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Abstract

Partition-wise models offer a flexible approach for modeling complex and multidimensional

data that are capable of producing interpretable results. They are based on partitioning the

observed data into regions, each of which is modeled with a simple submodel. The success of

this approach highly depends on the quality of the partition, as too large a region could lead to

a non-simple submodel, while too small a region could inflate estimation variance. This paper

proposes an automatic procedure for choosing the partition (i.e., the number of regions and the

boundaries between regions) as well as the submodels for the regions. It is shown that, under the

assumption of the existence of a true partition, the proposed partition estimator is statistically

consistent. The methodology is demonstrated for both regression and classification problems.

Keywords: binary particle swarm optimization, change point detection, variable selection

1 Introduction

With the advent of complex data, partition-wise models have become one of the more important

classes of data processing and statistical inference methods. They work by partitioning the data

space into regions and assigning a simple model to each of these regions. When comparing with

fitting a single complicated non-linear model to the entire data space, partition-wise modeling
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comes with the advantage of creating simpler and potentially more sensible model interpretations.

Depending on the partition specifiers and objective functions to optimize, different fitting methods

have been proposed. One of the earliest methods is classification and regression tree (CART)

(Breiman et al. 1984), which recursively constructs a tree for the data space until all data within

each region exhibits homogeneous behavior. More recent methods such as local supervised learning

through space partitioning (Wang & Saligrama 2012) and cost-sensitive tree of classifiers (Xu

et al. 2013) have been proposed to give further error analysis and improve model validation speed,

respectively. Another method (Oiwa & Fujimaki 2014) partitions the data space into rectangular

grids and estimates the specific linear models for each region individually. Lastly, Eto et al. (2014)

build a tree structure for the data space using a Bayesian approach to estimate the splitting

locations.

In terms of classification, support vector machines (SVMs) proposed by Vapnik & Lerner (1963)

are one of the most widely used techniques in recent years. A partition-wise variant known as locally

linear support vector machines (LLSVM) is developed by Ladický & Torr (2011), which attempts

to detect decision boundaries that are almost linear and classify data around that region using local

linear classifiers. Another variant is the local deep kernel learning of Jose et al. (2013), which is a

tree-based classifier that has the goal of speeding up non-linear SVM prediction while maintaining

accuracy.

All of the method mentioned in the previous two paragraphs aim at improving the model fitness

and the estimation algorithm to comprehend the complex and massive data structure. However,

many lack the theoretical justification on the statistical behavior of the individual partitioned

regions and few theoretical results have been derived up to date. Among the results available in

the literature, most are on recursion based regression. For example, Gordon & Olshen (1978) and

Gordon & Olshen (1980) provide sufficient conditions on the estimator to be asymptotic Bayes

risk efficient and Lp consistent, respectively, and Logosi & Nobel (1996) provide a similar result

on histogram density estimation. More recently Toth & Eltinge (2011) consider data coming from

complex sample designs. They propose a method that incorporates the information from a complex

design when building regression trees, and establish sufficient conditions for asymptotic design L2
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consistency of these regression trees as estimator of the conditional mean of the population.

The goal of this paper is then to provide an automatic method for estimating the partition as

well as the submodel for each partitioned region. The method employs the minimum description

length (MDL) principle (Rissanen 1989, 2007) to define the best fitting partition-wise model. It is

shown that, under some mild regularity conditions, the proposed MDL estimate converges to the

true partition. In other words, the proposed method consistently estimates the number of regions

and the region boundaries. To the authors’ knowledge, this is the first theoretical result on the

consistency of a partition estimate for partition-wise models. It is an important result, as the

quality of an estimated partition is crucial to the predictive power of an estimated partition-wise

model.

The rest of this paper is organized as follow. Section 2 introduces the partition-wise models

for the regression and classification settings. Section 3 presents the proposed method for estimat-

ing the partition-wise models. Section 4 derives the theoretical results while Section 5 discusses

the optimization techniques. Section 6 provides some empirical results and Section 7 concludes.

Technical details can be found in the Appendix.

2 Partition-wise Models for Regression and Classification

This section defines the standard partition-wise linear models. For clarity, the simpler case in which

only one predictor contains change points is presented first.

Assume that the observed data (x′i, yi), i = 1, . . . , n, can be partitioned into m+ 1 regions, and,

for l = 1, . . . ,m+ 1, the lth region can be modeled by a linear model with sl predictors. Note that

sl can be different for different regions. Denote the total number of available predictors by P , so

xi = (1, xi,1, . . . xi,P )′ and sl ≤ P for all l. For r = 1, . . . ,m, let the rth change point be denoted by

kr ∈ N, where k0 = 1 and km+1 = n; these change points define the boundaries at which adjacent

regions meet. The partition-wise linear model for the lth region is then

yi = x′iβl + εi, kl−1 < xi,p ≤ kl for some p ∈ {1, . . . P}, (1)

where βl is the vector of coefficients for the lth region and εi’s are i.i.d. N(0, σ2). This partition-wise
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linear model assumes a natural ordering on the pth predictor, and the change points are determined

with respect to this predictor. Thus model (1) is specified by the parameters m, K = {k1, . . . , km},

β = {β′1, . . . , β′m+1}′ and σ2.

Often times change points can occur at more than one predictor, thus one can extend (1) in the

following way. Denote by B (of size B) the set of predictors with change points; i.e. B ⊆ P, where

P is the set of original predictors. For each b ∈ B, denote by kjb,b the jthb change point for the bth

predictor, and lb the number of change points for the bth predictor. Write L = {lb : b ∈ B} and K

for the set of change locations. Similar to the definition of a region above, some particular subsets

of K form partitions in the data space (denote by Rr for the rth region). Denote the set of these

partitions by R, and let |R| = R. It is straightforward to see that
⋃
rRr is the smallest hypercube

that covers the data space. Then, for each r = 1, . . . , R, the partition-wise linear model is

yi = x′iβr + εi, kjb−1,b < xi,b ≤ kjb,b for some b ∈ B and some jb ∈ {1, . . . , lb + 1}. (2)

Also, let |βr| = sr, which may vary across r. If |B| = 1, then (2) simplifies to (1). For the method to

be proposed below, all parameters (B, L, K, β) are treated as unknown and have to be estimated.

It is important to point out that (2) is different from the tree structure of CART (Breiman et al.

1984). The usual tree based structure partitions the data space recursively, where one splits an

existing region into subregions without interfering with other existing regions. Model (2), however,

forms a grid space in the data space. See Figure 1 for a realization of this model.

