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Low Rank Phase Retrieval
Namrata Vaswani, Seyedehsara Nayer, Yonina C. Eldar

Abstract—We develop two iterative algorithms for solving the
low rank phase retrieval (LRPR) problem. LRPR refers to
recovering a low-rank matrix X from magnitude-only (phaseless)
measurements of random linear projections of its columns. Both
methods consist of a spectral initialization step followed by an
iterative algorithm to maximize the observed data likelihood. We
obtain sample complexity bounds for our proposed initialization
approach to provide a good approximation of the true X . When
the rank is low enough, these bounds are significantly lower than
what existing single vector phase retrieval algorithms need. Via
extensive experiments, we show that the same is also true for the
proposed complete algorithms.

I. INTRODUCTION

In recent years there has been a large amount of work on
the phase retrieval (PR) problem and on its generalization. The
original PR problem involves recovering a length-n signal x
from the magnitudes of its discrete Fourier transform (DFT)
coefficients. Generalized PR replaces the DFT by inner prod-
ucts with any set of measurement vectors, ai. Thus, the goal is
to recover x from |ai′x|2, i = 1, 2, . . . ,m. These magnitude-
only measurements are referred to as phaseless measurements.
PR is a classical problem that occurs in many applications
such as X-ray crystallography, astronomy, and ptychography
because the phase information is either difficult or impossible
to obtain [3]. Algorithms for solving it have existed since the
work of Gerchberg and Saxton and Fineup [4], [5]. In recent
years, there has been much renewed interest in PR, e.g., [6],
[7], [8], [9], [10], [11], [3], [12], [13], [14], [15], [16], [17],
[18] and in sparse PR, e.g., [19], [20], [21].

One popular class of approaches, pioneered in Candès et
al. [6], [7], solves PR by recovering the rank one matrix
Z := xx′ from yi := |ai′x|2 = trace(aiai

′Z) via a
semi-definite relaxation. This can provably recover x (up to
a global phase uncertainty) using only m = cn independent
identically distributed (iid) Gaussian phaseless measurements.
However because of the ‘lifting’, its computational and storage
complexity depends on n2 instead of on n (it needs to recover
an n × n matrix instead of an n-length vector). Here, and
throughout the paper, the letter c is re-used to denote different
numerical constants each time it is used.

In more recent works, non-convex methods, that do not
lift the problem to higher dimensions, have been explored
along with provable guarantees [9], [10], [11]. An alternat-
ing minimization (AltMin) technique with spectral initial-
ization, AltMinPhase, was developed and analyzed in [9].
The AltMin step of this approach is essentially the same as
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the old Gerchberg-Saxton algorithm [4]. A gradient descent
method with spectral initialization, called Wirtinger Flow
(WF), was studied in [10]. In [11], truncated WF (TWF),
which introduced a truncation technique to further improve
WF performance, was developed. It was shown that TWF
recovers x from only cn iid Gaussian phaseless measurements,
while the number of iterations needed for getting an error of
order ε is c log(1/ε) (converges geometrically). AltMinPhase
and WF require more measurements, cn log3 n and cn log n,
respectively. WF also has a slower convergence rate. Two
recent modifications of TWF [22], [23] have the same order
complexities but improved empirical performance.

Problem Setting. In this work, instead of a single vector
x, we consider a set of q vectors, x1,x2, . . . ,xq , such that
the n× q matrix,

X := [x1,x2, . . . ,xq],

has rank r � min(n, q). For each column xk of X , we
observe a set of m measurements of the form

yi,k := |ai,k′xk|2, i = 1, 2, . . .m, k = 1, 2, . . . , q. (1)

The measurement vectors, ai,k, are mutually independent. Our
goal is to recover the matrix X from these mq phaseless mea-
surements yi,k. Since we have magnitude-only measurements
of each column xk, we can only hope to recover each column
xk up to a global phase ambiguity. We refer to the above
problem as low rank phase retrieval (LRPR).

In some applications, the goal may be to only recover the
span of the columns of X , range(X). This would be the case,
for example, if one is interested in only seeing the principal
directions of variation of the dataset, and not in recovering
the dataset itself. We refer to this easier problem as phaseless
PCA (principal component analysis).

A motivating application for LRPR is dynamic astronomical
imaging such as solar imaging where the sun’s surface proper-
ties gradually change over time [24]. The changes are usually
due to a much smaller number of factors, r, than the size of
the image, n, or the total number of images, q. If the images
are arranged as 1D vectors xk, then the resulting matrix
is approximately low rank. As another potential application,
consider a Fourier ptychography imaging system that captures
a dynamic scene exhibiting a temporal evolution; this is often
the case when observing live biological specimens in vitro.
Suppose the scene resolution is n and the total number of
captured frames is q. If the dynamics is approximated to be
linear and slow changing, then the matrix formed by stacking
the frames next to each other can be modeled as a rank-r
matrix, where r � min(q, n). Similar applications involving
a sequence of gradually changing images also occur in X-ray
and sub-diffraction imaging systems. Moreover, if we are only
interested in identifying the principal directions of variation
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of the image sequences, then the problem becomes that of
phaseless PCA. PCA is often the first step for classification,
clustering, modeling, or other exploratory data analysis.

Contributions. This work has two contributions. We
propose iterative algorithms for solving the LRPR problem
described above. Our solution approach relies on the fact
that a rank r matrix X can be expressed (non-uniquely)
as X = UB where U is an n × r matrix with mutually
orthonormal columns. Its first step consists of a spectral
initialization step, motivated by TWF, for first initializing U ,
and then, the columns of B. The remainder of the algorithm
is developed in one of two ways: using a projected gradient
descent strategy to modify the TWF iterates (LRPR1); or an
AltMin algorithm, motivated by AltMinPhase, that directly
exploits the decomposition X = UB (LRPR2). Via extensive
experiments, we demonstrate that both LRPR1 and LRPR2
have better sample complexity than TWF; with LRPR2 being
the best. Moreover, when enough measurements are available
for TWF to work, we show that the LRPR initialization can
also be used to speed up basic TWF for solving LRPR.

Our second, and most important, contribution is a sample
complexity bound for the proposed initialization to get within
an ε ball of the true X . Our results show that, if the goal is to
only initialize U with subspace recovery error below a fixed
level, say ε = 1/4, then a total of mq = cnr2/ε2 = 16cnr2 iid
Gaussian measurements suffice with high probability (whp).
When r is small, nr2 is only slightly larger than nr which
is the minimum required by any technique to recover the
span of U . If the goal is to also initialize the xk’s with
normalized error below say ε = 1/4, then we need more
measurements, but still significantly fewer than TWF. For
example, if r ≤ c log n and q ≥ cn, then, only 16c

√
n

measurements per column are required. We note that our
guarantees assume that a different set of measurements is used
for initializing U and B (see Model 3.1).

As seen in many earlier works, e.g., AltMinPhase [9],
resampled WF [10, Algorithm 2 and Theorem 5.1] or TWF
[11], the sample complexity of the entire algorithm is equal to
or smaller than that of the initialization step for a fixed error
level1. This is why initialization guarantees are important.

Our problem setting assumes a different (mutually indepen-
dent) set of measurement vectors is used for imaging each
column xk. This is critical for guaranteeing the improved
sample complexity of our solution approach over single-vector
PR methods because this is what ensures that the mq matrices
yi,kai,kai,k

′ are all mutually independent conditioned on X .
Hence, we can exploit averaging over mq such matrices when
estimating U . If ai,k = ai,1 (same ai’s are used), then this
benefit disappears since only m of the above matrices are
mutually independent. We demonstrate this in Table I (last
column) in Sec. V. We discuss the practical implications of
our setting in Sec. III-D.

Two other works that also generalize WF [10], but to

1For AltMinPhase, the initialization sample complexity (for achieving a
given fixed error) is cn log3 n while it is only cn logn per iteration for the
rest of the algorithm. For resampled WF, it is cn log2 n for initialization and
cn logn for the rest of the algorithm, while for TWF, it is cn both for the
initialization and for the complete algorithm.

solve a completely different problem include [25], [26]. These
study the problem of recovering a rank r matrix M from
measurements of the form zi = trace(Ai

′M). This is the
low rank matrix sensing problem studied in [27] and a lot of
earlier and later works. In our problem, if we use the same
ai’s for all columns xk, and define zi :=

∑
k(ai

′xk)2 and
M :=

∑
k xkxk

′, then we could use the strategy of [25],
[26] or, in fact, any low-rank matrix sensing technique, e.g.,
AltMinSense from [27], to recover M from the zi’s; followed
by recovering range(U) as its column space. However, for the
reasons explained above, use of same measurement vectors
will not yield any advantage over single vector PR. When
using different ai,k’s, none of these methods are applicable.

Notation. The notation ai,k
iid∼ N (µ,Σ) means that the

vectors ai,k are iid real Gaussian vectors with mean µ and
covariance matrix Σ; and bk

indep∼ N (µk,Σk) means that
the bk’s are mutually independent and bk is generated from
N (µk,Σk). We use ′ to denote matrix or vector conjugate
transpose, and ‖.‖p to denote the lp norm of a vector or the
induced lp norm of a matrix. When the subscript p is missing,
i.e., when we just write ‖.‖, it denotes the l2 norm of a vector
or the induced l2 norm of a matrix. We use I to denote the
identity matrix. The notation 1ζ is the indicator function for
statement ζ, i.e., 1ζ = 1 if ζ is true and 1ζ = 0 otherwise.
For a vector z, |z|,

√
z and phase(z) compute the element-

wise magnitude, square-root, and phaseof each entry of z, and
diag(z) creates a diagonal matrix with entries from z.

Paper Organization. In Sec. II, we develop the proposed
LRPR initialization approach (LRPR-init). We obtain sample
complexity bounds for it in Sec. III. In Sec. IV, we explain
how LRPR-init can be used to develop iterative algorithms for
LRPR that are either faster than basic TWF (LRPR+TWF) or
need a smaller m to work (LRPR1 and LRPR2). Numerical
experiments backing our claims are shown in Sec. V. We prove
our results from Sec. III in Sec. VI, and conclude in Sec. VII.

The algorithms proposed in this work are applicable for
both real and complex measurements. Experiments are shown
for both cases too. Moreover, as shown in our experiments,
our algorithms also apply to noisy measurements. However,
for simplicity, we state and prove our guarantees only for the
real Gaussian measurements’ case. Their extension to complex
Gaussian measurements is straightforward.

II. LOW RANK PR (LRPR) INITIALIZATION

Our goal is to recover an n × q low rank matrix X from
phaseless measurements of linear projections of each of its
columns, i.e, from yi,k := (ai,k

′xk)2, i = 1, 2, . . . ,m, and
k = 1, 2, . . . , q. In this section, we develop an approach to
obtain an initial estimate of X that relies on the fact that a
rank r matrix X can be expressed (non-uniquely2) as X =
UB where U is an n× r matrix with mutually orthonormal
columns and B = [b1, b2, . . . bq] is an r × q matrix. The
proposed initialization approach first computes an estimate of
range(U), i.e., it returns Û that may be very different from U
in Frobenius norm, but their spans are close, i.e., the subspace

2We can rewrite X as X = (UR)(R′B) for any rotation matrix R.
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error, SE(Û ,U) is small. Here,

SE(Û ,U) := ‖(I − ÛÛ ′)U‖

quantifies the subspace error (principal angle) between the
range spaces of two matrices Û ,U with mutually orthonormal
columns. Using Û , we find estimates b̂k so that dist(Û b̂k,xk)
is small. Here,

dist(z1, z2) := min
φ∈[0,2π]

‖z1 − e
√
−1φz2‖

quantifies the phase-invariant distance3 between two complex
vectors z1, z2 [10], [11]. The bk’s are initialized by estimating

gk := Û ′xk = Û ′Ubk

for each k, and setting b̂k = ĝk. Because Û can be arbitrarily
rotated w.r.t. U , this approach may not give accurate estimates
of the individual bk’s, i.e., dist(bk, b̂k) may not be small.

A. LRPR-init: Spectral initialization for LRPR

LRPR-init is a two step approach. We first initialize U using
a truncated spectral initialization idea [11]. For this, define

YU,0 :=
1

mq

m∑
i=1

q∑
k=1

yi,kai,kai,k
′.

Let 1
q

∑q
k=1 xkxk

′ EVD
= UΛ̄U ′ denote the reduced eigenvalue

decomposition (EVD) of XX ′/q. Thus, U is an n×r matrix
with orthonormal columns and Λ̄ is an r× r diagonal matrix.
It is not hard to see that [10, Lemma A.1],

E[yi,kai,kai,k
′] = 2xkxk

′ + ‖xk‖2I. (2)

and, therefore,

E[YU,0] = 2UΛ̄U ′ + trace(Λ̄)I.

