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Analysis of a Beamformed Alamouti Scheme
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Abstract

In this paper, we study the amplify-and-forward (AF) schemes in two-hop one-way relay networks.
In particular, we consider the multigroup multicast transmission between long-distance users. Given
that perfect channel state information is perceived, our goal is to design the AF process so that the
max-min-fair (MMF) signal-to-interference-plus-noise ratio (SINR) is optimized subject to generalized
power constraints. We propose a rank-two beamformed Alamouti (BFA) AF scheme and formulate
the corresponding AF design problem as a two-variable fractional quadratically-constrained quadratic
program (QCQP), which is further tackled by the semidefinite relaxation (SDR) technique. We analyze
the approximation quality of two-variable fractional SDRs under the Gaussian randomization algorithm.
These results are fundamentally new and reveal that the proposed BFA AF scheme can outperform the
traditional BF AF scheme, especially when there are many users in the system or many generalized
power constraints in the problem formulation. From a practical perspective, the BFA AF scheme offers
two degrees of freedom (DoFs) in beamformer design, as opposed to the one DoF offered by the BF
AF scheme, to improve the receivers’ SINR. In the latter part of this paper, we demonstrate how this
extra DoF leads to provable performance gains by considering two special cases of multicasting, where
the AF process is shown to employ a special structure. The numerical simulations further validate that
the proposed BFA AF scheme outperforms the BF AF scheme and works well for large-scale relay
systems.
Index terms− MIMO relay network, distributed relay network, cognitive radio, energy harvesting,
amplify-and-forward (AF), multigroup multicast, SDR, approximation bounds.
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I. INTRODUCTION

The information delivery between multiple wireless devices has shown an increasing impor-

tance in up-to-date military networks, relay networks, and 5G networks [1]–[4]. The state-of-

the-art technique in this context is to use small smart access points (APs), e.g., mobile phones,

wireless relays, Wi-Fi APs, to assist information delivery between far-apart transceiver pairs.

Nowadays, a new trend is to connect the smart APs by fibers, microwave or millimeter wave to

build up a cloud processing center for facilitating reliable communications. A typical example

is the cloud radio access network (C-RAN) [5]–[7], which is recently proposed as a promising

network architecture to offer a 1000x increase in capacity to support broadband applications.

The key enabling technologies in C-RANs are the cloud processors pool and fronthaul-backhaul

links. They coordinate all the base-stations in all cells as a cloud base-station and serve the

users in a jointly optimized way. In view of this, it is promising to extend the “cloud relays”

by considering the communications between devices as information delivery in a relay network.

We treat the intra-network interference as noise and try to handle the inter-network interference

by designing the AF process in the cloud center. This gives rise to the so-called cloud relay

network (C-RN) [3], [8]–[10]; see a system model example in Figure 1.

In this work, we are interested in a typical two-hop one-way relay network. In particular, we

consider the case that all the nodes, i.e., the transmitter, the receiver, and relays, are equipped

with a single antenna. This assumption is reasonable, as nodes in a D2D communication network

are usually limited by power and apparatus. In our setting, the transmitter and receiver are far-

apart, and thus they rely on the relays to amplify and forward (AF) the information,1 since the

direct link between them are negligible. We assume that the relays are distributively located, and

more importantly, they coordinate to form a C-RN. In practice, the capacity of the fronthaul-

backhaul links in C-RNs is an important issue. If the link capacity is unlimited, both the channel

state information (CSI) and received signals can be shared within the cloud, and thus the system

becomes an MIMO relay network. On the other hand, if the link capacity is limited in such a

way that only CSIs are shared and the received signals are isolated among different relays, then

the system is reduced to a distributed relay network. We remark that there are also other kinds

of relay networks corresponding to different link capacities, but in this paper we focus on the

1The relays can also decode-and-forward (DF) the received signals, but this is beyond the scope of this paper.
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two above.