Model (2) can be extended to a more general setting using the generalized linear model

g(E[yi|xi]) = x′iβr, kjb−1,b < xi,b ≤ kjb,b, (3)

where g(·) is a (known) link function. In particular, if one is interested in binary data, one could

use

g−1(x′iβr) =
ex
′
iβr

1 + ex
′
iβr

(4)

or

g−1(x′iβr) = Φ(x′iβr) with Φ as the cdf of the standard normal distribution, (5)

which corresponds to the logistic and probit model, respectively.
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Figure 1: A realization of model (2) viewed from two different angles. It contains two predictors,

with change points at −1 for x1 and 8 for x2. The red dots are observations and the gray planes

are the true signals.

3 Change Point Detection and Variable Selection Using MDL

3.1 Linear Regression

In standard linear regression theory, the estimate of β can be obtained as

β̂ = arg min
β∈RP

n∑
i=1

(yi − x′iβ)2.

Under the normal assumption for ε, the least squares solution is the same as the maximum likelihood

solution. Extension of this to the partition-wise linear model (2) can be achieved as follows. As

seen in (2), the partition-wise linear model for regression is determined by the number of change

points lb for each predictor in B, the change locations K = (k1,1, . . . , kl1,1, k1,2, . . . , klB ,B), and the

parameters for each region β = {β1, . . . , βR}. If both L and K are known, then β can be estimated

by solving

β̂ = arg min
β

∑
Rr∈R

∑
i∈Rr

(yi − x′iβr)
2.

Note that in practical minimization, it is assumed that the data is organized in a way that the data

points of each region are grouped together.
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The estimation of L and K is, however, less trivial, as different L will give different K; i.e., the

model dimensions are different. The rest of this section will apply the MDL principle to derive an

estimate for L and K.

The MDL principle is a model selection criterion. When applying the MDL principle, the “best”

model is defined as the one that allows the greatest compression of the data y = (y1, . . . , yn). That

is, the “best” model enables us to store the data in a computer with the shortest code length. There

are a few versions of MDL, and the “two-part” version will be used here. The first part encodes

the fitted model being considered, denoted by F̂ , and the second part encodes the residuals left

unexplained by the fitted model, denoted by Ê = ŷ− y, where ŷ is the fitted value for y. Denote

by CLF (y) the code length of y under the model F , then

CLF (y) = CLF (F̂) + CLF (Ê |F̂). (6)

The goal is to find the model F̂ that minimizes (6). To use (6), the two terms on the right need to

be calculated. To fit the model, one should first determine which of the P predictors contain change

points, and the number of change points lb for each predictor b. Also, let njb,b = kjb,b − kjb−1,b be

the number of observations between any two change points jb−1 and jb for some predictor b. Since

F̂ is completely characterized by B, L,K and β, the code length of F̂ can be decomposed as

CLF (F̂) = CLF (B) + CLF (L) + CLF (K) + CLF (β)

= CLF (B) + CLF (l1) + · · ·+ CLF (lB) + CLF (n1,1) + . . .

+ CLF (njB+1,B) + CLF (β1) + · · ·+ CLF (βR). (7)

According to Rissanen (1989), it requires approximately log2 I bits to encode an integer I if the

upper bound is unknown, and log2 Iu bits if I is bounded from above by Iu. To encode B, one

needs to determine which of the P predictors are selected. This takes B log2 P bits, as each of the

B predictors can be identified by an index upper bounded by P . For each set of {lb, n1,b, . . . , nlb,b},

b = 1, . . . , B, one needs to first decide which of the B predictors are chosen (with code length

log2(B + 1)), then encode lb and n1,b, . . . , nlb,b; therefore

CLF (lb) + CLF (n1,b) + · · ·+ CLF (nlb,b) = log2(B + 1) + log2(lb + 1) +

lb+1∑
z=1

log2 nz,b.
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Note the 1 is added in the first two log terms for computational purposes. Lastly, by Rissanen

(1989), it takes 1
2 log2N bits to encode a maximum likelihood estimate of a parameter computed

from N observations. To encode βr, one needs to determine which region βr belongs to, which

takes log2R bits, and since |βr| = sr,

CLF (βr) = log2R+
sr
2

log2 nr,

where nr is the number of observations in Rr. Putting everything together, (7) becomes

CLF (F̂) = B log2 P +
∑
b∈B

[
log2(B + 1) + log2(lb + 1) +

lb+1∑
z=1

log2 nz,b

]
+
∑
Rr∈R

(
log2R+

sr
2

log2 nr

)
.

(8)

To obtain the second term of (6), one can use the result of Rissanen (1989) that the code length

of the residuals Ê is the negative of the log-likelihood of the fitted model F̂ . With the assumption

ε follows N(0, σ2),

CLF (Ê |F̂) =
n

2
log(σ̂2) with σ̂2 =

1

n

∑
Rr∈R

∑
i∈Rr

(yi − x′iβ̂r)
2. (9)

Combining (8) and (9), the proposed MDL criterion for the best fitting partition-wise linear model

for regression is

MDLreg(B,L,K,β) =B log2 P +
∑
b∈B

[
log2(B + 1) + log2(lb + 1) +

lb+1∑
z=1

log2 nz,b

]

+
∑
Rr∈R

[
log2R+

sr
2

log2 nr

]
+
n

2
log

(
1

n

∑
Rr∈R

∑
i∈Rr

(yi − x′iβ̂r)
2

)
. (10)

3.2 Logistic and Probit Regression

The MDL criterion for logistic regression can be derived by replacing the last term in (10) with the

negative log-likelihood of model (3)–(4), which gives

MDLbin(B,L,K,β) = B log2 P +
∑
b∈B

[
log2(B + 1) + log2(lb + 1) +

lb+1∑
z=1

log2 nz,b

]

+
∑
Rr∈R

[
log2R+

sr
2

log2 nr

]
−
∑
Rr∈R

∑
i∈Rr

[
yix
′
iβ̂r − log

(
1 + ex

′
iβ̂r
)]
. (11)

A similar expression can be derived for the probit regression.
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4 Large-Sample Theory

In order to assess the asymptotic behavior of the MDL criteria derived above, a few assumptions

are needed on the underlying random process. First it is assumed that the observations {(x′i, yi)}ni=1

follow model (2), (4) or (5). Also, it is assumed that there exists a constantM0 such that |xi|∞ ≤M0

for all i. This assumption is needed to ensure the rate of growth of the predictors are restricted.

Denote the true parameters with the superscript “0”. Therefore the true number of change points for

the bth predictor is written as l0b , and the corresponding change points are denoted as {k0
1,b, . . . , k

0
l0b ,b
}.