Clearly, the subspace spanned by the top r eigenvectors of this
matrix is equal to range(U) and the gap between its r-th and
(r+1)-th eigenvalue is 2λmin(Λ̄). If m and q are large enough,
then, one can use an appropriate law of large numbers’ result
to argue that YU,0 will be close to its expected value whp. By
the sin θ theorem [28], as long as 2λmin(Λ̄) is large compared
to ‖YU,0 − E[YU,0]‖, the same will also be true for the span
of the top r eigenvectors of YU,0.

However, as explained in [11], because yi,kai,kai,k′ can
be written as ww′ with w a heavy-tailed random vector,
more samples will be needed for the law of large numbers
to take effect than if w were not heavy-tailed. To remedy this
situation, we use the truncation idea suggested in [11] and
compute Û as the top r eigenvectors of

YU :=
1

mq

∑
i

∑
k

yi,kai,kai,k
′
1
{yi,k≤9

∑
i yi,k
m }

. (3)

The idea of truncation is to average only over those (i, k)’s
for which yi,k is not too far from its empirical mean.

3When z1 and z2 are both real, the phase is only +1 or −1, and so,
dist(z1,z2) = min(‖z1 − z2‖, ‖z1 + z2‖).

Next we consider initialization of the bk’s. Define the
matrix

Mk :=
1

m

∑
i

yi,kai,kai,k
′. (4)

Suppose that Û is independent of the Mk’s. Then, from (2),
conditioned on Û ,

E[Û ′MkÛ ] = Û ′(2xkxk
′+‖xk‖2I)Û = 2gkgk

′+‖xk‖2I.

The top eigenvector of this expectation is proportional to
gk and the gap between its first and second eigenvalues
is 2‖gk‖2 = 2‖Û ′Ubk‖2. Thus, as long as Û is a good
estimate of U (in terms of SE), the eigen-gap will be close
to 2‖bk‖2. Therefore, we can argue that the normalized top
eigenvector of Û ′MkÛ , denoted v̂k, will be a good estimate
of vk := gk/‖gk‖. Using this idea, we initialize the xk’s as
x̂k = Û v̂kν̂k where ν̂k =

√∑
i yi,k/m is an estimate of

νk := ‖gk‖. We do not use truncation here because gk is an
r length vector, with r � n, and we need to use many more
than r measurements for accurate recovery.

The complete approach, LRPR-init, is summarized in Al-
gorithm 1. Note that this uses the same set of measurements
to recover U and bk’s. But, as seen from our numerical
experiments, it still works well in practice. For our analysis in
Sec. III, we assume that a new set of measurements is available
for computing ĝk, and thus Mk is independent of Û .

Algorithm 1 also estimates the rank r automatically by look-
ing for the maximum gap between consecutive eigenvalues of
YU . As we explain in Sec. III-C, under a simple assumption
on the eigenvalues of Λ̄, this returns the correct rank whp.

Algorithm 1 Low Rank PR Initialization (LRPR-init)

Set r̂ = arg maxj(λj(YU ) − λj+1(YU )) with YU defined in
(3).

1) Compute Û as top r̂ eigenvectors of YU .
2) For each k = 1, 2, . . . , q,

a) compute v̂k as the top eigenvector of
Û ′ 1

m

∑
i yi,kai,kai,k

′Û .

b) compute ν̂k :=
√

1
m

∑
i yi,k; set b̂k = ĝk = v̂kν̂k

Output Û and x̂k := Û b̂k for all k = 1, 2, . . . , q.

B. Projected-TWF initialization

Another way to obtain an initial estimate of the low rank
matrix X would be to project the matrix formed by the TWF
initialization for each column xk onto the space of rank r
matrices. This is summarized in Algorithm 2. However, as
we show in Sec. V, Tables I and II, this approach performs
much worse than LRPR-init. The reason is that it does not
simultaneously exploit averaging of the matrices yi,kai,kai,k′

over both i and k.

III. SAMPLE COMPLEXITY BOUNDS FOR LRPR-INIT

In this section, we obtain sample complexity bounds for
getting a provably accurate initial estimate of both U and
of the xk’s whp. For simplicity, our results assume iid real
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Algorithm 2 Projected-TWF initialization (TWFproj-init)

1) For each k = 1, 2, . . . , q, set x̂0
k as the top eigenvec-

tor of 1
m

∑m
i=1 yi,kai,kai,k

′
1
{yi,k≤9

∑
i yi,k
m }

scaled by√∑m
i=1 yi,k/m; create X̂0,TWF

2) Project X̂0,TWF onto the space of rank r matrices to
get X̂0.

Gaussian measurement vectors, ai,k. As will be evident from
the proofs, the extension to complex Gaussian vectors is
straightforward. In Sec. III-A, we provide a guarantee for the
case when X is a deterministic unknown matrix with known
rank r. These hold whp over measurement vectors ai,k. In
Sec. III-B, we give results for the case of X being random
with known rank r. These hold whp both over matrices X
generated from the assumed probability distribution and over
measurement vectors ai,k. In Sec. III-C, we show how we can
extend both sets of results to the unknown rank case.

The proof of our results consists of two parts. We first bound
the subspace recovery error SE(Û ,U). Next, we use this to
bound the error in estimating the xk’s, dist(x̂k,xk). To do
this, we show that, if Û is a given matrix with SE(Û ,U) small
enough, and if the measurement vectors and the measurements
that are used to estimate the bk’s are independent of Û , then,
whp, dist2(x̂k,xk) can be shown to be bounded by cε‖xk‖2
for any chosen ε. To ensure that the independence assumption
holds, we use a standard trick developed in many earlier works,
e.g., [9]. We analyze a “partitioned” version of Algorithm 1.
Denote the total number of measurements by mtot. We parti-
tion these into two disjoint sets of size m and m̃ respectively;
we use the first set for estimating U and the second set for
estimating the bk’s. Denote the first set of measurements and
measurement vectors by yi,k and ai,k respectively. Denote the
second set by ynewi,k and anewi respectively. Since the different
bk’s are recovered independently, for the second set, we can
use the same measurement vectors, anewi , for all the xk’s.
Thus, we have the following setting.

Model 3.1 (Measurement model). For each xk,

• we observe yi,k := (ai,k
′xk)2 where ai,k

iid∼ N (0, I),
for i = 1, 2, . . . ,m; and

• we observe ynewi,k := (anewi
′xk)2 where anewi

iid∼
N (0, I), for i = 1, 2, . . . , m̃.

• The sets of vectors {anewi , i = 1, 2, . . . , m̃} and
{ai,k, i = 1, 2, . . . ,m, k = 1, 2, . . . , q} are mutually in-
dependent.

Thus we have a total of mtot = m + m̃ measurements per
vector xk.

With measurements taken as above, we study Algorithm 3.

A. Main Results for Deterministic X - Known rank case

Let
1

q
XX ′

EVD
= UΛ̄U ′, (6)

Algorithm 3 LRPR-init-theoretical: initialization with partitioned
measurements.
Known r: Set r̂ = r.
Unknown r: Set r̂ = arg maxj(λj(YU )− λj+1(YU )) where
YU is defined in (3).

1) Compute Û as top r̂ eigenvectors of YU defined in (3).
2) For each k = 1, 2, . . . , q,

a) compute v̂k as the top eigenvector of

Yb,k := Û ′

(
1

m̃

m̃∑
i=1

ynewi,k a
new
i anewi

′

)
Û , (5)

b) compute ν̂k =
√

1
m̃

∑
i y

new
i,k ; set b̂k = ĝk =

v̂kν̂k.
Output Û and x̂k := Û b̂k for all k = 1, 2, . . . , q.

and X = UB. Thus, Λ̄ = 1
q

∑
k bkbk

′. Let λ̄max and λ̄min

denote the maximum and minimum eigenvalues of Λ̄. Define

ρ :=
maxk ‖xk‖2
1
q

∑
k ‖xk‖2

, and κ :=
λ̄max

λ̄min
. (7)

Thus, κ is the condition number of XX ′. Using ρ, we can
bound maxk ‖bk‖2 = maxk ‖xk‖2 in terms of λ̄max as4

max
k
‖bk‖2 = max

k
‖xk‖2 = ρ

r∑
j=1

λj(Λ̄) ≤ rρλ̄max.

We then have the following result.

Theorem 3.2 (Deterministic X). Consider an unknown deter-
ministic rank r matrix X . Assume that the measurements of its
columns are generated according to Model 3.1. Consider the
output of Algorithm 3 (known r case). Suppose that r ≤ cn1/5.
For an ε < 1, if

m̃ ≥ c
√
n

ε2
, m ≥ cκ2 · r4 log n(log m̃)2

ε2
,

mq ≥ cρ2κ2 · nr4(log m̃)2

ε2
,

then, with probability at least 1− 4 exp(−cn)− 32q
n4 ,

1)
SE(Û ,U) ≤ cε

r log m̃
;

2) for all k = 1, 2, . . . , q, dist(xk, x̂k)2 ≤ cε‖xk‖2, and
so

NormErr(X, X̂) :=

∑q
k=1 dist(xk, x̂k)2∑q

k=1 ‖xk‖2
≤ cε.

Furthermore, if q ≤ cn2, then the above event holds with
probability at least 1− c/n2.

Proof: The proof is given in Section VI.
Notice that our lower bounds depend on κ2 where κ is

the condition number of XX ′. This is pretty typical, e.g.,
it is also the case in [27], [25], [26] and many other works.

4This follows because 1
q

∑
k ‖xk‖2 = trace( 1

q

∑
k xkxk

′) =

trace( 1
q
XX′) = trace(Λ̄) =

∑r
j=1 λj(Λ̄).
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It may be possible to remove this dependence by borrowing
ideas from [29]. A second point to note is that the probability
of the good event depends inversely on q. This dependence
comes from needing to ensure that each of the q vectors xk
are accurately recovered. However, the dependence is pretty
weak: when q < cn2, the probability can be further lower
bounded by 1− c/n2.

For the rest of our discussion, assume that ε, κ and ρ are
fixed. We compare our result with that of TWF initialization
[11]. TWF has the best sample complexity, m ≥ cn, for single
vector PR. Since Theorem 3.2 provides a guarantee for LRPR-
init which exploits the low-rank property of X , when q/r
is large, its per column sample complexity is significantly
smaller than that of TWF. For example, if r = c log n and
q = cr4(log n)3 = (log n)7, then it needs m̃ = c

√
n and

m = cn/ log n and hence mtot := m + m̃ = cn/ log n.
When q is larger, for example, q = c

√
n, it only requires

mtot = c
√
nr4 log3 n = c

√
n(log n)7. For q ≥ cn, just

mtot = c
√
n measurements suffice. This is also backed up by

our numerical experiments; see Tables I and II. Here we used
n = 100 and r = 2. With as few as m = 5

√
n measurements,

when q = 100, the LRPR-init normalized error is 0.33. When
q = 1000, this error is only 0.1.

When the goal is to only recover U with subspace error at
most ε (and not the xk’s), the required lower bounds can be
relaxed further. In particular, we have the following corollary.

Corollary 3.3. In the setting of Theorem 3.2, if m̃ = 0, m ≥
cκ2·r2 logn

ε2 and mq ≥ cρ2κ2·nr2
ε2 , then with probability at least

1− 2 exp(−cn)− 2q
n4 , SE(Û ,U) ≤ cε.

Recall thatU is an n×r matrix and hence has nr unknowns.
From Corollary 3.3, for a fixed ε, ρ, and κ, one needs a total
of only mq = cnr2 measurements to recover U . When r is
small, e.g., r = c log n, this is only slightly more than the
minimum required which would be nr.

To recover the bk’s, it follows from Theorem 3.2 that we
need an extra set of m̃ ≥ c

√
n measurements.

• The lower bound m̃ ≥ c
√
n can be replaced by m̃ ≥

cn1/5, or in fact cn1/d for any integer d ≥ 2, and our
result will not change, except for numerical constants.

• We can even replace m̃ ≥ c
√
n by m̃ ≥ cr log4 r, which

is much weaker, but then Theorem 3.2 will hold with
probability lower bounded by only 1− 8q

m̃8−2 exp(−cn)−
8q
n4 .

In Theorem 3.2, we also need an extra factor of (r log m̃)2 in
the lower bounds on m and mq as compared to Corollary 3.3.
This is needed because our algorithm recovers gk := Û ′Ubk
and sets x̂k = Û ĝk. Thus, for it to give an accurate enough
estimate of xk, we need to ensure that SE(Û ,U) is very
small so that ‖Û ′U‖ is close to one. In particular we need
SE(Û ,U) ≤ ε/r log m̃. Guaranteeing this requires a larger
lower bound on mq and m than just ensuring SE(Û ,U) ≤ ε.

B. Main Results for Random X - Known rank case

First consider an independent zero mean Gaussian model
on the bk’s.