In this paper, we are interested in relay AF design for multigroup multicast transmission. In

the literature, there are different problem formulations; see, e.g., [11]–[19]. Herein, we focus

on the max-min-fair (MMF) formulation, in which the worst user’s signal-to-interference-plus-

noise ratio (SINR) is to be maximized under generalized power constraints, such as total power

constraint, per-relay power constraints, interference temperature constraints, or energy harvesting

constraints. This makes our design approach applicable to many scenarios. A classic approach

for AF relays is to adopt the beamformed (BF) AF scheme [11], [12], which gives rise to an NP-

hard one-variable fractional quadratically-constrained quadratic program (QCQP). An efficient

way to tackle QCQP is to apply the semidefinite relaxation (SDR) technique [20]. That is,

we first rewrite the fractional QCQP to a rank-one constrained fractional semidefinite program

(SDP). Then, by dropping the non-convex rank-one constraint, we solve the SDP in polynomial

time. It is well known that the SDR is tight if the corresponding SDP has rank-one solutions.

Otherwise, a Gaussian randomization algorithm is applied to convert the SDP optimal solution

into a feasible solution to the fractional QCQP [21], [22]. We shall call this solution the SDR

solution in the sequel. A fundamental issue here is to quantify the quality of the SDR solution.

In our previous work [9], [10], we show that the SDP always has a rank-one solution when

M +J ≤ 4, and that the SINR associated with the SDR solution is at least Ω( 1
M log J

) times that

associated with the optimal solution to the fractional QCQP when M + J > 4, where M is the

number of users (receivers) in the network and J is the number of generalized power constraints.

This result provides an SDR approximation bound for the one-variable fractional QCQP when

multiple constraints are present. However, from a practical perspective, it actually implies that

the SINR associated with the SDR-based BF AF scheme may experience a performance loss on

the order of 1/(M log J) in large-scale systems.

In order to improve the relay beamforming performance, we propose to adopt the Alamouti

space-time code in the AF structure. This leads to the BF Alamouti (BFA) AF scheme, in which

two beamformers are used to process two data symbols jointly. Compared to the BF AF scheme,

which uses only one beamformer to process a single data symbol, the BFA AF scheme has one

extra degree of freedom (DoF) in the beamformer design. As such, it is expected that the latter

will yield better system performance. In fact, the extra DoF available to the BFA AF scheme

is also manifested in its corresponding design problem, in that it can be shown to admit a two-
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variable fractional QCQP formulation. Our analytical results show that the optimal value of

the corresponding two-variable SDP is always no worse than that of the one-variable SDP. In

addition, the SDR is tight when M + J ≤ 5, and when M + J > 5, the approximation quality

of the SDR-based BFA AF scheme is on the order of 1/(
√
M log J). Clearly, both the tightness

and approximation quality results are better than their BF AF counterparts.

The idea of using the Alamouti code in the context of single-group multicast beamforming has

been introduced in our previous work [23], where the design problem is a standard QCQP. The

subsequent conference paper [22] proposed the BFA scheme for multigroup multicasting without

relays. This paper significantly improves [22] by generalizing the aforementioned BFA scheme to

relay networks with generalized power constraints and providing an analysis on its approximation

performance. It is worth mentioning that the authors in [24] also introduced a rank-two BF AF

scheme for relay networks. However, the scenario they focused on is single-group multicasting

in a distributed relay network with one power constraint, while our work considers multigroup

multicasting for both the distributed relay and MIMO relay networks with generalized power

constraints. We remark that the generalization from single-group multicasting to multigroup

multicasting, and from distributed relays to MIMO relays, are non-trivial. More importantly,

our work establishes for the first time the SDR approximation quality of a fairly general class

of two-variable fractional QCQPs. It should also be noted that the problem considered in this

paper, namely beamformer design for multi-user to multi-user multigroup multicasting in relay

networks, has not been well addressed in the literature. Indeed, existing works on relay transceiver

design mainly focus on the point-to-point [14], [15], single-user to multi-user [16], multi-user

to single-user [17], [18], and multi-user to multi-user unicast [11] and multicast scenarios [19].

The work in [25] studies the rank-two relay multicasting with a direct link, while our work is

targeted at far-apart devices without direct links and our scenario setting is the more generalized

multigroup multicasting. The work in [26] studies the beamformer design in a multigroup

multicast relay network. However, it considers BF AF schemes for single-antenna relays, whereas

our focus is on rank-two BFA AF scheme under a cloud relay setting. We remark that some

efficient heuristics have recently been proposed to find a high-quality solution to one-variable

fractional QCQPs; see, e.g., [27]–[30]. We numerically compare their results with the proposed

BF Alamouti AF scheme in the the companion technical report [31], wherein we could see that

even though those heuristics can help find a better QCQP solution, the proposed BFA AF still
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owns a significantly better performance.