Denote the relative locations of the change points by k0
jb,b

= bλ0
jb,b
nc, and 0 < λ0

1,b < · · · < λ0
l0b ,b

< 1,

for all b ∈ B. To guarantee sufficient data for consistent parameter estimation within each region,

it is assumed that there exists a δ > 0 such that δ � min
jb

(λ0
jb,b
− λ0

jb−1,b). The collection of all

potential change locations can then be written as

Λ =
{

(λ1,b, . . . , λlb,b) : b ∈ B, 0 < λ1,b < · · · < λl0b ,b
< 1, δ � min

jb
(λjb,b − λjb−1,b)

}
. (12)

Then, for the regression setting, the estimation of the parameters B0, L0, Λ0 and β0 can be found

by minimizing the MDL criterion:

(B̂, L̂, Λ̂, β̂) = arg min
B,L,Λ,β∈M

2

n
MDLreg(B,L,Λ,β), (13)

where M = {(B,L,Λ,β) : B ⊆ P,Λ ∈ Λ}. Similarly, one can set up a mirror version for the

logistic/probit model setting by minimizing the MDL criterion:

(B̂, L̂, Λ̂, β̂) = arg min
B,L,Λ,β∈M

1

n
MDLbin(B,L,Λ,β), (14)

where MDLbin(·) is the MDL criterion (11) for binary data with logistic regression. With this set

up, the following theorems are proved in the Appendix.

Theorem 4.1. Suppose the number of change points L0 is known. Then estimating the partition-

wise linear model (2) leads to

Λ̂→ Λ0 with probability one (n→∞),

where Λ̂ is the minimizer of the MDL criterion (13). Similarly, estimating the partition-wise logistic

model (4) leads to

Λ̂→ Λ0 with probability one (n→∞),
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where Λ̂ is the minimizer of the MDL criterion (14). A parallel result holds for the probit model (5)

with a MDL criterion designed for the probit link.

The above assumption that L0 is known is generally not practical. However, the theoretical

result for the case of unknown L0 is much harder to work with, and is usually restricted to some

special cases on the εi’s, such as the normal assumption.

Theorem 4.2. Suppose {(x′i, yi)}ni=1 follow the partition-wise linear model (2) and {εi}ni=1 are

normally distributed. Furthermore, assume the set of predictors with change points B0 is known.

Then the minimizers (L̂, Λ̂) of the MDL criterion (13) satisfy

L̂ → L0 with probability one (n→∞),

and

Λ̂→ Λ0 with probability one (n→∞).

With Theorem 4.2, a similar result for probit model can be established:

Corollary 4.1. Suppose {(x′i, yi)}ni=1 follow the probit model (5) and (L̂, Λ̂) are the minimizers of

an MDL criterion designed for the probit link. Then a similar result of Theorem 4.2 holds.

An inspection of the proof shows that the consistency result depends highly on the tail behavior

of the likelihood function, one that the logistic model does not possess. Theoretical development

for the proof of this case is beyond the scope of this paper, although simulations suggest that the

proposed MDL criterion for logistic regression correctly identifies B and L in the finite sample

scenarios that were tested.

5 Practical Minimization of the MDL Criterion

The solution to the optimization problem of (13) or (14) involves a mix of discrete and continuous

variables, where one needs to first determine the change points and their locations, then do variable

selection and parameter estimation within each region. This section develops a fitting algorithm

that combines univariate change point detection and binary particle swarm optimization (BPSO)

to tackle this problem.
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5.1 Change Point Detection

The first step of the algorithm is to find a candidate set of change points for each predictor in the

data. Denote this set as Ksup, and its size by Ksup. Note that ideally K ⊆ Ksup. To locate the

candidate set, one can use the proposed MDL criterion ((10) or (11)) with the following procedure.

For the first predictor, one first locates the change location that minimizes the MDL criterion. Con-

ditioning on this first existing change location, one can locate a second change location similarly.

Note that this assumes change points only occur at one predictor. To guarantee there is sufficient

data for parameter estimation within each region, a minimum span constraint is imposed between

any two change locations. Repeat this procedure for all predictors until a maximum number of

change locations is reached, or until any of the candidate locations violate the minimum span con-

straint. Once the set Ksup is determined, BPSO will be used to refine the set K that minimizes (10)

or (11).

5.2 Selection of Change Points via BPSO

Particle swarm optimization (PSO) is a metaheuristic that aims to optimize a problem by iteratively

improving a set of candidate solutions (swarm) with respect to a criterion function (here, the MDL

criterion). The algorithm was first developed by Kennedy & Eberhart (1995), inspired by the

social behavior of bird flocking or fish schooling. The algorithm shares some similarities with most

evolutionary optimization algorithms such as genetic algorithms. In each, the algorithm initializes

an initial population of candidate solutions and searches for the optimal solution by updating

generations.

PSO first initializes a set of candidate solutions. At each generation, each individual solution

(particle) is updated according to a velocity value that suggests the current solution to converge

towards the current global optimal solution. Each particle then keeps track of the best solution

it has achieved so far (called pbest), as well as the best solution out of all the generated solutions

(called gbest). The algorithm iterates through these steps and stops when a certain stopping

criterion is met.

The original PSO was designed to solve optimization problems in continuous space. For dis-
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crete solutions (in particular, binary solutions), one needs to use a modified version, called BPSO

(Kennedy & Eberhart 1997, Shen et al. 2004). Roughly speaking, the BPSO proceeds in the same

manner as PSO, but the solutions are now restricted to take values of 0 and 1, while the velocities

are restricted to values between 0 and 1 through a sigmoid transformation. To apply BPSO to

select the number of change points and change locations, N particles are generated to encode the

locations of candidate change points, as followed: each particle Xi, i = 1, . . . , N , can be expressed

as a matrix of dimension P by n, with element values

Xi,jk =

 1, if the kth value of variable j is a break candidate,

0, otherwise.

In practice, one needs to ensure there are sufficiently many data points within each induced parti-

tion for sensible parameters estimation. For the current implementation, the particle should give

partitions that contain at least P observations in all induced partitions. Regenerate the particle if

this constraint is not met.

5.2.1 Initial Population

For the current problem, the swarm initialization is done in the following way. The first particle

(X1) encodes all the break candidates in the set Ksup. The remaining particles are split into two sets,

each with a different generating mechanism: each particle in the first half encodes a random subset

of Ksup, while each particle in the second half encodes a random subset of Ksup plus a random

adjustment on the selected change locations. From experiments, Ksup usually captures all the

correct change points with locations very close to the true locations. The suggested adjustments

are used to increase the solution search space and refine the estimated solutions. Once all the

particles are generated, evaluate all particles (including variable selection described in Section 5.3).

Set pbest of each particle as itself, and gbest the particle which gives the smallest MDL value.