Model 3.4. Assume that xk = Ubk with bk
indep∼ N (0,Λk),

Λk diagonal, and bk’s independent of U . The matrix U can
follow any probability distribution. Define

Λ̄ :=
1

q

∑
k

E[bkbk
′] =

1

q

∑
k

Λk,

let λ̄min be its minimum eigenvalue, λ̄max its maximum
eigenvalue, and κ := λ̄max

λ̄min
its condition number. Assume also

that, for all k = 1, 2, . . . , q,

λk,max := λmax(Λk) ≤ cλ̄max.

This is ensured, for example, if maxk λk,max ≤ cmink λk,max.

With this model, notice that E[ 1
q

∑
k xkxk

′]
EVD
= UΛ̄U ′.

In using Model 3.4, there are two main changes. The first
is that we need to apply a law of large numbers result to
show that 1

q

∑
k bkbk

′ is close to Λ̄ whp. This will hold only
when q is large enough, and, hence, our result will also need
another lower bound on q. The second change is that we need
to replace rρλ̄max by r(10 log n)λ̄max in the lower bound
on mq. This is the high probability upper bound on ‖bk‖2
under Model 3.4. Moreover, because of these two changes,
the probability of the good event reduces slightly.

Theorem 3.5 (Gaussian model). In the setting of Theorem 3.2,
suppose that the xk’s satisfy Model 3.4. For a ε < 1, if

m̃ ≥ c
√
n

ε2
, m ≥ cκ2r4(log m̃)2

ε2
,

mq ≥ cκ2nr4(log m̃)2(log n)2

ε2
, q ≥ cκ2r3(log n)(log m̃)2

ε2
,

then, the conclusions of Theorem 3.2 hold with probability at
least 1− 2 exp(−cn)− 36q

n4 − 20
n2 .

Proof: See Section VI.
Observe that the lower bound on q in Theorem 3.5 is not

very restrictive. From the lower bounds on m̃ and mq, q
anyway needs to be more than cr4(log n)4 in order to get
a lower bound on mtot that is smaller than cn (which is the
best lower bound achievable by a single vector PR method).

As will be evident from the proof of Theorem 3.5, any
random model that ensures that (a) maxk ‖bk‖2 is bounded
whp, and (b) 1

q

∑
k bkbk

′ is close to Λ̄ whp will suffice. For
example, even if the bk’s in Model 3.4 have nonzero and
different means, a similar result can be proved. More generally,
as we state below, a sub-Gaussian assumption works as well.
The independence assumption on bk’s may also be weakened
to any other assumption that ensures that (b) holds, however
we do not pursue it here.

Corollary 3.6 (sub-Gaussian model). Let xk = Ubk with
bk’s being independent of U . Let Λ̄ := E[ 1

q

∑
k bkbk

′], let
λ̄max be its maximum eigenvalue and κ its condition number.
Assume that the bk’s are independent sub-Gaussian random
vectors with sub-Gaussian norm bounded by c

√
λ̄max.

With this model replacing Model 3.4 on X , Theorem 3.5
holds with probability at least 1− 2 exp(−cn)− cq

n4 − c
n2 .

Proof: In the proof of Theorem 3.5, only the proofs of
Lemmas 6.8, 6.9 change.
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C. Main Results - Unknown rank case

We now turn to the setting where the rank r is unknown
and show how Theorem 3.2 can be modified for this setting.
Other results are modified similarly.

Consider the rank estimation approach given in Algorithm
3. We have the following corollary.

Corollary 3.7. Consider Algorithm 3 (unknown r case).
Assume the setting of Theorem 3.2 with ε ≤ 0.001. If, in
addition, κ ≤ 10 and if Λ̄ is such that λ̄j − λ̄j+1 ≤ 0.9λ̄min,
then, with the probability given in Theorem 3.2,

1) r̂ = r, and,
2) all conclusions of Theorem 3.2 hold.

Another way to correctly estimate r is via thresholding.

Corollary 3.8. Consider Algorithm 3 with rank estimated as
follows. Set r̂ as the smallest index j for which λj(YU ) −
λn(YU ) ≥ 0.25λ̄min. Assume the setting of Theorem 3.2 with
ε ≤ 0.001. Then, if κ < 124, then, with the probability given
in Theorem 3.2,

1) r̂ = r, and,
2) all conclusions of Theorem 3.2 hold.

The rank estimation approach of Algorithm 3 does not
require knowledge of any model parameters. Hence it is
easily applicable for real data (even without training samples
being available). However, it works only when consecutive
eigenvalues of Λ̄ (consecutive nonzero singular values of X)
are not too far apart. On the other hand, the thresholding
based approach of Corollary 3.8 does not require any extra
assumptions beyond those in Theorem 3.2 and κ < 124.
However it necessitates knowledge of λ̄min.

D. Using different measurement vectors for each xk

Our problem setting requires that we use a different set of
m measurement vectors ai,k for each column xk in order to
estimate U . Thus, any application where our algorithms are
used needs to apply a total of mtotq measurement vectors
(often, masks), and also needs to store a total of mtotq
length-n measurement vectors. However, observe that, because
we use different measurement vectors and exploit the low-
rank property of the matrix X , if r ≤ c log n, we only
need mtotq = cnpolylog(n) measurement vectors. Here
polylog(n) refers to a polynomial in (log n).

On the other hand, if we used the same measurement vectors
for each column xk, we would require only m measurement
vectors. But we would need m ≥ cn such vectors. Since
cnpolylog(n) is only a little larger than cn, our setting is not
much more difficult to implement in practice than the same
measurement vectors’ setting.

An advantage of our setting is as follows. In practice, the
region being imaged changes continuously over time. Thus,
using our approach, one can just acquire a total of mmat

independent measurements by imaging the region of interest
for a certain period of time. The value of q (and hence of
m = mmat/q) may be decided later depending on the desired

tradeoff between temporal resolution and accuracy per pixel5.
If the changes are gradual, then one can use a smaller value
of q, but gain in accuracy with a larger m.

Algorithm 4 LRPR+TWF (TWF initialized using LRPR-init)

1) Initialize X̂0 using Algorithm 1
2) For each t ≥ 0, do:

• for each k, k = 1, 2, . . . , q, update

x̂t+1
k = x̂tk −

µ

m

m∑
i=1

yi,k − |ai,k′x̂tk|2

ai,k′x̂tk
ai,k1E1∪E2

(8)

where the events E1, E2 are defined in [11, eq. 28].

IV. LOW RANK PR (LRPR) - COMPLETE ALGORITHM

So far we developed an initialization procedure that directly
exploited the low-rank property of X . Here, we explain three
possible ways to develop a complete LRPR algorithm. The
first, given next, uses LRPR-init to only speed up TWF.

A. LRPR+TWF: speeding up TWF

Consider the LRPR problem and an application where
acquiring measurements is not expensive, but computational
power is. In this case, we can use LRPR-init (Algorithm 1)
to jointly initialize all columns of the matrix X , followed by
using the best existing vector PR algorithm such as TWF [11]
for recovering each column separately. TWF implements trun-
cated gradient descent for maximizing data likelihood under
Poisson measurement noise. We summarize TWF initialized
with LRPR-init (LRPR+TWF) in Algorithm 4. LRPR+TWF
still requires mtot ≥ cn measurements per column, but, as we
explain next, it needs c(log n − 12 log log n) fewer iterations
to converge than the original TWF (basic TWF, Algorithm 4
initialized using Algorithm 7). To see this, consider the result
of Theorem 3.2. Another way to interpret this is as follows.
Suppose we are given m = cn and m̃ = cn. Then, it is clear
that this result holds for any ε satisfying

ε2 ≥ cmax

(
1√
n
,
κ2r4(log n)3

n
,
ρ2κ2r4(log n)2

q

)
.

If q ≥ c
√
n, then this means that ε = cρκr

2(logn)
n1/4 works.

Combining this with [11, Theorem 1], we have the following
corollary.

Corollary 4.1 (LRPR+TWF). Consider Algorithm 4. If m =
cn, m̃ = cn, r ≤ c log n, and q ≥ c

√
n (but q ≤ cn2), then,

there exists universal constants b1 < 1 and c1, such that, with
probability, at least 1− c/n2,

NormErr(X, X̂t) ≤ (1− b1)tNormErr(X, X̂0)

≤ (1− b1)tc1
ρκ(log n)3

n1/4
.

5If the measurements are masked-Fourier, then this can be done with the
constraint that m is an integer multiple of n.
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From Corollary 4.1, to reduce the final error,
NormErr(X, X̂T ), below a given tolerance, εfin, Algorithm
4 needs a total of T iterations, with T satisfying

T ≥ − log εfin

− log(1− b1)
− 0.25(log n− 12 log log n− log(c1ρκ))

− log(1− b1)
.

On the other hand, basic TWF (Algorithm 4 initialized with
TWF initialization, Algorithm 7) needs T ≥ − log εfin

− log(1−b1) . Thus,
using LRPR-init to initialize TWF reduces the number of iter-
ations needed for TWF to converge by c(log n−12 log log n).
However, LRPR-init is also roughly r times more expensive
than TWF-init. As seen from Fig. 2a, when r is small, the
reduction in number of iterations still results in lower total
time taken by LRPR+TWF as compared to basic TWF.

B. LRPR1: Low Rank PR via projected gradient descent

The simplest way to develop a complete algorithm that
exploits the low rank property of X is to use a projected
gradient descent approach to modify TWF. This projects the
TWF output at each iteration onto the space of rank r matrices.
We summarize the complete LRPR1 approach (projected-TWF
initialized with LRPR-init) in Algorithm 5. When m is small,
this results in significantly improved performance over TWF
because it exploits the low-rank structure of the matrix X at
each step. For an example, see Fig. 2b.

Algorithm 5 LRPR1: LRPR via projected gradient descent

1) Initialize X̂0 using Algorithm 1 (LRPR-init).
2) For each t ≥ 0, do

a) for each k, k = 1, 2, . . . , q, compute x̂t+1
k using (8)

defined in Algorithm 4. Call the resulting matrix
X̂t+1,TWF ;

b) project X̂t+1,TWF onto the space of rank r ma-
trices to get X̂t+1.

C. LRPR2: Low Rank PR via Alternating Minimization

The third and most powerful approach is to modify the
entire algorithm to directly exploit the low-rank property of
the matrix X , i.e., to use its decomposition as X = UB.
This idea can be used to modify TWF or AltMinPhase
(Gerchberg-Saxton algorithm) or, in fact, many of the other
PR methods from literature, e.g., [12], [13]. As noted by
an anonymous reviewer, the last two are significantly faster
than Gerchberg-Saxton. TWF is truncated gradient descent to
minimize the negative data likelihood under a Poisson noise
assumption, where as AltMinPhase is an AltMin approach to
minimize the squared loss function (data likelihood under iid
Gaussian noise). For noise-free measurements, this distinction
is immaterial, and all methods apply.

Modifying TWF for the set of variables U ,B needs to be
done with care, and needs to include a step that ensures that
one of ‖U‖ or ‖B‖ does not keep increasing. An early attempt
along these lines is given in [1].

Modifying the AltMin strategy is simpler and we ex-
plain it here. Let yk := [y1,k,y2,k, . . . ,ym,k]′ and Ak :=

Original LRPR2 LRPR1 basic TWFproj basic TWF
Fig. 1: First column: frame 1 and 104, of the original plane video.
Next three columns: frames recovered using the various methods from
m = 3n phaseless masked Fourier (CDP model) measurements.

[a1,k,a2,k, . . . ,am,k]. Then
√
yk = |Ak

′xk|. Suppose that
the phase information were available, i.e., suppose that we
had access to a diagonal matrix Ck so that Ck

√
yk = Ak

′xk.
Then recovering X from these linear measurements would
be an example of a low-rank matrix recovery problem. This
itself can be solved by minimizing over U and B alterna-
tively as in [27]. With B fixed, this is a least squares (LS)
recovery problem for U and vice versa. With estimates of
U and B, we can estimate the phase matrix Ck as the
Ĉk = diag(phase(Ak

′Û b̂k)). The proposed complete algo-
rithm, LRPR2, summarized in Algorithm 6, alternates between
these three steps. The per iteration cost of the AltMin approach
is larger than that of TWFproj iterates and hence LRPR2 is
often slower than LRPR1, e.g., see Fig. 2b. However, from
numerical experiments, LRPR2 needs the smallest value of m
to converge as seen, for example, in Fig. 2c.