Fronthual 

Links

Cloud PU Pool

Backhual 

Links

Core 

Network

cloud relay cognitive network 

primal user transmitter receiver relay

Fig. 1. An example of the cloud relay network.

The organization of this paper is as follows. In Section II, we introduce the system model

and review the SDR-based BF AF scheme for both the MIMO relay network and distributed

relay network in the presence of primal users. We show how the design problem for the BF AF

scheme can be tackled by the SDR technique and introduce the existing approximation bounds

on the performance of the SDR solution. In Section III, we introduce the BFA AF scheme and

show how the corresponding design problem gives rise to a new two-variable fractional QCQP

formulation. As one of our main results, we establish an approximation bound for the SDR of the

two-variable fractional QCQP, thereby providing a performance guarantee for the proposed BFA

AF scheme. In Section IV, special cases of multicasting relay networks are studied, from which

we see how the two DoFs offered by the BFA AF scheme can improve the system performance.

Lastly, simulation results are provided in Section V, and the paper is concluded in Section VI.

Our notation is standard: CN is the set of all complex N -dimensional vectors; HN
+ is the set

of all N ×N positive semidefinite matrices; ‖ · ‖ is the vector Euclidean norm; A•B stands for

the inner product between matrix A and B; A⊗B stands for the Kronecker product between

matrix A and B; A�B stands for the element-wise product between matrix A and B; vec(A)

is the vectorization operator for matrix A; Diag(x) is a diagonal matrix parametrized with the
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elements of x; rank(X) and λmin(X) stand for the rank and the smallest eigenvalue, resp.; ei

is a unit vector with the nonzero element at the ith entry; Ir denotes the r-by-r identity matrix;

E[·] is statistical expectation; CN (0,W ) is used to denote the circularly symmetric complex

Gaussian distribution with mean vector 0 and covariance matrix W .

II. SYSTEM MODEL AND THE BEAMFORMED AMPLIFY-AND-FORWARD SCHEMES

In this section, we describe the system model for two-hop one-way relay networks. In particu-

lar, we consider the multigroup multicast transmission by a network of single-antenna AF relays.

We assume that there are L relays in the network; G single-antenna transmitters (sources) send G

independent common information to G groups of single-antenna users (receivers, destinations);

users in the same group require the same information while users in different groups require

different information. In total there are
∑G

j=1mj = M users in the network, where mj is the

number of users in group j, ∀j = 1, ..., G. In our target setting, the transmitters and receivers are

far-apart such that the direct link between them can be ignored. Thus, relays play an important

role during the information delivery by amplifying and forwarding (AF) received signals from

sources to destinations. By introducing the cloud relay network (C-RN) concept [8], we consider

that the relays are distributively located but connected by a cloud PUs pool (i.e., the computation

center) via fronthaul and backhaul links, which are typically fibers or microwave connected to

fibers. We assume that all nodes in the network are well synchronized, channels from transmitters

to relays and relays to users are frequency flat, quasi-static, and the channels are perfectly

perceived by transmitters sending reference signals and then passed to the PUs pool. The PUs

pool can serve as a genie in the network to design the AF process.

A. The Beamformed AF Scheme

Let us first introduce the traditional AF scheme, i.e., the BF AF scheme, which is widely used

in existing relay networks, e.g., [11], [12]. We begin with the information delivery process in a

one-way relay network, which is proceed by two hops:

1) Source-to-relay hop: the transmitters send information to relays. The receive model at the

relay is written as follows

r(t) =
G∑
j=1

fjsj(t) + n(t), (1)
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where r(t) = [r1(t), ..., r`(t), ..., rL(t)]T with

r`(t) =
G∑
j=1

f `j sj(t) + n`(t), ` = 1, ..., L (2)

being the received signal at relay `; sj(t) is the common information specific for group j with

E[|sj(t)|2] = Pj , where Pj is the transmit power at transmitter j; fj = [f 1
j , ..., f

`
j , ..., f

L
j ]T is the

channel from transmitter j to all the relays; n(t) = [n1(t), ..., n`(t), ..., nL(t)]T with n`(t) being

the Gaussian noise at relay ` which has mean zero and variance σ2
` . Throughout this paper, we

assume that σ2
` > 0,∀`.

