

µh,i(θ0)
p−→ 1. (106)

Now using (3a) we can write:

ψh,i(θ0) =
µh,i−1(θ0)∑

τ∈Θ\{θ0}

Lh(ξh,i|τ)

Lh(ξh,i|θ0)
µh,i−1(τ) + µh,i−1(θ0)

.

(107)
Since i) the ratios Lh(ξh,i|τ)/Lh(ξh,i|θ0) are identically
distributed, and ii) µh,i−1(τ) vanishes in probability for
τ ∈ Θ \ {θ0} in view of (106), from Slutsky’s theorem we
have [31]: ∑

τ∈Θ\{θ0}

Lh(ξh,i|τ)

Lh(ξh,i|θ0)
µh,i−1(τ)

p−→ 0, (108)

and therefore from (106)–(108) we get:

ψh,i(θ0)
p−→ 1. (109)

Consider now an agent k with ρk > 0 and ahk > 0. In view
of (9) we can write (recall that we are considering the case
θTX = θ0):

µk,i(Ik) <
µk,i(Ik)

µk,i(θ0)
=

ψk,i(Ik)

1−ψk,i(θ0)

K∏
`=1

(
1−ψ`,i(θ0)

ψ`,i(θ0)

)a`k
< (1−ψh,i(θ0))ahk

K∏
`=1

(
1

ψ`,i(θ0)

)a`k
p−→ 0,

(110)

where we used the fact that:
ψk,i(Ik)

1−ψk,i(θ0)
=

ψk,i(Ik)

ψk,i(Ik) +ψk,i(Dk)
≤1, (111)

whereas the convergence comes from [24, Lemma 7] where:
i) the sequence (1 − ψh,i(θ0))ahk plays the role of xi, since
it converges in probability to zero according to (109); and
ii) the sequence

∏K
`=1

(
1

ψ`,i(θ0)

)a`k
plays the role of yi, as

it can be seen by exploiting Corollary 3 as we already did

in (101). Thus, since µk,i(θ0) = 1 − µk,i(Ik) − µk,i(Dk),
from (75) and (110) we get µk,i(θ0)

p−→ 1. Since the network
is strongly connected (Assumption 1), by iterating the above
reasoning we conclude that µk,i(θ0)

p−→ 1 for any agent, which
implies mi =

∑K
k=1 vk logµk,i(θ0)

p−→ 0. From part 2) of
Lemma 1, this convergence must take place almost surely:∑K
k=1 vk logµk,i(θ0)

a.s.−−→ 0. Since vk > 0 for all k, we must
have µk,i(θ0)

a.s.−−→ 1 for every agent k, which concludes the
proof for the case ρ = 0.

II. Case ρ > 0. In this case Ik is nonempty for any agent k,
and (25) immediately follows from Lemma 3. Thus, we focus
on proving (24) and (26).

From (3a) and (3c) we have, for each agent k:

µk,i(Ik)

µk,i(θ0)
=

K∏
`=1

(
ψ`,i(I`)

ψ`,i(θ0)

)a`k ψk,i(Ik)

1−ψk,i(θ0)

K∏
`=1

(
1−ψ`,i(θ0)

ψ`,i(I`)

)a`k
.

(112)
Using (9) and since the likelihood of an indistinguishable
hypothesis is equal to the likelihood of the true hypothesis,
we get:

ψ`,i(I`)

ψ`,i(θ0)
=
L(ξ`,i|θ0)µ`,i−1(I`)

L(ξ`,i|θ0)µ`,i−1(θ0)
=
µ`,i−1(I`)

µ`,i−1(θ0)
, (113)

whereas from the definition of distinguishable and indistin-
guishable sets we have:

1−ψ`,i(θ0)

ψ`,i(I`)
=
ψ`,i(I`) +ψ`,i(D`)

ψ`,i(I`)
= 1+

ψ`,i(D`)

ψ`,i(I`)
. (114)

Therefore, if we introduce the vectors:

yi , col

{
log

µk,i(Ik)

µk,i(θ0)

}K
k=1

, (115)

xi,col

{
log

((
1+
ψk,i(Dk)