Initial velocities are also generated at this step. In BPSO, velocity can be interpreted as the

probability that an element within the particle will take the value 1. The set of velocities has the

same dimension as the swarm; i.e., has N elements, each with dimension P by n. All velocities are

initialized to be 0.
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5.2.2 Update

At each iteration t, the first step is to update the velocity. For each particle i, each element of

velocity vi is updated via the formula

vti,jk = |ωvt−1
i,jk + c1 × r1 × (pbesti,jk −Xt−1

i,jk ) + c2 × r2 × (gbesti,jk −Xt−1
i,jk )|, (15)

where ω, c1, and c2 are tuning parameters, and r1, r2 ∼ U(0, 1). Using recommended settings, ω, c1,

and c2 are set to 1, 2, and 2 respectively. Note there is no guarantee that this updated velocity will

lie between 0 and 1, thus a sigmoid transformation is applied, and the final velocity is

vti,jk =
1

1 + e−v
t
i,jk

. (16)

Once the velocities are updated, the particles can be updated using the rule suggested in Shen et al.

(2004):

Xt
i,jk =


Xt−1
i,jk , if vti,jk ≤ a,

pbesti,jk, if a < vti,jk ≤
1
2(1 + a),

gbestjk, if 1
2(1 + a) < vti,jk ≤ 1

(17)

for some a ∈ (0, 1). The current implementation uses a = 0.5. Lastly, pbesti, i = 1, . . . , N , and

gbest are updated by comparing the MDL values of the new particles with the MDL values of

the old particles. For each particle i, pbesti = Xt
i if MDL(Xt

i ) < MDL(Xt−1
i ), and gbest =

arg minpbesti MDL(pbesti).

5.2.3 Mutation

To expand the search space and help achieving the global optimum faster, “mutation” is also

employed in the algorithm. In genetics, a mutation is a permanent change to a certain region

of a gene. In the proposed BPSO, mutation is conducted in the following way: first select the

best 10% of particles (i.e., models with the smallest MDL values). For each selected particle,

with equal probability, either (i) modify the number of change points, (ii) adjust the locations of

existing change points, or (iii) do both. Finally replace the worst 10% of particles with the mutated

particles. All updates and mutations should satisfy the minimal size constraint.
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5.2.4 Convergence

At the end of each iteration, compare the MDL value of the current gbest with the MDL value of

the previous gbest. The BPSO algorithm terminates if this value is unchanged for five consecutive

iterations.

5.3 Feature Selection

At this stage B, L and K are known, and the only parameter left unknown is β, the linear model

coefficients for each region. If |P| = P and there are R regions, the number of combinations of

possible models within all region is (2P+1)R (P + 1 to include the possibility of an intercept).

Heuristically, one can loop over each of these combinations, along with the estimated B, L and

K, and find the combination that results in the smallest MDL value. However, the number of

combinations grows exponentially in P and R, and soon the calculation will be intractable. Iterative

updating methods will be adopted to solve this problem.

Initially all regions will be assigned to have the full set of P; i.e., βr = {βr,0, βr,1, . . . , βr,P }′,

where βr,0 is the intercept. At each step, fix all regions but one, say the rth region, and find the

model that gives the smallest MDL along with all the other estimated parameter values. Apply this

procedure to the remaining regions, and restart again until the models within each region remain

unchanged across two large iterations.

5.4 Final Adjustment

Since the MDL criterion is non-convex, there is no guarantee that the solution from BPSO is a

global minimum solution. A final adjustment is then applied to the final solution from BPSO in

the following way. Locate the change points in the final solution from BPSO. For each subset of

change points, calculate the corresponding MDL value, as well as the MDL values of some small

adjustments of the change points (i.e., adjust the change locations slightly around the located

change points). For example, if the data contains four predictors and BPSO locates one change

point at the first and third predictor, then there will be four possible subsets of change points.

Return the model with the smallest MDL value, and this will be the final solution. Algorithm 1
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summarizes the above procedure.

Algorithm 1 Minimization of MDL

1: Apply MDL to each predictor to locate a set of candidate change points.

2: Initialize particles and velocities Xi, vi, i = 1, . . . N . Set pbesti = Xi and gbest =

arg minXi
MDL(Xi).

3: while BPSO convergence criterion is not met do

4: for i = 1 . . . N do

5: Update velocity vi using (15) and (16).

6: Update particle Xi using (17).

7: Conduct variable selection and calculate MDL value.

8: if MDL(pbesti) > MDL(Xi) then

9: pbesti = Xi

10: end if

11: end for

12: Replace the worst 10% particles with the mutation of the best 10% particles.

13: Update gbest = arg minpbesti MDL(pbesti).

14: end while

15: Apply final adjustment to gbest.

6 Empirical Performance

To evaluate the empirical performance of the proposed methodology, two sets of numerical experi-

ments were conducted. Applications of the proposed methodology to two real data sets were also

performed for comparison with a number of existing methods.

6.1 Simulation Study: Linear Regression

The following consists of two examples of partition-wise linear models with regression specifiers,

each with two different noise levels. Both examples consist of four predictors, all generated from

uniform distributions specified in Table 1. For each setting, two noise levels were used: ε ∼ N(0, 1)
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and ε ∼ N(0, 16). Change points exist at x1 and x3 with l1 = l3 = 1, and at x1 and x4 with

l1 = l4 = 1, respectively, for the two settings. The true β coefficients are shown in Table 2. All

simulations were conducted with 500 trials of n = 200 and n = 400 data points for each trial.

Table 1: Variable distribution for simulations in Section 6.1; ∗ indicates variable with change points,

† indicates significant variable in at least one region.

x1 x2 x3 x4

Setting 1 U(0, 7)∗† U(−5,−1)† U(5, 12)∗† U(−10,−4)†

Setting 2 U(4, 8)∗ U(−5, 0)† U(−9,−3)† U(0, 3)∗

Table 2: Change points and coefficients of β for simulations in Section 6.1.

Setting 1:

Region Change Points β1 β2 β3 β4

1 x1 ≤ 4, x3 ≤ 8.5 2 −2 −4 1

2 x1 > 4, x3 ≤ 8.5 1.5 1 3.5 −2

3 x1 ≤ 4, x3 > 8.5 −1.5 −4.3 −1.7 −2.6

4 x1 > 4, x3 > 8.5 −3 −1 2 1

Setting 2:

Region Change Points β2 β3

1 x1 ≤ 6, x4 ≤ 1.5 4.2 −4.6

2 x1 > 6, x4 ≤ 1.5 −4.2 −4.6

3 x1 ≤ 6, x4 > 1.5 4.2 4.6

4 x1 > 6, x4 > 1.5 −4.2 4.6

The following results were obtained:

Setting 1: For ε ∼ N(0, 1), all 500 trials selected the correct sets B = {x1, x3} and L for

both n = 200 and n = 400. Table 3 displays the error distributions between the estimated change

points and true change points (of those settings with the correct B and L). It can be seen that

the proposed method estimated the change points correctly with high accuracy. Lastly, results of

variable selection within each region is shown in Table 4. With a higher noise level ε ∼ N(0, 16),

499 and 500 of the trials give the correct sets B and L for n = 200 and n = 400 respectively.