Algorithm 6 LRPR2: LRPR via Alternating Minimization

1) Let Û and b̂k denote the output of Algorithm 1.
2) For t = 1 to T , repeat the following three steps:

a) Ĉk ← diag(phase(Ak
′Û b̂k)), for k = 1, 2, . . . , q

b) Û ← arg minŨ

∑
k ‖Ĉk

√
yk −Ak

′Ũ b̂k‖2
c) b̂k ← arg minb̃k

‖Ĉk
√
yk − Ak

′Û b̃k‖2, for k =
1, 2, . . . , q

3) Output Û and x̂k = Û b̂k for all k = 1, 2, . . . , q.
Steps 2 and 3 involve solving a Least Squares (LS) problem
which can be solved in closed form as follows.
• Step 2: Let Ûvec be the columnwise

vectorized version of Û . Compute Ûvec =
(
∑
kMk

′Mk)−1
∑
k(Mk

′Ĉk
√
yk) where

Mk := [Ak
′(b̂k)1,Ak

′(b̂k)2, . . . ,Ak
′(b̂k)r]. Reshape

Ûvec to get Û . For large sized problems, conjugate
gradient for LS (CGLS) is a faster approach to solve the
LS problem since it does not require matrix inversion.

• Step 3: b̂k = (M ′M)−1M ′Ĉk
√
yk where M = Ak

′Û .

We show the power of both LRPR1 and LRPR2 for recover-
ing a real video from coded diffraction pattern (CDP) measure-
ments in Fig. 1. As can be seen, with as few as m = 3n CDP
measurements, both these methods significantly outperform
basic TWFproj (Algorithm 5 initialized using Algorithm 2)
and basic TWF (Algorithm 4 initialized using Algorithm 7).
This experiment is inspired by an analogous experiment for
recovering a regular camera image from CDP measurements
reported in [11, Fig. 2]. While this is not a real practical
application since the video used is a regular camera video of a
moving airplane, this example illustrates two points: (i) many
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m/n Pr(r̂ = r) LRPR (r known) LRPR (r unknown) LRPR (r̂ = 2r) LRPR (noisy meas) TWFproj TWF LRPR-same
q = 100

0.10 0.24 1.23 1.31 1.22 1.37 0.96 1.63 0.99
0.50 0.68 0.33 0.45 0.55 0.52 0.67 1.47 1.03
1.00 1.00 0.17 0.17 0.30 0.19 0.53 1.34 1.04

q = 1000
0.10 1.00 0.39 0.39 0.70 0.47 0.71 1.62 0.98
0.50 1.00 0.10 0.10 0.26 0.12 0.57 1.47 1.02
1.00 1.00 0.05 0.05 0.13 0.06 0.48 1.34 1.04

TABLE I: Real Gaussian measurement vectors: initialization error comparisons. LRPR: LRPR-init, TWF: TWF-init, TWFproj: TWFproj-init.

m/n Pr(r̂ = r) LRPR (r known) LRPR (r unknown) LRPR (r̂ = 2r) LRPR (noisy meas) TWFproj TWF
q = 100

0.10 0.21 1.29 1.32 1.30 1.37 0.97 1.66
0.50 0.41 0.53 0.67 0.76 0.75 0.76 1.55
1.00 0.97 0.27 0.29 0.47 0.36 0.63 1.45
7.00 1.00 0.04 0.04 0.07 0.05 0.13 0.65

q = 1000
0.10 0.99 0.51 0.51 0.84 0.62 0.75 1.67
0.50 1.00 0.15 0.15 0.38 0.19 0.63 1.54
1.00 1.00 0.08 0.08 0.21 0.10 0.55 1.45
7.00 1.00 0.01 0.01 0.03 0.02 0.11 0.65

TABLE II: Complex Gaussian measurement vectors: initialization comparisons. LRPR: LRPR-init, TWF: TWF-init, TWFproj: TWFproj-init.

real image sequences are indeed approximately low-rank; and
(ii) our algorithm has significant advantage over single vector
PR methods for jointly recovering this approximately low-
rank video. For a detailed explanation of this and some more
such experiments, please see Supplementary Material and
http://www.ece.iastate.edu/∼namrata/LRPR/.

V. NUMERICAL EXPERIMENTS

We discuss here the results of three sets of experiments.
All experiments were done on a single laptop which had these
specifications: Intel(R) CPU E3-1240 v5 3.50 GHz, Installed
memory: 32 GB, System type is 64 bit.

Experiment 1. The first experiment shows the power of the
proposed initialization approach, LRPR-init (Algorithm 1), by
comparing its initialization error with that of TWF initializa-
tion (TWF-init, Algorithm 7) and of TWFproj-init (Algorithm
2). TWF-init does not use knowledge of rank, TWFproj-
init assumes r is known, while LRPR-init estimates the rank
automatically as explained earlier. For a fair comparison with
TWFproj-init, we also show the error of LRPR-init with r̂ = r.
Data was generated as follows. The matrix U is obtained by
orthonormalizing an n × r matrix with iid Gaussian entries;
bk’s were generated as being iid uniformly distributed between
−1 and 1; and we set xk = Ubk. Measurements were
generating using (1).

Algorithm 7 TWF initialization (TWF-init)
For each k = 1, 2, . . . , q, set x̂0

k as the top eigenvector of∑m
i=1 yi,kai,kai,k

′
1
{yi,k≤9

∑
i yi,k
m }

scaled by
√∑m

i=1 yi,k/m.

We used n = 100, r = 2, ai,k
iid∼ N (0, I) (Table I) and

ai,k
iid∼ CN (0, I) (Table II) and varied m and q. Here CN

refers to a circularly symmetric complex Gaussian distribution.
We show 100-time Monte Carlo averaged errors. The averag-
ing is only over the measurement vectors. As can be seen from

both tables, LRPR-init significantly outperforms TWF-init and
TWFproj-init when m is small. The reason is that LRPR-init
estimates X = UB by first estimating range(U) as the top r
eigenvectors of YU ; and YU averages the nearly mq mutually
independent matrices Mi,k := yi,kai,kai,k

′. This is possible
to do because E[yi,kai,kai,k

′] = 2Ubkbk
′U ′+‖bk‖2I . Thus

even though the expected values are different for different
k, all have span of top r eigenvectors equal to range(U).
In TWF-init, the averaging over measurements of different
columns is not exploited at all, and thus, unsurprisingly, it has
the worst performance. In TWFproj-init, averaging over both
k and i is exploited, but not simultaneously - the first step
is TWF-init which averages only over i. The projection step
can be interpreted as averaging over the q rank-one matrices
x̂kx̂k

′ (where x̂k = x̂TWF,init
k ), followed by computing its top

r eigenvectors and projecting X̂TWF,init onto their subspace.
In situations where the TWF-init error itself is very large, the
second step does not help much.

When the product mq is large, the rank r̂ is correctly
estimated by LRPR-init (Algorithm 1) either always or most of
the time. We display a Monte Carlo estimate of the probability
of r̂ = r in the 2nd column. In these cases, LRPR with r̂
known versus r̂ estimated both have similar errors (3rd and 4th
columns). Inspired by a reviewer’s concern, we also evaluate
LRPR-init with r̂ deliberately set to a wrong value 2r in the
5th column. As can be seen, the error degradation is gradual
even with a wrong rank estimate.

Finally, Table I shows errors of LRPR-Same in the last
column. This refers to LRPR operating on measurements of
the form yi,k := (ai

′xk)2. Because it uses the same ai’s
for all columns xk, there are only m (and not mq) mutually
independent matrices to average over. Hence its errors are
almost as large as those of TWF.

Experiment 2. We evaluated LRPR-init (Algorithm 1)
in the noisy measurements case. We generated yi,k =
(ai,k

′xk)2 +wi,k where wi,k were iid uniform between −1
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(a) m = 8n, q = 1000 (b) m = 0.8n, q = 1000 (c) m = 0.6n, q = 1000

Fig. 2: Plot of reconstruction error, NormErr, as a function of the computation time taken. We obtain each plot as follows. For each iteration
t = 0, 1, 2, . . . , 100, we plot the error at iteration t against the time taken until iteration t. This is why, for algorithms with lower per iteration
cost, the plot ends earlier, e.g., in (b), LRPR1 took only 20 seconds to complete 100 iterations and hence its plot ends at that time.

and 1 (so that the noise variance was 0.33). The Monte Carlo
estimate of E[|ai,k′xk|2] was 0.67 leading to a signal-to-noise
ratio of 2. The results are shown in the 6th columns of Tables
I and II. Observe that the error of LRPR-init even with noisy
measurements is smaller than the errors of TWFproj-init and
TWF-init with noise-free measurements.

Experiment 3. For various values of m, we evaluate the
speed of convergence of the five complete algorithms - basic
TWF (Algorithm 4 initialized with Algorithm 7), basic TWF-
proj (Algorithm 2 initialized with Algorithm 5), LRPR+TWF
(Algorithm 4), LRPR1 (Algorithm 5), and LRPR2 (Algorithm
6). We define “converges” as NormErr below 10−10. We
generated data as in the noise-free complex Gaussian case
described above with n = 100, r = 2 and q = 1000.

In Fig. 2a, we compare the speed of error decay of TWF
when initialized with either TWF-init (TWF) or with the
proposed initialization, LRPR-init (LRPR+TWF). We used
m = 8n (large enough m for TWF iterations to converge). For
t = 0, 1, 2, . . . , 100, we plot the error at the end of iteration
t on the y-axis and the time taken till the end of iteration
t on the x-axis (t = 0 corresponds to initialization). As can
be seen, LRPR-init takes longer to finish than TWF-init (the
first ‘triangle’ is to the right of the first circle). However,
because LRPR-init results in much lower initialization error,
LRPR+TWF needs much fewer iterations to “converge”, and,
so the total time taken by it to “converge” is also smaller.

If m is reduced to m = 0.8n measurements, as can be
seen from Fig. 2b, neither of TWF or LRPR+TWF converge.
Basic TWFproj also does not converge and this is because
its initialization error is larger (for reasons explained earlier).
However, both LRPR1 and LRPR2 converge. It is also ap-
parent that LRPR1 is significantly faster than LRPR2. This is
because its per iteration cost is lower.

If m is reduced further to m = 0.6n (Fig. 2c), then LRPR1
does not converge whereas LRPR2 still does. This is because
LRPR2 iterates directly exploit the split-upX = UB whereas
LRPR1 iterates first implement a TWF iteration and then
project the resulting matrix onto the space of rank r matrices.

VI. PROOFS OF THEOREMS 3.2 AND 3.5

The approach for proving both Theorems 3.2 and 3.5 is
similar. In Sec. VI-A, we summarize the two results that will
be used in our proof - the Davis-Kahan sin θ theorem [28] and

a simple modification of Theorem 5.39 of Vershynin [30]. The
sin θ theorem bounds the subspace error between the principal
subspaces of a given Hermitian matrix and its perturbed
version. The Vershynin result is a probabilistic concentration
bound for the empirical covariance matrix of independent sub-
Gaussian random vectors. This will be used to bound the terms
from the bound obtained by applying the sin θ theorem. In
Sec. VI-B, we bound SE(Û ,U) both under a deterministic
and a random assumption on X . In Sec. VI-C, we use this
to bound dist(xk, x̂k), again under both the deterministic and
random settings. In Sec. VI-D, we combine these results to
prove Theorem 3.2. In Sec. VI-E, we prove Theorem 3.5.
Finally, we prove the two corollaries for the unknown rank
case - Corollaries 3.7 and 3.8 - in Sec. VI-F.

The derivations in this section use many useful results about
sub-Gaussian and sub-exponential r.v.’s and the ε-net taken
from [30]. These are summarized in Appendix A. The lemmas
that are not proved here are proved in Appendix B.

A. Davis-Kahan sin θ theorem and Vershynin’s result

We first state a simple corollary of the Davis-Kahan sin θ
theorem [28, Sec. 2] that follows from it using Weyl’s inequal-
ity (see [31], [32] for a proof).

Theorem 6.1 (sin θ theorem [28]). Consider a Hermitian
matrix D and its perturbed version D̂. Define H := D̂−D.
Let E be the matrix of top r eigenvectors of D, and let F be
the matrix of top r eigenvectors6 of D̂. If λr(D)−λr+1(D)−
‖H‖ > 0, then

SE(F ,E) := ‖(I − FF ′)E‖ ≤ ‖H‖
λr(D)− λr+1(D)− ‖H‖

.

In Sec. VI-B, we will use the above result with D̂ = YU
and D being the expected value of a matrix that is close to
it. In Sec. VI-C, we will use it similarly for Yb,k.

Theorem 6.2 below is a simple generalization of Theorem
5.39 of [30].

Theorem 6.2. Suppose that wj , j = 1, 2, . . . , N , are n-length
independent, sub-Gaussian random vectors with sub-Gaussian
norms bounded by K.

6More generally, E and F can be any matrices whose columns span the
space of top r eigenvectors of D and D̂ respectively.
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1) For an ε < 1 and a given vector z, with probability
(w.p.) ≥ 1− 2 exp(−cε2N),∣∣∣∣∣∣z′

 1

N

∑
j

(wjwj
′ − E[wjwj

′])

 z
∣∣∣∣∣∣ ≤ 4εK2‖z‖2.

2) For an ε < 1, w.p. ≥ 1− 2 exp(n log 9− cε2N),∥∥∥∥∥∥ 1

N

∑
j

(wjwj
′ − E[wjwj

′])

∥∥∥∥∥∥ ≤ 4εK2.