ψk,i(Ik)

)−1 K∏
`=1

(
1 +

ψ`,i(D`)

ψ`,i(I`)

)a`k)}K
k=1

,

(116)

we can recast (112) in the vector form yi = A>yi−1 + xi.
Unfolding the recursion we get:

yi = (Ai)>y0 +

i−1∑
j=0

(Aj)>xi−j . (117)

Let V be the K ×K matrix whose columns are all equal to
the Perron eigenvector, i.e., V = v1>. This matrix satisfies
the following properties for all i = 0, 1, . . .:
• The vectors xi in (116) are in the null space of V >:2

V >xi = 0. (119)

• There exist two constants κ > 0 and 0 < β < 1 such
that [27, Th. 8.5.1, p. 516]:

max
k,`=1,...,K

∣∣[Ai − V ]k`
∣∣ ≤ κβi. (120)

In view of (119) we can rewrite (117) as:

yi = (Ai)>y0 +

i−1∑
j=0

Bjxi−j , (121)

2In fact, using the identity
∑

k a`kvk = v`, we have that the term∑K
k=1 vk[xi]k is the logarithm of:

K∏
k=1

(
1 +

ψk,i(Dk)

ψk,i(Ik)

)−vk K∏
`=1

(
1 +

ψ`,i(D`)

ψ`,i(I`)

)∑
ka`kvk

= 1. (118)
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where Bj , (Aj − V )>. Now we prove that:

∥∥∥ i−1∑
j=0

Bjxi−j

∥∥∥
∞

a.s.−−→ 0. (122)

Letting zi , κ
∑K
`=1 |[xi]`|, we can write:

∥∥∥ i−1∑
j=0

Bjxi−j

∥∥∥
∞

= max
k∈[1,K]

∣∣∣ i−1∑
j=0

K∑
`=1

[Bj ]k`[xi−j ]`

∣∣∣
≤

i−1∑
j=0

max
k∈[1,K]

(∣∣[Bj ]k`∣∣) K∑
`=1

∣∣[xi−j ]`∣∣ ≤ i∑
j=0

βjzi−j , (123)

where in the last step we used the bound from (120). From
Lemma 4 it is readily seen that [xi]`

a.s.−−→ 0 for any `, and,
hence, zi

a.s.−−→ 0. This implies that, almost surely, for any
ε > 0 there exists a (random) value Nε such that for each
i >Nε we have zi < ε(1− β). Therefore, we can write:

i∑
j=0

βjzi−j =

i−Nε−1∑
j=0

βjzi−j +

i∑
j=i−Nε

βjzi−j

< ε+
i∑

j=i−Nε

βjzi−j a.s., (124)

where in the inequality we also used the fact that
∑∞
j=0 β

j =
1

1−β . Moreover, since βi is decreasing, we get:

i∑
j=i−Nε

βjzi−j < βi
1

βNε

Nε∑
j=1

zj , β
iwε, (125)

where wε is almost-surely finite in view of Assumptions 2
and 3. Thus, from (124) we obtain:

lim sup
i→∞

i∑
j=0

βjzi−j ≤ ε a.s., (126)

which proves (122) in view of the arbitrariness of ε. Since
from (120):

[(Ai)>y0]k
i→∞−−−→

[
V >y0

]
k

= log
1

ρ
, (127)

where we have applied the definition of the network confusion
ratio ρ — see (18). Then, Eqs. (121) and (122) imply:

µk,i(Ik)

µk,i(θ0)

a.s.−−→ 1

ρ
. (128)

On the other hand, from (25) we have:

µk,i(θ0) + µk,i(Ik)
a.s.−−→ 1, (129)

and since we can write:

µk,i(θ0) + µk,i(Ik) = µk,i(θ0)

(
1 +

µk,i(Ik)

µk,i(θ0)

)
, (130)

the convergences in (128) and (129) imply (24) and (26). Fi-
nally, for each pair of indistinguishable hypotheses θ, τ ∈ Ik:

µk,i(τ)

µk,i(θ)
=
µk,0(τ)

µk,0(θ)
, (131)

and (27) follows from (15).
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