The error distributions of the estimated change points and predictor selection results are shown

similarly in Tables 3 and 4 respectively. One can see that increasing the sample size leads to higher

predictor selection accuracy in both settings.

Setting 2: This setting aims to evaluate the situation when the change points occur at variables
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not significant in any subregions. For ε ∼ N(0, 1), 498 trials selected the correct B = {x1, x4} and

L for both n = 200 and n = 400. With the higher noise level ε ∼ N(0, 16), 498 selected the correct

sets with n = 200, while all all 500 selected correctly with n = 400. Tables 3 and 4 show the results

of this simulation.

Table 3: Mean and standard error of difference between estimated and true change point for

simulations in Section 6.1.

Setting 1 Setting 2

Change Point in x1 Change Point in x3 Change Point in x1 Change Point in x4

N(0, 1)
n = 200 0.0016 (0.0008) 0.0000 (0.0000) 0.0002 (0.0002) 0.0000 (0.0000)

n = 400 0.0007 (0.0004) 0.0000 (0.0000) 0.0000 (0.0002) 0.0000 (0.0000)

N(0, 16)
n = 200 0.0084 (0.0019) 0.0000 (0.0000) 0.0013 (0.0007) 0.0001 (0.0001)

n = 400 0.0012 (0.0009) 0.0000 (0.0000) 0.0004 (0.0004) 0.0000 (0.0000)

Table 4: Accuracy of variable selection with each region for simulations in Section 6.1.

Setting 1 Setting 2

Region 1 Region 2 Region 3 Region 4 Region 1 Region 2 Region 3 Region 4

N(0, 1)
n = 200 98% 96% 97% 97% 95% 94% 93% 95%

n = 400 98% 98% 99% 98% 97% 98% 99% 98%

N(0, 16)
n = 200 79% 22% 71% 18% 96% 95% 94% 95%

n = 400 97% 47% 95% 53% 97% 98% 99% 98%

6.2 Simulation Study: Classification using Logistic and Probit Regression

The following two settings assess the accuracy of the proposed method for logistic and probit

regression. All settings were simulated under model (4) and (5). Both settings consist of three

predictors, and the distribution for each predictor and the β coefficients are listed in Tables 5 and 6

respectively. Change points exist at x1 with l1 = 2 for the first setting, and at x1 and x3 with

l1 = l3 = 1 for the second setting. Again all simulations were conducted with 500 trials of n = 200

and n = 400 data points each.

The following results were obtained:
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Table 5: Variable distribution for logistic and probit regression simulations; ∗ indicates variable

with change points, † indicates significant variable in at least one region. Note that in Setting 2

the first predictor is discrete valued.

x1 x2 x3

Setting 1 U(0, 30)∗† U(0, 10)† U(0, 10)

Setting 2 U{0, . . . , 6}∗ U(0, 20)† U(−10, 10)∗†

Table 6: Change points and coefficients of β for logistic and probit regression simulation.

Setting 1:

Region Change Points Intercept β1 β2

1 x1 ≤ 10 0 1 −1.5

2 10 < x1 ≤ 20 0 1 −4.5

3 x1 > 20 15 −1 2

Setting 2:

Region Change Points β2 β3

1 x1 ≤ 3, x3 ≤ 0 2.1 5.1

2 x1 > 3, x3 ≤ 0 4.0 2.4

3 x1 ≤ 3, x3 > 0 4.2 −5.0

4 x1 > 3, x3 > 0 −2.9 3.2

• Logistic Regression:

Setting 1: A total of 464 trials selected the correct set B and L for n = 200. With increased

sample size, the number of trials with correct selection increased to 496. The results are shown

in Tables 7 and 8 in a similar fashion as before. This setting tests the proposed method’s

ability on detecting multiple change points at one dimension. Even though the coefficient of

x1 did not change across the first two regions, the proposed method still detected the change

on the second set of coefficients.

Setting 2: All 500 trials selected the correct B and L for both n = 200 and n = 400. One

can see that if a change point occurs at a discrete variable, the proposed method can detect

it with very high accuracy. The results are shown in Tables 7 and 8 in a similar fashion as

before.

• Probit Regression:

Setting 1: The results differ only slightly for probit regression. For the smaller sample
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size n = 200, 499 of those selected B and L correctly. With increased sample size, all 500

trials selected B correctly. Similar change point and variable selection results for the probit

regressions are presented in Tables 7 and 8.

Setting 2: All 500 trials selected B correctly for both n = 200 and n = 400. As one can see,

the results for logistic regression and probit regression are very similar.

Table 7: Mean and standard error of difference between estimated and true change point for

simulations in Section 6.2.

Setting 1 Setting 2

Change Point 1 in x1 Change Point 2 in x1 Change Point in x1 Change Point in x3

Logistic
n = 200 −0.2385 (0.0564) 0.0541 (0.0098) 0.0000 (0.0000) 0.0167 (0.0156)

n = 400 −0.0262 (0.0092) 0.0164 (0.0038) 0.0000 (0.0000) −0.0017 (0.0064)

Probit
n = 200 −0.1179 (0.0301) 0.0465 (0.0068) 0.0000 (0.0000) 0.0139 (0.0145)

n = 400 −0.0064 (0.0085) 0.0154 (0.0038) 0.0000 (0.0000) −0.0011 (0.0065)

Table 8: Accuracy of variable selection with each region for simulations in Section 6.2.

Setting 1 Setting 2

Region 1 Region 2 Region 3 Region 1 Region 2 Region 3 Region 4

Logistic Regression
n = 200 91% 78% 61% 86% 90% 93% 92%

n = 400 98% 93% 92% 91% 92% 94% 91%

Probit Regrssion
n = 200 89% 88% 76% 96% 90% 98% 96%

n = 400 96% 91% 95% 91% 97% 97% 95%

6.3 Real Data Analysis: Concrete Compressive Strength Data for Regression

The construction of high-performance concrete (HPC) relies on not only the common ingredients

such as water, cement, fine and coarse aggregates, but also other cementitious materials such as

fly ash, superplasticizer, blast furnace slag, etc. However, due to the highly nonlinear relationship

between concrete compressive strength and its ingredients, modeling the behavior is extremely

difficult. Much work on modeling the strength has been done using artificial neural networks (Yeh
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1998). In this subsection, the proposed method is used to compare with the prediction performance

of neural networks. Along with these two methods, classical regression, regression tree and kernel

support vector regression (with radial basis kernel) will be used as well for comparison.