Proof: The proof follows that of Theorem 5.39 in [30].
It is given in the Supplementary Material.

1) Proving Theorems 3.2 and 3.5 simultaneously: Define
the following (trivial) model.

Model 6.3. The matrix X is a deterministic unknown.

This just makes it simpler to simultaneously obtain subspace
error bounds under the assumptions of both Theorems 3.2 and
3.5. Notice that, if we write xk = Ubk, then the definitions
of Λ̄, ρ and κ given in (6) and (7) in Sec. III-A imply that,
under Model 6.3, Λ̄ = 1

q

∑
k bkbk

′, κ is its condition number,
and maxk ‖bk‖2 = maxk ‖xk‖2 ≤ rρλ̄max.

B. Bounding SE(Û ,U)

Recall that Û is the matrix of top r eigenvectors of YU . To
bound SE(Û ,U) using Theorem 6.1, we define a matrix Σ−

such that (i) U is the matrix of its top r eigenvectors; and (ii)
there is a significant nonzero gap between its r-th and (r+1)-
th eigenvalues. More specifically, we let Σ− = c1UΛ̄U ′+c2I
where c1 and c2 are positive constants that are defined later.
Clearly, λr(Σ−) − λr+1(Σ−) = c1λ̄min. By Theorem 6.1, if
λr(Σ

−)− λr+1(Σ−) > ‖YU −Σ−‖, then,

SE(Û ,U) ≤ ‖YU −Σ−‖
c1λ̄min − ‖YU −Σ−‖

. (9)

Thus, all we need now is to specify Σ− and find a high
probability upper bound on ‖YU −Σ−‖.

To this end, as also done in [11, Appendix C], we first
lower and upper bound YU in order to replace 1

m

∑
i yi,k in its

indicator function expression by a constant. Recall that YU is
defined in (3) and that 1

m

∑
i yi,k = xk

′( 1
m

∑
i ai,kai,k

′)xk.
By Fact A.3, item 3, in Appendix A, ai,k’s are sub-Gaussian
with sub-Gaussian norm bounded by c. Thus, using the
first part of Theorem 6.2, conditioned on xk, | 1

m

∑
i yi,k −

‖xk‖2| ≤ ε1‖xk‖2 w.p. ≥ 1 − 2 exp(−cε21m). The constant
multiplying ε1 is moved into the c in the probability. This
bound holds for all k = 1, 2, . . . , q w.p. ≥ 1−2q exp(−cε21m).
This implies that, with the same probability, conditioned on
X , Y − � YU � Y +, where

Y − :=
1

mq

m∑
i=1

q∑
k=1

w−i,kw
−
i,k
′, Y + :=

1

mq

m∑
i=1

q∑
k=1

w+
i,kw

+
i,k
′,

w−i,k :=

(
ai,k

′ xk
‖xk‖

)
ai,k1(

ai,k′ xk
‖xk‖

)2
≤9(1−ε1)

‖xk‖, and

w+
i,k =

(
ai,k

′ xk
‖xk‖

)
ai,k1(

ai,k′ xk
‖xk‖

)2
≤9(1+ε1)

‖xk‖.

Notice that w+
i,k is w−i,k with 9(1− ε1) replaced by 9(1 + ε1)

in the indicator function. The following claim is immediate.

Lemma 6.4. Conditioned on X , w.p. ≥ 1− 2q exp(−cε21m),
‖YU − Y −‖ ≤ ‖Y + − Y −‖.

Define

Σ− := E[Y −] and Σ+ := E[Y +].

We obtain expressions for these in the next lemma.

Lemma 6.5. Let ξ ∼ N (0, 1). Define

β−1 = β−1 (ε1) := E[(ξ4 − ξ2)1ξ2≤9(1−ε1)],

β−2 = β−2 (ε1) := E[ξ21ξ2≤9(1−ε1)].

Under both Models 6.3 and 3.4,

E[Y −|X] = β−1 U

(
1

q

∑
k

bkbk
′

)
U ′ + β−2

(
1

q

∑
k

‖bk‖2
)
I,

and Σ− = β−1 UΛ̄U ′ + β−2 trace(Λ̄)I.

The matrices E[Y +|X] and Σ+ have similar expressions
where we replace β−i by β+

i , i = 1, 2. For defining β+
i , replace

9(1− ε1) in the indicator function by 9(1 + ε1).

By the triangle inequality and Lemma 6.4, conditioned on
X , w.p. ≥ 1− 2q exp(−cε21m),

‖YU −Σ−‖ ≤ ‖YU − Y −‖+ ‖Y − −Σ−‖
≤ ‖Y + − Y −‖+ ‖Y − −Σ−‖
≤ 2‖Y − −Σ−‖+ ‖Y + −Σ+‖+ ‖Σ+ −Σ−‖.

To bound ‖Y − − Σ−‖, we first bound ‖Y − − E[Y −|X]‖
using the second claim of Theorem 6.2. We bound ‖Y +−Σ+‖
similarly.

Lemma 6.6. Conditioned on X , w.p. ≥ 1 − 2 exp(n log 9 −
ε22mq),

‖Y − − E[Y −|X]‖ ≤ ε2 max
k
‖bk‖2.

The same bound holds with the same probability for ‖Y + −
E[Y +|X]‖.

Remark 6.7. Since the claim of Lemma 6.6 holds with the
same probability lower bound for all X , it also holds with
the same probability lower bound if we average over X . The
same is true for Lemma 6.4.

The next lemma bounds maxk ‖bk‖2 = maxk ‖xk‖2.

Lemma 6.8. Under Model 6.3, maxk ‖bk‖2 ≤ rρλ̄max. Under
Model 3.4, w.p. ≥ 1−2q/n4, maxk ‖bk‖2 ≤ r(10 log n)λ̄max.

Under Model 6.3, Σ− = E[Y −|X] and so ‖E[Y −|X] −
Σ−‖ = 0. Under Model 3.4, we use the second claim of
Theorem 6.2, to bound ‖E[Y −|X]−Σ−‖ as follows.

Lemma 6.9. Under Model 6.3, ‖E[Y −|X]−Σ−‖ = 0. Under
Model 3.4, w.p. ≥ 1− 2 exp(r log 9− cε23q)− 18 exp(−cε23

q
r ),

‖E[Y −|X]−Σ−‖ ≤ ε3λ̄max.

Combining Lemmas 6.6, 6.8 and 6.9, we can bound ‖Y −−
Σ−‖ under both models. We get the same bound on ‖Y + −
Σ+‖ as well.
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Finally, we bound ‖Σ+ −Σ−‖ using the fact that, for all
ξ > ξ0, ξde−

ξ2

4 ≤ b for any d > 1.

Lemma 6.10. If ε1 ≤ 1/9, then

‖Σ+ −Σ−‖ ≤ [(β+
1 (ε1)− β−1 (ε1)) + (β+

2 (ε1)− β−2 (ε1))r]λ̄max

≤ 30rε1λ̄max

Combining the above bounds, we conclude the following.

Corollary 6.11. Let

pU,1 := 2q exp(−cε21m) + 4 exp(n log 9− cε22mq),

pU,2 := pU,1 +
4q

n4
+ 4 exp(r log 9− cε23q) + 36 exp(−cε23

q

r
),

εU,1 := 3rε2ρ+ 30rε1,

εU,2 := 3rε2(10 log n) + 30rε1 + 3ε3. (10)

Then,
1) under Model 6.3, w.p. ≥ 1 − pU,1, ‖YU − Σ−‖ ≤

εU,1λ̄max; and
2) under Model 3.4, w.p. ≥ 1 − pU,2, ‖YU − Σ−‖ ≤

εU,2λ̄max.

Finally, to bound the subspace error of Û , we also require
a lower bound on β−1 . This follows easily using the fact that,
for all ξ > ξ0, ξde−

ξ2

4 ≤ b for any d > 1.

Lemma 6.12. If ε1 ≤ 1/9, then

β−1 (ε1) = 2− E[(ξ4 − ξ2)1ξ2≥(9−9ε1)] ≥ 0.5.

Applying the sin θ theorem, Theorem 6.1, and the last two
claims above, we get the following result.

Corollary 6.13 (SE(Û ,U) bound). Let Model 1 be Model
6.3 and Model 2 be Model 3.4. If κεU,d < 1/16 then, under
Model d, w.p. ≥ 1− pU,d,

δU := SE(Û ,U) ≤ 2.3κεU,d.

Proof: Using Theorem 6.1,

SE(Û ,U) ≤ ‖YU −Σ−‖
β−1 λ̄min − ‖YU −Σ−‖

.

Since ε1 ≤ εU,d ≤ κεU,d ≤ 1/16, using Lemma 6.12, β−1 ≥
0.5. Thus, under Model d, w.p. ≥ 1− pU,d,

δU := SE(Û ,U) ≤
κεU,d
0.5

1− κεU,d
0.5

<
8

7

1

0.5
κεU,d < 2.3κεU,d,

completing the proof.

C. Bounding dist(xk, x̂k)

Recall that δU := SE(Û ,U) was bounded above. Here, we
bound dist(xk, x̂k)’s in terms of δU and other quantities.

Remark 6.14. For notational simplicity, we let x = xk, b :=
bk, yi := ynewi,k , ai := anewi , Yb := Yb,k defined in (5) in
Algorithm 3. Since the different bk’s are recovered separately,
but using the same technique, this notation does not cause any
confusion at most places. Where it does, we clarify.

In this section, we state all results conditioned on x and Û .
Under this conditioning, in all our claims, the probability of the

desired event is lower bounded by a value that does not depend
on x or Û . Thus, the same probability lower bound holds even
when we average over x and Û (holds unconditionally).

Notice that x = Ub can be rewritten as

x = Ûg + e, where

g := Û ′x = Û ′Ub, e := (I − ÛÛ ′)x.

We can further split g as g = vν where ν = ‖g‖ and v = g/ν.
Recall that we estimate x as

x̂ = Û ĝ = Û v̂ν̂,

where v̂ is the top eigenvector of Yb and ν̂ =
√

1
m̃

∑
i yi.

The following fact is immediate.

Fact 6.15. The vector e and the scalar ν := ‖g‖ satisfy ‖e‖ ≤
δU‖b‖, and7 (1− δU )‖b‖ ≤ ν ≤ ‖b‖.

Using the definition of dist, it is easy to see that8

dist(x1,x2) ≤ dist(x1,x3) + ‖x3 − x2‖. (11)

From (11) and Fact 6.15,
• dist(x, x̂) ≤ δU‖b‖+ dist(g, ĝ);
• dist(g, ĝ) ≤ ‖b‖dist(v, v̂) + |ν − ν̂|;
• dist(v, v̂)2 = 2(1−|v̂′v|), and SE(v̂,v) = ‖v−v̂v̂′v‖ ≥

1− |v̂′v|. Thus,
dist(x, x̂) ≤ δU‖b‖+

√
2SE(v̂,v)‖b‖+ |ν − ν̂| (12)

We now need to bound SE(v̂,v) and |ν − ν̂|. Using the first
claim of Theorem 6.2, we can bound the latter as follows.

Lemma 6.16 (|ν̂ − ν| bound). Conditioned on x and Û , w.p.
≥ 1− 2 exp(−cε24m̃), |ν̂ − ν| ≤ ε4‖b‖+ δU‖b‖.
This holds for all νk’s, k = 1, 2, . . . , q, w.p. ≥ 1 −
2q exp(−cε24m̃).

To bound SE(v̂,v), we use Theorem 6.1 with D̂ = Yb. To
define a matrix D, whose top eigenvector is v, let

ãi := Û ′ai, (13)

Yg :=
1

m̃

m̃∑
i=1

(ãi
′g)2ãiãi

′. (14)

It is easy to see that, conditioned on Û , ãi
iid∼ N (0, I). By

letting g be the first column of I and using rotation invariance
of ãi [10, Lemma A.1],

E[Yg|x, Û ] = 2gg′ + ‖g‖2I.

Clearly, the top eigenvector of this matrix is proportional to
g and the desired eigen-gap is 2‖g‖2 ≥ 2(1− δU )2‖b‖2. So,
we can use D = 2gg′ + ‖g‖2I for applying Theorem 6.1. It
remains to bound ‖Yb − (2gg′ + ‖g‖2I)‖.

Recall that Yb = 1
m̃

∑m̃
i=1(ai

′x)2ãiãi
′. Thus,

‖Yb − (2gg′ + ‖g‖2I)‖
≤ ‖Yg − (2gg′ + ‖g‖2I)‖+ ‖Ye,1‖+ 2‖Ye,2‖, (15)

7using ν = ‖Ûg‖ ≥ ‖x‖ − ‖e‖ ≥ (1− δU )‖b‖,
8dist(x1,x2) = minφ∈[0,2π] ‖x1 − ejφ(x2 + x3 − x3)‖ ≤

minφ∈[0,2π](‖x1 − ejφx3‖+ ‖x2 −x3‖) = dist(x1,x3) + ‖x2 −x3‖.
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where

Ye,1 :=
1

m̃

m̃∑
i=1

e′aiai
′eãiãi

′, and

Ye,2 :=
1

m̃

m̃∑
i=1

e′aiãi
′gãiãi

′.