2) Relay-to-destination hop: relays process the received signals and then forward them to

receivers. In particular, the transmit structure at the relay side can be given by

x(t) = V r(t). (3)

The weighting matrix V represents how the relays interact with each other. Specifically, we may

consider all the single-antenna relays are connected by a cloud, within which the CSIs are fully

shared. Then, if the received signals are shared within the cloud, V could be any arbitrary matrix

to be optimized, and we are dealing with an MIMO relay network [12]; if the received signals

are not shared, V is a diagonal matrix, and we are dealing with a distributed relay network [11].

Let us first consider the MIMO relay network. The received signal for user-(k, i), i.e., user i

in group k, is given by

yk,i(t) = gHk,ix(t) + vk,i(t) (4)

= gHk,iV fksk(t)︸ ︷︷ ︸
desired signal

+

gHk,iV

(∑
m 6=k

fmsm(t)

)
+ gHk,iV n(t) + µk,i(t)︸ ︷︷ ︸

interference and noise

,

where gk,i = [g1
k,i, ..., g

`
k,i, ..., g

L
k,i]

T is the channel from relays to user-(k, i) and µk,i(t) is the

Gaussian noise at user-(k, i) with zero mean and variance σ2
k,i. In this paper, we assume that

σ2
k,i > 0,∀k, i. Accordingly, the receive SINR at user-(k, i) can be expressed as

Pk
∣∣gHk,iV fk∣∣2∑

m 6=k

Pm
∣∣gHk,iV fm∣∣2 + gHk,iV ΣV Hgk,i + σ2

k,i

, (5)

where Σ = Diag(σ2
1, ..., σ

2
` , ..., σ

2
L) � 0.
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B. Generalized Power Constraints

Our goal is to optimize the AF process for the relay networks. Specifically, to design the AF

weighting matrix V , three design constraints are under our considerations:

1). Total Power Constraints. A natural consideration is that the total transmit power at relays

is below a given threshold. In this way, we have the total power constraint given by

E[‖x(t)‖2] =Tr

(
V

(
G∑
j=1

Pjfjf
H
j + Σ

)
V H

)

=wHD0w ≤ P̄0, (6)

where (6) is obtained by denoting w = vec(V ) and using the identity

Tr
(
AHBCD

)
= vec(A)H

(
DT ⊗B

)
vec(C),

which is valid for arbitrary complex matrices A,B,C,D of appropriate dimensions. Also,

P̄0 is the total transmit power budget for all the relays and D0 is defined in (11) in Table I.

2). Per-relay Power Constraints. Another common design constraint is subject to the power

allowed at each relay, which can be written as

eH` V

(
G∑
j=1

Pjfjf
H
j + Σ

)
V He` ≤ P̄`, ` = 1, ..., L,

where P̄` is the maximum transmit power allowed at relay `. Similar to (6), we can further

rewrite it to

wHD`w ≤ P̄`, ` = 1, ..., L, (7)

where D` is defined in (12) in Table I.

3). Interference Temperature Constraints. We may also consider a popular design constraint

in the cognitive radio (CR) network is to control the interference temperature at primal

users [32]–[34]. We consider a CR relay network with U primal users where the interference

is simply caused by the AF relays (not the transmitters). Let hu = [h1
u, ..., h

`
u, ..., h

L
u ]T be

the channel from relays to primal user u, ∀u = 1, ..., U . Then the interference temperature

power constraints for primal users are given by

wHGuw ≤ ηu, u = 1, ..., U,

where ηu is the maximum interference allowed at primal user u, Gu is defined in (13) in

Table I with σ2
u > 0 being the noise power at primal user u.

July 27, 2021 DRAFT
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C. A Unified AF Design Problem

In this sub-section, as depicted in Fig.2, we show how the beamformer design for different

relay networks can be captured by a unified formulation.

1) Problem Formulation for the MIMO CR Relay Network: In light of the SINR expression

in (5), we consider the MMF design approach, which maximizes the worst user’s SINR, subject

to the power constraints. This gives rise to a one-variable fractional QCQP Problem (R1BF) in

Table I. Note that we re-define p` with p0 = P̄0 for ` = 0 and p` = P̄` for ` = 1, ..., L.