The concrete compressive strength data set (Lichman 2013) consists of 1030 data points, each

with 8 predictors, including the variables mentioned above. The goal is to use these predictors to

model the concrete compressive strength. To evaluate the performance of the methods, a fitted

model was first obtained with a training data set consisting of 721 randomly selected observations,

and then the remaining 309 observations were used as a testing data set to estimate the prediction

error of the fitted model. This process was repeated 100 times (i.e., with 100 different training and

testing data sets). The averaged root mean squared prediction error and its standard error are

given in Table 9. All methods (except the proposed one) were trained using the R package caret

(Kuhn et al. 2014).

Table 9: Averaged root mean squared prediction errors of the concrete strength data set for the

five methods considered. Numbers in parentheses are standard errors.

Proposed Classical Regression Regression Tree Neural Networks Kernel SVR

6.41 (0.04) 10.52 (0.04) 12.24 (0.05) 5.97 (0.04) 6.85 (0.04)

From Table 9 one can see the proposed method outperforms most of the competitor methods.

It is important to note that even though the proposed method does not perform as well as neural

network in terms of prediction, the proposed method captures the relationship between the response

and predictors in an easily interpretable way. Neural network is a highly nonlinear model, thus

it can model well the nonlinear behavior of the data, but at the same time the modeled relation-

ship of response and predictors may not be straightforwardly interpreted. The proposed method

aims to partition the data space and model each subregion using linear models, therefore one can

still interpret the results of the final model. Since rigorous mathematical arguments support the

methodology for linear models, statistical inference becomes possible. Figure 2 shows the change

points detected from one of the trials. It shows that both age and fine aggregate variable have two
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Figure 2: Change points for concrete compressive strength data.

change points, and hence the resulting model partitions the data space into 9 regions. One possible

interpretation of the final model is as follows. Compressive strength requires most of the variables

to model for high level of fine aggregate, while it only requires at most half of the variables for

smaller level of fine aggregate. In general, the variable age has a larger positive influence (larger

coefficient value) on the compressive strength for regions with small age values (< 7), whereas the

effects of all other variables are consistent throughout all regions.

6.4 Real Data Analysis: Red Wine Data for Classification

The red wine data set (Lichman 2013) consists of 961 observations of red Portuguese “Vinho

Verde” wine. A total of 744 observations are considered bad quality while 217 are considered high

quality. Each observation contains 11 predictors. The goal is to use these predictors to build a

classifier to determine whether a specific set of conditions will lead to good or bad wine quality.

The following five existing methods, classical logistic and probit regression, CART, naive bayes and

neural networks were used to compare with the performance of the proposed method. These five

classifiers were also trained using the caret package. The training data set was of size 675, and

hence the testing data set was of size 286. As before, for each method the procedure was repeated

100 times and the averaged misclassification error rates (and standard errors) on the testing sets

20



are presented in Table 10. Here the proposed method seems to give the best performance.

Table 10: Classification error rates for the Red Wine data set. Numbers in parentheses are standard

errors.

proposed (logistic) proposed (probit) logistic regression probit regression CART naive bayes neural networks

0.149 (0.020) 0.173 (0.021) 0.204 (0.023) 0.205 (0.023) 0.214 (0.024) 0.225 (0.024) 0.202 (0.023)

7 Conclusion

This paper presents a new methodology for estimating partition-wise models with linear regression

and logistic/probit models as region specifiers. Under certain distributional assumptions, con-

sistency properties are established for the estimates for the number of change points and their

locations. From empirical simulations and real data analysis, there is strong evidence indicating

that the proposed method is competitive with existing regression and classification methods.

A Appendix

Proof of Theorem 4.1

The following section will first present a lemma then the proof of Theorem 4.1.

Lemma 1. Suppose (x′i, yi) follows a partition-wise linear model (2). Then, with probability 1,

1

n̂r

∑
i∈R̂r

ε̂2
i → σ2 +B(R̂r)

as n → ∞, where B(R̂r) is defined in the proof, and R̂r is the partition induced by the change

points {µb, νb}, µb < νb, ∀ b ∈ B.

Proof. Suppose for each b, µb ∈ [λ0
vb,b

, λ0
vb+1,b) and νb ∈ (λ0

v′b,b
, λ0

v′b+1,b] for some 0 ≤ vb < v′b ≤ l0b ,

where l0b denotes the true number of change points for the bth predictor, and λ0
vb,b

is the true relative

location of the vthb change point for the bth predictor, 1 ≤ vb ≤ l0b (with λ0
0,b = 1

n and λ0
lb+1,b = 1).

Note that ε̂2
i can be rewritten as ε̂2

i = (ε̂2
i − ε̂2

i,r) + ε̂2
i,r, i = 1, . . . , n0

r , r = 1, . . . , R0, where ε̂i are
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the residuals from fit using R̂r, and ε̂i,r are the residuals from fit using the true partitions in R0.

Then using the law of large numbers,

1

n̂r

∑
i∈R̂r

ε̂2
i,r =

1

n̂r

[∑
j∈V

∑
i∈R0

j

ε̂2
i,j +

∑
k∈Ṽ

∑
i∈R0

k∩R̂r

ε̂2
i,k

]

→ 1

α̂r
αjσ

2 +
1

α̂r
αkσ

2 = σ2,

where V is the subset of {1, . . . , R0} such that R0
j ⊂ R̂r, and Ṽ is the subset of {1, . . . , R0}\V

such that R0
j ∩ R̂r 6= ∅, and α̂r, αj , αk are defined as bα̂rnc = n̂r, bαjnc =

∑
j∈V

∑
i∈R0

j

1, and bαknc =∑
k∈Ṽ

∑
i∈R0

k∩R̂r

1 respectively. Now define ∆ε2
i,r = ε̂2

i − ε̂2
i,r. Note that each of these averages will

converge to a nonzero bias term, i.e.

1

n̂r

∑
i∈R̂r

∆ε̂2
i,r =

1

n̂r

[∑
j∈V

∑
i∈R0

j

∆ε̂2
i,j +

∑
k∈Ṽ

∑
i∈R0

k∩R̂r

∆ε̂2
i,k

]
→ B(R̂r),

where B(R̂r) is a bias term whose exact form depends on the true segmentation. Moreover,

B(R̂r) > 0 unless all the {µb, νb} coincide with the true change point locations. If all the estimated

locations coincide with the true change point locations, then

1

n̂r

∑
i∈R̂r

ε̂2
i → σ2,

and this completes the proof.