To bound ‖Yg − (2gg′ + ‖g‖2I)‖, we use following modifi-
cation of Theorem 4.1 of [9].

Lemma 6.17. [modified version of Theorem 4.1 of [9]] Let
Yg be as defined in (14). Recall that g := Û ′Ub is an r-
length vector and, conditioned on Û , ãi

iid∼ N (0, I). If m̃ >
cr log4 r/ε25, then, conditioned on x and Û , w.p. ≥ 1−4/m̃8,

‖Yg − (2gg′ + ‖g‖2I)‖

≤

√8000r log4 m̃

m̃
+

√
2

m̃4

 ‖g‖2 ≤ 2ε5‖g‖2.

This holds for all gk’s, for k = 1, 2, . . . , q, w.p. ≥ 1−4q/m̃8.

Next, consider ‖Ye,1‖. In the argument below, everything is
conditioned on Û and x. Suppose that m̃ > r. Using Cauchy-
Schwartz for matrices, Theorem A.4, with X̃i = e′aiai

′e and
Ỹi = ãiãi

′, and simplifying the resulting bounds, we get

‖Ye,1‖2

≤

∥∥∥∥∥ 1

m̃

∑
i

e′aiai
′ee′aia

′
ie

∥∥∥∥∥ ·
∥∥∥∥∥ 1

m̃

∑
i

ãiãi
′ãiãi

′

∥∥∥∥∥
≤max

i
ai
′ee′ai

∥∥∥∥∥ 1

m̃

∑
i

e′aiai
′e

∥∥∥∥∥ ×
max
i
ãi
′ãi

∥∥∥∥∥ 1

m̃

∑
i

ãiãi
′

∥∥∥∥∥
≤(80r log m̃)‖b‖2(1 + ε4)‖e‖2(20r log m̃)(1 + ε4)

≤1600(r log m̃)2δ2
U (1 + ε4)2‖b‖4,

w.p. ≥ 1− 4/m̃8 − 2 exp(−cε24m̃)− 2 exp(r log 9− cε24m̃).
The first inequality is by Cauchy-Schwartz (Theorem A.4).

The second one pulls out the scalar maxi ai
′ee′ai from the

first summation and the scalar maxi ãi
′ãi from the second

summation. The third inequality relied on the following ar-
guments to bound the four terms. It used (i) Theorem 6.2,
part 1 with z = e to bound

∥∥e′( 1
m̃

∑
i aia

′
i)e
∥∥; (ii) Theorem

6.2, part 2 for bounding 1
m̃

∑
i ãiãi

′; and (iii) Fact A.3, item
4 in Appendix A to bound maxi ‖ãi‖2 by 20r log m̃ w.p.
≥ 1 − 2/m̃8 (since m̃ > r). This was possible because
conditioned on Û , ãi ∼ N (0, I). (iv) Finally, it used the
triangle inequality, Fact A.3, item 4 and the fact that ãi =
Û ′ai ∼ N (0, I) and U ′ai ∼ N (0, I) to bound

max
i
|ai′e| ≤ max

i
‖ai′U‖‖b‖+ max

i
‖ai′Û‖‖Û ′U‖‖b‖

≤ 2
√

20r log m̃‖b‖,

w.p. ≥ 1 − 2/m̃8. The fourth inequality in the bound on
‖Ye,1‖2 follows using ‖e‖ ≤ δU‖b‖.

The value of ‖Ye,2‖ can be bounded in a similar fashion:

‖Ye,2‖2 ≤ ‖
1

m̃

∑
i

e′aiãi
′gg′ãia

′
ie‖ ‖

1

m̃

∑
i

ãiãi
′ãiãi

′‖

≤ 400(r log m̃)2δ2
U (1 + ε4)2‖b‖4,

with the same probability. The main difference here is that we
bound maxi(ãi

′g)2 instead of maxi(ai
′e)2. To do this, we

use maxi(ãi
′g)2 ≤ maxi ‖ãi‖2‖g‖2 ≤ 20r(log m̃)‖b‖2 w.p.

≥ 1− 2/m̃8. Thus, we have the following lemma.

Lemma 6.18. Suppose that m̃ > r. Conditioned on x and Û ,
w.p. ≥ 1− 6/m̃8 − 4 exp(−cε24m̃)− 2 exp(r log 9− cε24m̃),

‖Ye,1‖ ≤ 40(r log m̃)δU (1 + ε4)‖b‖2,
‖Ye,2‖ ≤ 20(r log m̃)δU (1 + ε4)‖b‖2.

This holds for all gk’s for k = 1, 2, . . . , q, w.p. ≥ 1−6q/m̃8−
4q exp(−cε24m̃)− 2 exp(r log 9− cε24m̃).

Let

pg :=
10q

m̃8
+ 4q exp(−cε24m̃) + 2 exp(r log 9− cε24m̃). (16)

Using (15) and the bounds from Lemmas 6.17 and 6.18, we
conclude the following. If m̃ ≥ 1

ε25
cr log4 r, then, conditioned

on X and Û , w.p. ≥ 1− pg , for all k = 1, 2, . . . , q,

‖Yb,k−(2gkgk
′+‖gk‖2I)‖ ≤ (2ε5+80r log m̃(1+ε4)δU )‖bk‖2.

Using Theorem 6.1 and Fact 6.15, with the same probability,

SE(v̂k,vk)≤ ‖Yb,k − (2gkgk
′ + ‖gk‖2I)‖

2‖gk‖2 − ‖Yb,k − (2gkgk′ + ‖gk‖2I)‖

≤ (2ε5 + 80r log m̃(1 + ε4)δU )

(2− 2δU − (2ε5 + 80r log m̃(1 + ε4)δU )
.

If the numerator is smaller than 1− 2δU , then

SE(v̂k,vk) ≤ (2ε5 + 80r log m̃(1 + ε4)δU ).

As before, we can average over X and Û and still get all
the events above to hold with the same probability. Using the
above bound, (12), and Lemma 6.16, we get the following.

Corollary 6.19 (dist(x̂k,xk) bound). If m̃ ≥ 1
ε25
cr log4 r, w.p.

≥ 1−pg−2q exp(−cε24m̃), dist(x̂k,xk) is upper bounded by

(ε4 + 2δU +
√

2(2ε5 + 80r log m̃(1 + ε4)δU ))‖bk‖,

for all k = 1, 2, . . . , q, if 2ε5 + r log m̃(1 + ε4)δU < 1− 2δU .

D. Proof of Theorem 3.2

Combining Corollaries 6.13 and 6.19, we can conclude the
following. If m̃ ≥ cr log4 r/ε25, then, w.p. ≥ 1− pU,1 − pg −
2q exp(−cε24m̃), dist(x̂k,xk) is bounded by(
ε4 + 4.6κεU,1 +

√
2(2ε5 + 184r log m̃(1 + ε4)κεU,1)

)
‖bk‖

for all k = 1, 2, . . . , q, as long as κεU,1 ≤ 1/16 (this automati-
cally implies ε1 < 1/9) and (2ε5+184r log m̃(1+ε4)κεU,1) ≤
1− 4.6κεU,1.
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Recall that εU,1 = rρε2 + rε1. Thus to get dist(x̂k,xk)
below c

√
ε‖bk‖, for an ε < 1, we set

ε1 =
ε

150κr2 log m̃
, ε2 =

ε

15κρr2 log m̃
, ε4 =

√
ε, ε5 = ε/5.

With these choices notice that, if m̃ ≥ 3 and r ≥ 3, then
κεU,1 = κ(3rρε2 + 30rε1) = 2ε/(5r log m̃) < 1/16; and
2ε5 + r log m̃(1 + ε4)κεU,1 ≤ 1− 2/16.

Using the expressions for pU,1 and pg , to get the probability
of the desired event below 1−2 exp(−cn)−32q/n4, we need

ε2

cκ2r4 log2 m̃
m ≥ 4 log n,

ε2

cκ2ρ2r4 log2 m̃
mq ≥ cn,

m̃ ≥ c
√
n, m̃ ≥ cr log4 r

ε2
,

εm̃ ≥ 4 log n, m̃ ≥ (4 log n+ (log 9)r)

ε
.

We obtained these bounds by taking each probability term and
finding a lower bound on m̃, m or mq to get it below either
cq/n4 or 2 exp(−cn). Theorem 3.2 assumes r ≤ n1/5. Thus,
r log4 r ≤ c

√
n, r ≤ c

√
n. For large n, log n ≤ c

√
n.

E. Proof of Theorem 3.5

We use the same approach as above. With Model 3.4, both
εU and pU are larger. We have εU = εU,2 which is equal to
3ε3 plus εU,1 with ρ replaced by 10 log n. Also, pU = pU,2 =
pU,1 + 2q/n4 + 2 exp(r log 9− cε23q) + 18 exp(−cε23

q
r ).

Thus, two things change in the conditions required to get
the error below c

√
ε w.p. ≥ 1 − 2 exp(−cn) − 16q/n4 −

2q/n4−20/n4. First, ρ2 is replaced by (10 log n)2 in the lower
bound on mq. Second, we set ε3 = ε

κr log m̃ . With this, to get
2 exp(r log 9 − cε23q) < 2/n4 and 18 exp(−cε23

q
r ) < 18/n4,

we need the assumed lower bound on q.

F. Proof of Corollary 3.7 and Corollary 3.8

From the proof given in the previous subsections, we need
r̂ = r in order to apply the sin θ theorem (Theorem 6.1) to
bound SE(Û ,U) in Corollary 6.13.

Using Corollary 6.11, w.p. ≥ 1− pU,1,

‖YU −Σ−‖ ≤ εU,1λ̄max = κεU,1λ̄min, where

Σ− := β−1 (ε1)UΛ̄U ′ + β−2 (ε1)trace(Λ̄)I, (17)

and β−1 (ε1), β−2 (ε1) are defined in Lemma 6.5. Let β−1 :=
β−1 (ε1). Suppose that ε ≤ 0.001. From Sec. VI-D, ε1 ≤ εU,1 ≤
ε ≤ 0.001. Using κ ≤ 10, 2κεU,1 ≤ 0.02.

Thus, from (17), Weyl’s inequality [33], and λ̄j − λ̄j+1 ≤
0.9λ̄min, we conclude the following: for a j < r and a j′ > r,
w.p. ≥ 1− pU,1,

λr(YU )− λr+1(YU ) ≥ (β−1 − 2κεU,1)λ̄min

≥ (β−1 − 0.02)λ̄min,

λj(YU )− λj+1(YU ) ≤ λj(Σ−)− λj+1(Σ−) + 2κεU,1λ̄min

= β−1 (λ̄j − λ̄j+1) + 2κεU,1λ̄min,

≤ (0.9β−1 + 0.02)λ̄min, and
λj′(YU )− λj′+1(YU ) ≤ λj′(Σ−)− λj′+1(Σ−) + 2κεU,1λ̄min

= 0 + 2κεU,1λ̄min ≤ 0.02λ̄min.

By Lemma 6.12, β−1 ≥ 0.5. Using this, we conclude that

λr(YU )− λr+1(YU ) ≥ (β−1 − 0.02)λ̄min

> (0.9β−1 + 0.02)λ̄min

≥ λj(YU )− λj+1(YU ), and

λr(YU )− λr+1(YU ) ≥ (β−1 − 0.02)λ̄min

> 0.02λ̄min ≥ λj′(YU )− λj′+1(YU )

for a j < r and a j′ > r. The second row used 0.1β−1 > 0.04
and the last row used β−1 − 0.02 > 0.02.

Thus, if κ ≤ 10, and λ̄j − λ̄j+1 ≤ 0.9λ̄min, then, under
the assumptions of Theorem 3.2, w.p. ≥ 1− pU,1, λj(YU )−
λj+1(YU ) is largest for j = r, i.e., r̂ = r. Using this and then
proceeding exactly as before, we obtain Corollary 3.7.

To get Corollary 3.8, use (17), Weyl’s inequality [33], and
κ ≤ 124, to argue that, w.p. ≥ 1− pU,1, for any j > r,

λr(YU )− λn(YU ) ≥ (β−1 − 0.002κ)λ̄min ≥ (0.5− 0.246)λ̄min,

λj(YU )− λn(YU ) ≤ 0.002κλ̄min < 0.25λ̄min.

Thus, w.p. ≥ 1− pU,1, j = r is the smallest index for which
λr(YU )− λn(YU ) ≥ 0.25λ̄min and hence the rank estimation
approach of Corollary 3.8 returns r̂ = r.