2) Problem Formulation for the Distributed CR Relay Network: As for the distributed relays,

since the AF weighting matrix here is a diagonal matrix, by a slight abuse of notation, we may

re-define w = Diag(V ) 2 and then the design problem for the distributed CR relay network can

be written as exactly the same form as that for the MIMO relay, i.e., Problem (R1BF), given

that L, Ak,i, Ck,i, D` and Gu are defined in (14), (15), (16), (17), (18), and (19) in Table I.

Note that herein the beamformer w is defined differently from that in the MIMO relay network.

Phase I Phase II

f
1

1

f
2

1

f
L

1

g
1

1 ;i

Source to Relay Relay to Destination 

f
1

G

f
L

G

Tx 1

Tx G

2

L

g
2

1 ;i

g
L

1 ; i

g
1

G ;i
g

2

G ;i

g
L

G ;i

f
`

G

h
1

1

h
2

U

group-1

group-G

PU-1

PU-U

Fig. 2. The two-hop one-way relay network with primal users.

3) Problem Formulation for Other One-hop Relay Networks: Given that the way of interaction

between relays is different, we may formulate different AF problems for design purposes. In

fact, we could define w = vec(V ) ∈ V where V specifies the prescribed possible structure of

the AF matrix. One possible scenario is that the relays are partitioned into several groups, and

2Note that V is a diagonal matrix in the distributed relay network.
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the ones within the same group can fully communicate while the inter-group message passing

is with limited capacity. This is typical when the backhaul is not powerful enough to support a

massive information sharing. In this paper, we only focus on the MIMO relay network and the

distributed relay network and provide a comprehensive performance analysis for them.

TABLE I

SUMMARY OF THE DESIGN PROBLEM FOR BF AF SCHEMES

(R1BF) w? = arg max
w∈CL

min
k=1,...,G;
i=1,...,mk

wHAk,iw

wHCk,iw + 1

subject to wHD`w ≤ P̄`, ∀` = 0, 1, ..., L,

wHGuw ≤ ηu, ∀u = 1, ..., U.

(R1SDR) W ? = arg max
W∈HL

+

Ak,i •W
Ck,i •W + 1

subject to D` •W ≤ P̄`, ∀` = 0, 1, ..., L,

Gu •W ≤ ηu, ∀u = 1, ..., U.

MIMO relay:

L =L2 (8)

Ak,i =Pk(f∗k ⊗ gk,i)(f
∗
k ⊗ gk,i)

H/σ2
k,i (9)

Ck,i =
∑
m 6=k

Pm(f∗m ⊗ gk,i)(f
∗
m ⊗ gk,i)

H/σ2
k,i (10)

+ Σ⊗ (gk,igk,i)
H/σ2

k,i

D0 =

(
G∑

j=1

Pj(f
∗
j )(f∗j )H + Σ

)
⊗ I (11)

D` =

(
G∑

j=1

Pj(f
∗
j )(f∗j )H + Σ

)
⊗ (e`e

H
` ) (12)

Gu =

G∑
j=1

Pj(f
∗
j ⊗ hu)(f∗j ⊗ hu)H/σ2

u (13)

Distributed relay:

L =L (14)

Ak,i =Pk(f∗k � gk,i)(f
∗
k � gk,i)

H/σ2
k,i (15)

Ck,i =
∑
m 6=k

Pm(f∗m � gk,i)(f
∗
m � gk,i)

H/σ2
k,i (16)

+ Diag(|g1k,i|2σ2
1 , |g2k,i|2σ2

2 , ..., |gLk,i|2σ2
L)/σ2

k,i

D0 =

G∑
j=1

PjDiag((f∗j )(f∗j )H) + Σ (17)

D` =

(
G∑

j=1

PjDiag((f∗j )(f∗j )H) + Σ

)
� (e`e

H
` )

(18)

Gu =
G∑

j=1

Pj(f
∗
j � hu)(f∗j � hu)H/σ2

u (19)

D. The SDR Technique and Approximation Bounds for One-variable QCQPs

From preceding discussions, a generalized fractional QCQP problem (R1BF) is formulated for

both the MIMO relay network and the distributed relay network. It is well known that Problem