Proof of Theorem 4.1. Suppose the true partitions are denoted as R0 = {R0
1, . . . ,R0

R0}, and the

estimated partitions by the MDL criterion (13) as R̂ = {R̂1, . . . , R̂R0}. Suppose as n→∞, R̂ 6→ R0

with probability 1. Then by boundedness, there exists a subsequence along which R̂ converges to

with probability 1, say R̂ → R∗ 6= R0. Then, for each r′ ∈ {1, . . . , R0}, either 1) R∗r′ ⊂ R0
r for

some r, or 2) R∗r′ = ∪r(R∗r′ ∩ R0
r). Note that with probability 1, 2

nMDL(R0,R∗) ∼ log( 1
nRSS∗R0),

where for two sequences an and bn, an ∼ bn if lim
n→∞

an
bn

= 1, and RSS∗R0 =
∑

R∗r∈R∗

∑
i∈R∗r

(yi− f̂r(xi))2 =∑
R∗r∈R∗

∑
i∈R∗r

ε̂2
i . Now, for case one,

1

n

∑
i∈R∗

r′

ε̂2
i → α∗r′σ

2

by an application of law of large numbers, where bα∗r′nc = |R∗r′ |. For case two, Lemma 1 implies

lim
n→∞

1

n

∑
i∈R∗

r′

ε̂2
i = α∗r′σ

2 +B(R∗r′) > α∗r′σ
2.
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Together, with the concavity of log,

lim
n→∞

2

n
MDL(R0,R∗) = lim

n→∞
log
( 1

n

∑
R∗r∈R∗

∑
i∈R∗

r′

(yi − f̂r(xi))2
)

> lim
n→∞

log
( 1

n

∑
R0

r∈R0

∑
i∈R0

r

(yi − f̂r(xi))2
)

= lim
n→∞

2

n
MDL(R0,R0) ≥ lim

n→∞

2

n
MDL(R0,R∗),

which is a contradiction. Hence R̂ → R0 with probability 1. The proof for the logistic/probit

model follows similarly.

Proof of Theorem 4.2

The following section will present five lemmas along with the proof of Theorem 4.2.

Lemma 2. Suppose L̂ is an estimator from (13). Then ∀ l̂b ∈ L̂, P (l̂b ≥ l0b ) → 1 with probability

1 as n→∞.

Proof. Consider the following two cases:

• Case 1: l̂b < l0b ∀ b ∈ B. Then R̂ < R0. By Lemma 1, there exists a partition region R̂r

such that it intersects at least two or more true regions R0
j . Thus by Lemma 1, 1

nRSS(R̂)→

σ2 +B(R̂).

• Case 2: l̂b < l0b for some b ∈ B. If
∏
b∈B

(l̂b + 1) = R̂ < R0 =
∏
b∈B

(l0b + 1), then following case 1,

1
nRSS(R̂) → σ2 + B(R̂). If R̂ ≥ R0, this implies for some b ∈ B there are too many pieces.

Thus there still exists at least one R̂r that intersects at least two or more R0
j . Together with

case 1 the claim holds.

Lemma 3. For each 1 ≤ vb ≤ l0b , l0b < lb ≤ Lb and b ∈ B, define the sets Avb(n) = {(k1,b, . . . , klb,b) :

0 < k1,b < · · · < klb,b < n, |ks,b−k0
vb,b
| ≥ [log n]2 for all 1 ≤ s ≤ lb}. Denote AV = {Av1(n), . . . ,AvB (n)}

for any combinations of V = {v1, . . . , vB}, then

P (K̂ ∈ AV)→ 0

as n→∞.
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Proof. Let K ∈ AV , and R be the set of partitions induced by K. Define R̃ be the set of par-

titions induced by the change points K̃b = {k1,b, . . . , klb,b, k
0
1,b, . . . , k

0
vb−1,b, k

0
vb,b
− [log n]2, k0

vb,b
+

[log n]2, k0
vb+1,b, . . . , k

0
l0b ,b
} for all b ∈ B. It is obvious that RSS(R) ≥ RSS(R̃). Following the

construction in Yao (1988), K̃b can be decomposed the following way. For each b ∈ B, define Us,b

for s = 1, . . . , vb − 1, vb + 2, . . . , l0b + 1 be the set of points i ∈ (k0
s−1,b, k

0
s,b], Uvb,b the set of points

i ∈ (k0
vb−1,b, k

0
vb
− [log n]2], Uvb+1,b with the points i ∈ (k0

vb,b
+ [log n]2, k0

vb+1,b], and Ul0b+2,b the set

of points i ∈ (k0
vb,b
− [log n]2, k0

vb,b
+ [log n]2]. Denote Ub = {U1,b, . . . , Ul0b+2,b}, and R̄ = R̄1 ∪ R̄2 be

the set of partitions induced by U1, . . . ,UB, where R̄1 contains the partition with all boundaries

formed by Ul0b+2,b ∀ b ∈ B, and R̄2 contains all other partitions. Following Yao (1988) and Aue &

Lee (2011),

0 ≤
∑

R̄v,2∈R̄2

∑
i∈R̄v,2

ε2
i −

∑
R̄v,2∈R̄2

∑
i∈R̄v,2

(yi −X ′iβ̂(R̄v,2))2 = Op(log n).

For R̄1, first note that n̄ = |R̄1| ∝ [log n]2. Let I = {r : R0
r ∩ R̄1 6= ∅}, and for any r = 1, . . . , R0,

use the relationship yi −X ′iβ̂(R̄1) = X ′iβr + εi −X ′iβ̂(R̄1) and obtain

1

n̄

( ∑
i∈R̄1

ε2
i −

∑
i∈R̄1

ε̂2
i

)
=

1

n̄

(∑
r∈I

∑
i∈R0

r∩R̄1

ε2
i −

∑
r∈I

∑
i∈R0

r∩R̄1

(yi −X ′iβ̂(R̄1))2
)

≈ − 1

n̄

∑
r∈I

∑
i∈R0

r∩R̄1

(X ′iβv −Xiβ̂(R̄1))2

= − 1

n̄

∑
r∈I

∑
i∈R0

r∩R̄1

(X ′idr)
2 → B < 0

as n→∞, with β̂(R̄1) be the estimate of β using the observations in R̄1. Thus, together gives

1

n̄
(RSS −RSS(R̃)) < 0,

which leads to

min
R

RSS(R) ≥ RSS(R̃) > RSS ≥ RSS(R̂)

with probability 1, which is a contradiction (note RSS =
n∑
i=1

ε2
i ).