VII. CONCLUSIONS AND FUTURE WORK

We presented two iterative phase retrieval algorithms –
LRPR1 and LRPR2 – for recovering a set of q unknown
vectors lying in a low (r) dimensional subspace of Rn from
their phaseless measurements. Both methods are initialized by
a two step spectral initialization procedure, called LRPR-init,
that first estimates the subspace from which all the vectors are
generated, and then estimates the projection, of each vector,
into the estimated subspace. The rest of LRPR1 involves
projected truncated gradient descent. The remainder of LRPR2
involves alternating minimization to update the estimates ofU ,
B, and the unknown phase of (ai,k

′xk) for each i, k.
We obtained sample complexity bounds for LRPR-init and

argued that, when q/r is large, these are much smaller than
those for TWF or any other single-vector PR method. Via
extensive experiments, we also showed that the same is true for
both the complete algorithms - LRPR1 and LRPR2. Between
the two, LRPR2 has better performance, but also higher per
iteration computational cost, than LRPR1.

In future work we will analyze the complete LRPR2
algorithm. This should replace the dependence of sample
complexity on 1/ε2 by a dependence on − log ε.
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APPENDIX A
PRELIMINARIES

As explained in [30], ε-nets are a convenient means to
discretize compact metric spaces. The following definition is
[30, Definition 5.1] for the unit sphere.

Definition A.1 (ε-net and covering number of the unit sphere
in Rn). For an ε > 0, a subset Nε of the unit sphere in Rn is
called an ε-net if, for every vector x on the unit sphere, there
exists a vector y ∈ Nε such that ‖y − x‖ ≤ ε.

The covering number of the unit sphere in Rn, is the size
of the smallest ε-net, Nε, on it.

Fact A.2 (Facts about ε-nets).
1) By Lemma 5.2 of [30], the covering number of the unit

sphere in Rn is upper bounded by (1 + 2
ε )n.

2) By Lemma 5.4 of [30], for a symmetric
matrix, W , ‖W ‖ = maxx:‖x‖=1 ‖x′Wx‖ ≤

1
1−2ε maxx∈Nε ‖x′Wx‖.

Fact A.3 (Facts about sub-Gaussian random vectors).
1) If x is a sub-Gaussian random vector with sub-Gaussian

norm K, then for any vector z, (i) x′z is sub-Gaussian
with sub-Gaussian norm bounded by K‖z‖; (ii) (x′z)2

is sub-exponential with sub-exponential norm bounded
by 2K2‖z‖2; and (iii) (x′z)2 − E[(x′z)2] is centered
(zero-mean), sub-exponential with sub-exponential norm
bounded by 4K2‖z‖2. This follows from the definition
of a sub-Gaussian random vector; Lemma 5.14 and
Remark 5.18 of [30].

2) By [30, Corollary 5.17], if xi, i = 1, 2, . . . N , are a set
of independent, centered, sub-exponential r.v.’s with sub-
exponential norm bounded by Ke, then, for an ε < 1,

Pr

(
|
N∑
i=1

xi| > εKeN

)
≤ 2 exp(−cε2N).

3) If x ∼ N (0, Λ̄) with Λ̄ diagonal, then x is sub-Gaussian
with ‖x‖ϕ2

≤ c
√
λ̄max. Moreover, if y = x1x where

x1 is a zero mean bounded r.v. with bound M , then
‖y‖ϕ2

≤ cM
√
λ̄max.

4) If xi ∼ N (0, Λ̄), for i = 1, 2, . . . , N , are n-length
random vectors and Λ̄ is diagonal, then

Pr

(
max

i=1,2,...,N
‖xi‖2 ≤ λ̄max · n · 2ν

)
≥ 1− 2nN exp(−ν), for ν > 1.

This is a direct consequence of eq. 5.5 of [30] which says
that if x ∼ N (0, 1), then Pr(|xi| > t) ≤ 2 exp(−t2/2)
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for a t > 1. Using this along with the union bound first
for bounding ‖xi‖2 =

∑n
j=1(xi)

2
j for a given i and then

for bounding its max over i gives the above result.
5) Using [30, Lemma 5.5], if xi’s are sub-Gaussian ran-

dom vectors with sub-Gaussian norm bounded by K,
then the following generalization of the above fact
holds: Pr

(
maxi=1,2,...,N ‖xi‖2 ≤ K2 · n · 2ν

)
≥ 1 −

CnN exp(−cν).

The following is an easy corollary of Cauchy-Schwartz for
sums of products of vectors.

Theorem A.4 (Cauchy-Schwartz for sums of matri-

ces). For matrices Xt and Yt,
∥∥∥ 1
α

∑α
t=1 X̃tỸ

′
t

∥∥∥2

≤

λmax

(
1
α

∑α
t=1 X̃tX̃t

′)
λmax

(
1
α

∑α
t=1 ỸtỸ

′
t

)
.

APPENDIX B
PROOFS OF LEMMAS FROM SECTION VI

We prove the lemmas that were not proved in Section VI.
Define

wi,k :=

(
ai,k

′ xk
‖xk‖

)
ai,k1(

ai,k′ xk
‖xk‖

)2
≤9(1−ε1)

‖xk‖.

Then Y − = 1
mq

∑
k

∑
iwi,kwi,k

′.
Proof of Lemma 6.5: Since ai,k is rotationally symmet-

ric, to compute E[wi,kwi,k
′|X] easily, we can let xk

‖xk‖ be
the first column of the identity matrix. With this, wi,k =
(ai,k)1ai,k1(ai,k)21≤9(1−ε1) ‖xk‖. Thus, using the argument
of [11, Appendix C], E[wi,kwi,k

′|X] = (β−1
xk
‖xk‖

xk
‖xk‖

′ +

β−2 I)‖xk‖2 = (β−1 xkxk
′ + β−2 ‖xk‖2I). Using this with

xk = Ubk, Λ̄ = 1
q

∑
k bkbk

′, and 1
q

∑
k ‖bk‖2 = trace(Λ̄),

both claims follow under Model 6.3. To get Σ− under Model
3.4, using linearity of expectation and of trace, trace(Λ̄) =
E[ 1

q

∑
k ‖bk‖2].

Proof of Lemma 6.6: The proof relies on the following.
• Let D = maxk ‖bk‖2 = maxk ‖xk‖2.
• We first argue argue that, conditioned on X , each wi,k

is sub-Gaussian with sub-Gaussian norm bounded by
c‖xk‖ ≤ c

√
D.

To show this easily, we use the strategy of [11,
Appendix C]. Since ai,k is rotationally symmetric,
without loss of generality, suppose that xk

‖xk‖ is the
first column of the identity matrix. Then, wi,k =
ai,k(ai,k)11(ai,k)21≤9(1−ε1) ‖xk‖. With this simplifica-
tion, wi,k is of the form xx1 where x1 is a bounded
r.v. with bound

√
9(1− ε1)‖xk‖ and x is Gaussian with

zero mean and covariance matrix I . Thus, using Fact
A.3, item 3, it is sub-Gaussian with sub-Gaussian norm
bounded by c‖xk‖ ≤ c

√
D.

• Conditioned on X , all the wi,k’s are mutually indepen-
dent. There are N = mq of them.

Thus, all the mq wi,k’s are mutually independent sub-
Gaussian random vectors with sub-Gaussian norm bounded
by c
√
D. So, we can apply the second claim of Theorem 6.2

with wj replaced by wi,k and summed over the N = mq
vectors, wi,k, to show that ‖Y − − E[Y −|X]‖ ≤ ε2D w.p.
≥ 1− 2 exp(n log 9− cε22mq).

Proof of Lemma 6.8: Let D = maxk ‖bk‖2. Under
Model 6.3, D ≤ rρλ̄max by definition. Under Model 3.4, we
use Fact A.3, item 4 with n ≡ r, N ≡ q, ν ≡ 5 log n to get
D ≤ 10 log n w.p. ≥ 1−2rqn−5 ≥ 1−2qn−4 since r ≤ n.

Proof of Lemma 6.9: ‖E[Y −|X]−Σ−‖ is bounded by

β−1 ‖
1

q

∑
k

bkbk
′ − Λ̄‖+ β−2

∣∣∣∣∣1q∑
k

‖bk‖2 − trace(Λ̄)

∣∣∣∣∣
Clearly, β−1 ≤ 2 and β−2 ≤ 1. By Fact A.3, item 3, bk
is sub-Gaussian with ‖bk‖ϕ2 ≤ c

√
λk,max. By model

assumption, λk,max ≤ cλ̄max. Thus, ‖bk‖ϕ2
≤ c

√
λ̄max.

Apply the second claim of Theorem 6.2 with N ≡ q, n ≡ r

and K ≡ c
√
λ̄max to get

∥∥∥ 1
q

∑
k bkb

′
k − Λ̄

∥∥∥ ≤ ε3λ̄max w.p.
≥ 1− 2 exp(r log 9− cε23q). The constant next to ε3λ̄max has
been absorbed into the c in the probability.
For the second term, apply Theorem 6.2 with N ≡ rq, n ≡ 1

and K ≡ c
√
λ̄max to get

∣∣∣ 1
rq

∑
k ‖bk‖2 −

trace(Λ̄)
r

∣∣∣ ≤
ελ̄max w.p. ≥ 1 − 2 exp(log 9 − cε2rq). Thus,∣∣∣ 1q∑k ‖bk‖2 − trace(Λ̄)

∣∣∣ ≤ rελ̄max with the
same probability. Use ε = ε3/r to conclude
that

∣∣∣ 1q∑k ‖bk‖2 − trace(Λ̄)
∣∣∣ ≤ ε3λ̄max w.p.

≥ 1− 18 exp(−cε23
q
r ).

Proof of Lemma 6.10:
Using ξ exp(−ξ2/2) < 1 for all ξ2 > 8,

β+
2 (ε1)− β−2 (ε1) = E[ξ21(9−9ε1)≤ξ2≤(9+9ε1)]

= 2

∫ √9+9ε1

√
9−9ε1

ξ2 1√
2π
e−

ξ2

2 dξ

≤ 2
1√
2π

∫ √9+9ε1

√
9−9ε1

ξdξ =
1√
2π

(18ε1)

Similarly, using ξ3 exp(−ξ2/2) < 3.1 for all ξ2 > 8,

β+
1 (ε1)− β−1 (ε1) ≤ 3.1 · 1√

2π
18ε1 < 22.4ε1

Proof of Lemma 6.12: Using (ξ4 − ξ2) exp(−ξ2/4) <
7.58 for all ξ2 > 8, Fact A.3, item 4 and ε1 ≤ 1/9,

β−1 = E[(ξ4 − ξ2)]− E[(ξ4 − ξ2)1ξ2≥(9−9ε1)]

≥ 2− 7.58 · 2
∫ ∞
√

9−9ε1

1√
2π
e−

ξ2

4 dξ

= 2− 7.58 ·
√

2 Pr(x2 ≥ (9− 9ε1)/2)

≥ 2− 7.58 ·
√

2 exp(−(9− 9ε1)/4) ≥ 0.5

where x ∼ N (0, 1).
Proof of Lemma 6.16: By triangle inequality, |ν̂ − ν| ≤

|ν̂ − ‖x‖| + |‖x‖ − ν |. By Fact 6.15, |‖x‖ − ν| ≤ δU‖b‖.
We can bound |ν̂ − ‖x‖| by applying Theorem 6.2, part 1.
Recall that ν̂2 = 1

m̃

∑
i yi = 1

m̃

∑
i(ai

′x)2 and so, w.p. ≥
1− 2 exp(−cε24m̃),

| ν̂2 − ‖x‖2 | = |x′( 1

m

∑
i

aiai
′ − I)x| ≤ ε4‖x‖2
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Since ε4 < 1, this implies that (1−ε4)‖x‖ ≤ ν̂ ≤ (1+ε4)‖x‖
and so |ν̂−‖x‖ | ≤ ε4‖x‖. Hence, w.p. ≥ 1−2 exp(−cε24m̃),
|ν̂ − ν| ≤ (ε4 + δU )‖x‖.