Lemma 4. Suppose lb ≥ l0b ∀ b ∈ B, then the following statements hold with probability approaching

1 as n→∞:
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i)
lb+1∑
z=1

log2 nz,b −
l0b+1∑
z=1

log2 n
0
z,b ≥ 0

ii)
∑
Rr∈R

log2R−
∑
R0

r∈R0

log2R
0 ≥ 0

iii)
∑
Rr∈R

sr
2 log2 nr −

∑
R0

r∈R0

s0r
2 log2 n

0
r ≥ 0.

Proof.

i) Denote {P 0
z′,b}

l0b+1

z′=1 the pieces at each dimension b ∈ B and the estimated pieces {Pz,b}lb+1
z=1 .

Lemma 3 implies that for each Pz,b, there exists a P 0
z′,b such that Pz,b ⊆ P 0

z′,b as n → ∞. Let

nz,b = αz,bn for z = 1, . . . , lb + 1 and n0
z,b = α0

z,bn for z = 1, . . . , l0b + 1, then there exists γz,z′,b

such that γz,z′,b →
αz,b

α0
z′,b

. Denote J bz′ = {z : Pz,b ⊆ P 0
z′,b, z = 1, . . . , lb + 1} for z′ = 1, . . . , l0b .

Then,

[ lb+1∏
z=1

nz,b

][ l0b+1∏
z′=1

n0
z′,b

]−1
=
[ l0b+1∏
z′=1

∏
z∈J b

z′

γz,z′,b(n
0
z′,b)

|J b
z′ |
][ l0b+1∏

z=1

n0
z′,b

]−1

=
[ l0b+1∏
z′=1

∏
z∈J b

z′

γz,z′,b(n
0
z′,b)

|J b
z′ |−1

]

≥ (minn0
z′,b)

lb−l0b

l0b+1∏
z′=1

∏
z∈J b

z′

γz,z′,b

≥ 1

as n→∞ since
∏l0b+1

z′=1

∏
z∈J b

z′
γz,z′,b converges to a finite number lower bounded away from 0.

Taking log gives desired result.

ii) If lb > l0b for some b ∈ B, then R > R0. The claim then follows.

iii) Suppose for now assume that sr = s0
r′ = s. Then the claim follows from the proof of part i).

The proof of sr 6= s0
r′ is not of focus in this context, and will be proved in future work.

Lemma 5. Suppose lb ≥ l0b ∀ b ∈ B and strict inequality for some b. Then,

P (0 ≤ RSS −RSS(R̂) < Q(L̂, ε))→ 1,

where Q(L̂, ε) = σ2 log n{ε+ 2[
∏
b∈B

(l̂b − l0b )− 1](1 + ε)}.
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Proof. Following the notations in the proof of Lemma 3, let W(n) be the intersection of all the

complements of AV (n). Due to Lemma 3, it is enough to proof the claim for any Rw induced

by the change locations w ∈ W(n). For any w, RSS(Rw) ≥ RSS(R̃w), where R̃w is induced by

the change locations Mw,b = {k1,b, . . . , klb,b, k
0
1,b, . . . , k

0
l0b ,b
, k0

1,b − [log n]2, . . . , k0
l0b ,b
− [log n]2, k0

1,b +

[log n]2, . . . , k0
l0b ,b

+ [log n]2} for each b ∈ B. Following Yao (1988), define Vs,1,b be the set of points

i ∈ (k0
s,b−[log n]2, k0

s,b] for s = 1, . . . , l0b , Vs,2,b the set of points i ∈ (k0
s,b, k

0
s,b+[log n]2] for s = 1, . . . , l0b ,

V1,3,b the set of points i ∈ (0, k0
1,b − [log n]2], Vl0b+1,3,b the set of points i ∈ (k0

l0b ,b
+ [log n]2, n], and

Vs,3,b the set of points i ∈ (k0
s−1,b + [log n]2, k0

s,b− [log n]2]. Then RSS(R̃w) can be decomposed into

the sum of RSS induced by these new regions, denote R′. Note that R′ contains three types of

regions: i) none of the boundaries are induced by points from V·,3,b, ii) some boundaries of R′ are

induced by points from V·,3,b, and iii) the all boundaries of R′ are induced by points from V·,3,b.

For case i, an application of Lemma 1 from Yao (1988) gives

∑
i∈R′r

ε2
i −

∑
i∈R′r,i

ε̂2
i = Op(log log n).

For case ii, note that the number of data points in each of those regions are still bounded by log2 n,

thus the result ∑
i∈R′r

ε2
i −

∑
i∈R′r,ii

ε̂2
i = Op(log log n)

still holds. For case iii, note that the number of these regions R′r,iii that contains some k·,b on at

least one boundary is bounded by
∏
b

(lb − l0b ). Thus as in Lemma 5 of Yao (1988),

n∑
i=1

ε2i ≥ RSS(Rw) ≥
n∑
i=1

ε2
i −Q(w, ε),

and this completes the proof.

Lemma 6. Suppose l̂b ≥ lb ∀ b ∈ B, and let R̂ be the partition induced by the changes, then

P

(
n

2

[
log
(RSS(R̂)

n

)
− log

(RSS(R0)

n

)]
≥ 0

)
→ 1

as n→∞.
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Proof. Note that as n→∞, RSS =
n∑
i=1

ε2 > n(σ2− ε) for ε > 0. Also, note that RSS ≥ RSS(R0).

Therefore,

n

2

[
log
(RSS(R̂)

n

)
− log

(RSS(R0)

n

)]
≥ n

2

[
log
(RSS(R̂)

n

)
− log

(RSS
n

)]
=
n

2
log
(

1− RSS −RSS(R̂)

RSS

)
≥ n

2
log
(

1− Q(R̂, ε)
n(σ2 − ε)

)
. (18)

Using the inequality log(1− x) > −x(1 + ε) for small x > 0, the RHS of (18) is greater than

− (1 + ε)

2(σ2 − ε)
σ2 log n{ε+ 2[

∏
b∈B

(l̂b − l0b )− 1](1 + ε)}

with probability 1 for positive for small ε. This completes the proof of the claim.

Combining with Lemma 4, this completes the proof that L̂ P−→ L0. The second part follows

from the fact that P (R̂) ≥ P (R̂, L̂ = L0)→ 1.

Proof of Corollary 1

Proof. The proof for the probit model follows by rewriting (3) as a latent variable model, and notic-

ing the one-to-one relationship between the latent variable and the observed value. In particular,

for each observation xi, suppose there is a latent variable y∗i such that

y∗i = xiβ + εi,

where εi ∼ N(0, 1). Then the observations yi can be determined as

yi =

 1, y∗i > 0

0, otherwise.
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