Proof of Lemma 6.17: The proof is a simplified and
clearer version of the proof of Theorem 4.1 of [9]. The
complete proof is given in the Supplementary Document.
We give the key ideas here. Let E[.] denote expectation
conditioned on x, Û . Recall that E[Yg] = 2gg′ + ‖g‖2I and
thus we need to bound ‖Yg − E[Yg]‖. (1) Due to rotational
symmetry of ãi’s we can let g be the first column of I . This
gives a simpler expression for Yg . (2) Truncate ãi’s as follows:
for each j = 1, 2, . . . , r, let (ãtrunc

i )j = (ãi)j if ((ãi)j)
2 ≤

20 logm, (ãtrunc
i )j = 0 otherwise. Define Y trunc

g using
ãtrunc
i ’s. (3) Apply Theorem 1.4 of [34] (matrix Bernstein)

to bound ‖Y trunc
g − E[Y trunc

g ]‖ w.p. ≥ 1 − 2/m̃8. (4) By
definition, ‖Yg − Y trunc

g ‖ = 0 w.p. ≥ 1 − 2/m̃8. (5)
Finally bound ‖E[Yg] − E[Y trunc

g ]‖ by 4/m̃4.5. This is easy
because both E[Yg] and E[Y trunc

g ] are diagonal (the latter is
diagonal because the truncation ensures that entries of ãtrunc

i

are also mutually independent and zero mean). Bound the
diagonal entries using the following trick: for ξ large, e.g. for
ξ > 10, ξ4e−ξ

2/4 < 1 and so ξ4e−ξ
2/2 < e−ξ

2/4; similarly,
ξ2
1e
−ξ21/4ξ2

2e
−ξ22/4 < 1 for ξ1, ξ2 large.
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APPENDIX C
SUPPLEMENTARY DOCUMENT

Proof of Theorem 6.2: The proof strategy is similar
to that of Theorem 5.39 of [30]. By Fact A.3, item 1, for
each j, the r.v.s wj ′z are sub-Gaussian with sub-Gaussian
norm bounded by K‖z‖; (wj

′z)2 are sub-exponential with
sub-exponential norm bounded by 2K2‖z‖2; and (wj

′z)2 −
E[(wj

′z)2] = z′(wjwj
′)z−z′(E[wjwj

′])z are centered sub-
exponential with sub-exponential norm bounded by 4K2‖z‖2.
Also, for different j’s, these are clearly mutually independent.
Thus, by applying Fact A.3, item 2 (Corollary 5.17 of [30])
we get the first part.

To prove the second part, let N1/4 denote a 1/4-th net on the
unit sphere in Rn. Let W := 1

N

∑N
j=1(wjwj

′ − E[wjwj
′]).

Then by Fact A.2 (Lemma 5.4 of [30])

‖W ‖ ≤ 2 max
z∈N1/4

|z′Wz| (18)

Since N1/4 is a finite set of vectors, all we need to do
now is to bound |z′Wz| for a given vector z followed
by applying the union bound to bound its maximum over
all z ∈ N1/4. The former has already been done in the
first part. By Fact A.2 (Lemma 5.2 of [30]), the cardi-
nality of N1/4 is at most 9n. Thus, using the first part,
Pr
(

maxz∈N1/4
|z′Wz| ≥ 4εK2

2

)
≤ 9n · 2 exp(−c ε

2

4 N) =

2 exp(n log 9− cε2N). By (18), we get the result.
Complete Proof of Lemma 6.17: The proof is a simplified

and clearer version of the proof of Theorem 4.1 of [9]. The
few differences are as follows: we truncate differently (in a
simpler fashion); and we use different constants to get a higher
probability of the good event.

Without loss of generality, assume that g is unit norm. Re-
call that Yg := 1

m

∑
i(ãi

′g)2ãiãi
′ with ãi

iid∼ N (0, I). Since
ãi’s are rotationally symmetric, without loss of generality, we
can assume that g is the first column of identity matrix. Then,

Yg =
1

m

∑
i

(ãi)
2
1ãiãi

′

We use Theorem 1.5 of [34] to prove the result. To use this
result, we need to first truncate ãi’s. In particular we need
to definitely truncate (ãi)1 and ‖ãi‖2. However truncating all
entries of ãi results in a simpler proof and hence we use this
approach. For j = 1, 2, . . . , r, define

(ãtrunc
i )j = (ãi)j if ((ãi)j)

2 ≤ 20 logm,

(ãtrunc
i )j = 0 otherwise

Define
Y trunc
g :=

1

m̃

∑
i

(ãtrunc
i )2

1ã
trunc
i ãtrunc

i
′

By Fact A.3, item 4, ãtrunc
i = ãi w.p. ≥ 1 − 2r/m̃10 ≥ 1 −

2/m̃9 since m̃ ≥ r. This holds for all i = 1, 2, . . . m̃, w.p.
≥ 1− 2/m̃8. Thus, ‖Yg − Y trunc

g ‖ = 0 w.p. ≥ 1− 2/m̃8.
To apply Theorem 1.5 of [34] (matrix Bernstein),

define matrix Xi := (ãtrunc
i )2

1ã
trunc
i ãtrunc

i
′. Clearly

‖Xi‖ ≤ 20 log m̃ · (r20 log m̃) = 400r log2 m̃ := R.
Also ‖E[X2

i ]‖ ≤ (ãtrunc
i )4

1‖ãtrunc
i ‖2‖E[ãtrunc

i ãtrunc
i
′]‖ ≤

8000r log3 m̃‖E[ãtrunc
i ãtrunc

i
′]‖ ≤ 8000r log3 m̃. Here we used

‖E[ãtrunc
i ãtrunc

i
′]‖ ≤ 1. This is true because: (a) even with

the truncation, the different components of ãtrunc
i remain

independent and zero mean and so E[(ãtrunc
i )j1(ãtrunc

i )j2] = 0
for j1 6= j2; thus, E[ãtrunc

i ãtrunc
i
′] is diagonal; and (b) it is

easy to see that E[(ãtrunc
i )2

j ] ≤ E[(ãi)
2
j ] = 1.

Thus, we can apply the theorem with R = 400r log2 m̃
and σ2 = ‖

∑
i E[X2

i ]‖ ≤ 20m̃R log m̃. Picking ν =√
400 · 20 r log4 m̃

m̃ , we get

‖Y trunc
g − E[Y trunc

g ]‖ ≥ ν

w.p. ≤ 2r exp

(
− m̃2ν2

m̃R log m̃+ m̃Rν/3

)
≤ 2r exp

(
− m̃ν2

2R log m̃

)
≤ 2 exp

(
log r − m̃400 · 20r log4 m̃

m̃2 · 400r log3 m̃

)
= 2 exp(log r − 10 log m̃) ≤ 2/m̃9

This follows since m̃ > cr log4 r (and so ν < 1 and m̃ > r)
Moreover, w.p. ≥ 1− 2/m̃8,

‖Y trunc
g − Yg‖ = 0

Thus, w.p. ≥ 1− 4/m̃8,

‖Yg − E[Y trunc
g ]‖ ≤ ν =

√
8000

r log4 m̃

m̃

Now we only need to bound ‖E[Y trunc
g ]−E[Yg]‖. This is easy

and uses the following facts. (a) clearly, E[Yg] is diagonal;
(b) E[Y trunc

g ] is also diagonal since with our truncation the
different components of ãtrunc

i remain independent and zero
mean; and (c) thus we only need to bound the diagonal entries
of E[Y trunc

g ]− E[Yg]. Consider the (1,1)-th entry. We bound
this by using the fact that for ξ > 10, ξ4e−ξ

2/4 < 1. If m̃ > 3,
20 log m̃ > 18 > 10 and hence this bound holds over the entire
region of integration.

E[(ãi)
4
1 − (ãtrunc

i )4
1] = 2

∫ ∞
√

20 log m̃

ξ4 e
−ξ2/2
√

2π
dξ

≤ 2

∫ ∞
√

20 log m̃

e−ξ
2/4

√
2π · 2

√
2dξ

=
√

2 Pr(|x| >
√

9 log m̃/2) ≤
√

2
2

m̃4.5

if m̃ > 3. Here x is a standard Gaussian r.v.. The last inequality
used Fact A.3, item 4.

Next consider the (j, j)-th entry for j > 1. This can be
bounded using a similar trick.

E[(ãi)
2
1(ãi)

2
j − (ãtrunc

i )2
1(ãtrunc

i )2
j ]

≤ 2

∫
ξ21≥20 log m̃

ξ2
1ξ

2
2 exp(−(ξ2

1 + ξ2
2)/2)

1

2π
dξ1dξ2

= 2

∫
ξ21≥20 log m̃

ξ2
1 exp(−ξ2

1/2)
1√
2π
dξ1

≤ 2

∫
ξ21≥20 log m̃

exp(−ξ2
1/4)

√
2√

2π2
dξ1 ≤

2
√

2

m̃4.5
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Thus, w.p. ≥ 1− 4/m̃8,

‖Yg − E[Yg]‖ ≤

√
8000

r log4 m̃

m̃
+

4

m̃4.5
.

If m̃ > cr log4 r/ε25, then the above bound is below 2ε5. To
see this notice that for m̃ = cr log4 r/ε25, log4 m̃

m̃ ≤ cε25/r; and
(log4 m̃)/m̃ is an increasing function (for m̃ large).

APPENDIX D
EXPERIMENT DETAILS FOR FIG. 1

We used real videos that are approximately low rank and
CDP measurements of their images. Each image (arranged as
a 1D vector) corresponds to one xk and hence the entire video
corresponds to the matrix X . We show results on a moving
mouse video and on a moving airplane video (shown in Fig.
1). We show two results with “low-rankified videos”9 and one
result with the original airplane video. The airplane images
were of size n1 × n2 with n1 = 240, n2 = 320; the mouse
images had n1 = 180, n2 = 319. Thus, n = n1n2 = 76800
and n = 57420 respectively. Mouse video had q = 90 frames
and airplane one had q = 105 frames.

The CDP measurement model can be understood as
follows [11]. First, note that it allows m to only be
an integer multiple of n; so let m = nL for an in-
teger L. Let yk denote the vector containing all mea-
surements of xk. Then yk = |Ak

′xk|2 where Ak =
[(FMk,1)′, (FMk,2)′, . . . ,F (Mk,L)′]; each Mk,l is a di-
agonal n × n mask matrix with diagonal entries chosen
uniformly at random from the set {1,−1,

√
−1,−

√
−1}, and

F = F1D,n1 ⊗ F1D,n2 where F1D,n is the n-point discrete
Fourier transform (DFT) matrix and ⊗ denotes Kronecker
product. Thus, (Fxk) is the vectorized version of the 2D-DFT
of the image corresponding to xk

In this experiment, n and m are very large and hence the
memory complexity is very large. Thus, the algorithm can-
not be implemented using matrix-vector multiplies. However,
since the measurements are masked-Fourier, we can implement
its “operator” version as was also done in the TWF code
[11]. All matrix-vector multiplies are replaced by “operators”
that use 2D fast Fourier transform (2D-FFT) or 2D-inverse-
FFT (2D-IFFT) functions, preceded or followed by applying
the measurement masks. This is a much faster and memory
efficient implementation. Only the masks need to be stored.
The EVD in the initialization step is implemented by a block-
power method that uses 2D-FFT. The LS step is implemented
using the operator-version of conjugate gradient LS (CGLS)
taken from http://web.stanford.edu/group/SOL/software/cgls/.
TWFproj and LRPR1 are implemented similarly.

For this experiment, we used 50 outer loop iterations in each
algorithm. Also, 50 iterations of the block-power method were
used. For LRPR2, 3 iterations of CGLS were used. We display
the NormErr for LRPR2, LRPR1, TWF (TWF-init+TWF)
and TWFproj (TWFproj-init+TWFproj) in Table III. Execution
times are again shown in parentheses. Three frames of the

9The original video data matrix Xorig was made exactly low rank by
projecting it onto the space of rank-r matrices where r was chosen to retain
90% of the singular values’ energy.

LRPR2 LRPR1 TWF TWFproj
Mouse, Low-rankified video, r = 15, L = 1

0.52 (981) 0.65 (548) NaN (54) NaN (389)
Mouse, Low-rankified video, r = 15, L = 2

8.0e-04 (18776) 0.07 (905) 2.2 (103) 13 (394)
Plane, Low-rankified video, r = 6, L = 2

7.8e-10 (1036) 6.9e-07 (574) 2.2 (137) 14 (327)
Plane, Original video, r = 6, L = 2

0.579 (1042) 0.583 (567) 2.2 (134) 14 (339)
Plane, Original video, r = 25, L = 3

0.146 (13472) 0.150 (3451) 2.0 (207) 14 (950)

TABLE III: Results for videos with CDP measurements: the table is
displayed as NormErr (time in seconds). We use the symbol “NaN”
to indicate that the TWF or TWFproj code failed. This happens for
the L = 1 case (since m = n is too few measurements for TWF).

results corresponding to the last row of this table are shown
in Fig. 1 in Sec. II. As can be seen, LRPR2 has the smallest
error in all cases. LRPR2 is also the slowest; it is at least r
times slower than TWF. But, TWF and TWFproj do not work
when m = nL is small: notice that the error is much more
than one even for L = 3. LRPR1 is slower than TWF and
TWFproj but is much faster than LRPR2. Notice also that,
when LRPR2 error is more than 0.1, LRPR1 error is not too
much larger than that of LRPR2; in the regime when LRPR2
error is below 0.001, LRPR1 error is 100-1000 times larger.
Thus, if just a good approximate solution is needed, LRPR1
offers a better compromise between speed and performance
with fewer measurements. If a very accurate solution is needed
but speed is not a concern, LRPR2 is a better idea.