(R1BF) is in general NP-hard [11], [20]–[22]. A classic way to tackle this NP-hard problem is

to apply the SDR technique [20], which reformulates QCQP as a rank constrained SDP problem
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and then drops the non-convex rank constraint. Specifically, to put SDR into the context, we

use the equivalence W = wwH ⇐⇒ W � 0, rank(W ) ≤ 1 to relax (R1BF) to (R1SDR)

as shown in Table I. It is well known that (R1SDR) can be approximated to arbitrary accuracy

by the bisection method [21], [22], where at each iteration of the bisection, an SDP problem is

solved in polynomial time [35]. Let us define

γ(W) = min
k=1,...,G;
i=1,...,mk

Ak,i •W
Ck,i •W + 1

and W ? and w? be the optimal solutions to (R1SDR) and (R1BF), respectively. It follows that

γ(W ?) ≥ γ(w?(w?)H), since (R1SDR) is a convex relaxation of (R1BF). The equality holds

when (R1SDR) has rank-one solutions. If rank(W ?) > 1, a feasible but generally sub-optimal

solution ŵ is extracted from W ? by a Gaussian randomization algorithm [21], [22], [36]; more

specifically, see Algorithm 1 in [10]. It is easy to see that γ(w?(w?)H) ≥ γ(ŵ(ŵ)H). We are

now interested in determining whether a reverse inequality (approximately) holds, as such an

inequality will reveal the approximation quality of the SDR solution. We summarize the prior

results in [10], [21] as follows.

Proposition 1 Let M ≥ 1 be the total number of users in the relay network and J denote

the total number of constraints in (R1BF), i.e., J = L+ U + 1 and J ≥ 1. Then,

a). When M + J ≤ 4, (R1SDR) always produces an optimal solution to (R1BF).

b). When M+J > 4, let ŵ be the solution returned by Gaussian randomization algorithm and

N be the number of randomizations. Then, with probability at least 1− (5/6)N , we have

γ
(
ŵŵH

)
= Ω

(
1

M log J

)
γ(w?w?H).

Proposition 1 implies that the SDR-based BF AF scheme is optimal when M+J ≤ 4. However,

it will experience an SINR performance degradation when M or J is large. Specifically, in the

worst case, the approximate quality is on the order of 1/(M log J). Therefore, it may not work

well in large-scale systems.

Remark 1: Recently, there is flourishing interest in using RF wave to transfer power to those

users in the system who aim at receiving energy rather than information. We usually call this

kind of users as energy receivers (ERs). As in the case with primal users, we could impose

R harvested energy constraints to the design problem [37]–[39]. In this case, Proposition 1a)
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still holds by setting J = L + U + R + 1. However, a similar result to Proposition 1b) holds

only when R = 1. This statement can be proven in a similar manner as Proposition 1 by using

Theorem 2 in [40].

III. THE RANK-TWO BEAMFORMED ALAMOUTI AF SCHEME IN THE RELAY NETWORKS

Our discussions in Section II reveal that BF AF may experience serious performance degra-

dation in large-scale systems. However, in practice, the multigroup multicast transmission aims

to serve groups of users and also, each of the relay should have its own power budget, not to

mention that there may be a number of primal users if we consider the CR system. Therefore,

the inherent feature of the relay network motivates us to propose more advanced AF schemes,

for which the guaranteed performance can scale better with the problem size. We observe in

Proposition 1 that the performance degradation results from using a rank-one AF weight w to

approximate a high rank SDP solution W ?. To remedy this defect, an intuition is to explore one

more DoF by introducing the Alamouti space-time code. This motivates the development of the

BFA AF scheme.

A. The Beamformed Alamouti AF Scheme for the MIMO relay

To introduce the Alamouti space-time code structure in the AF process, we parse the transmit

signal in every two time slots as a group, i.e., s(m) = [ s(2m) s(2m + 1) ]T , and transmit

s(m) in each source-to-relay hop. Specifically, following (3), for any p = 1, 2, we denote the

AF weighting matrix at time slot p as Vp = [vp1, ...,v
p
` , ...v

p
L] where vp` = [vp1,`, ..., v

p
`,`, ..., v

p
L,`]

T .

Then, the transmit signal at relay ` (for every two time slots) can be modified to

X`(m) =[ X`(2m) X`(2m+ 1) ]

=
L∑
c=1

[v1
`,c, v

2
`,c]C(rc(m)),

where C : C2 → C2×2 is the Alamouti space-time code, e.g., C(x) =

 x1 x2

−x∗2 x∗1

 , and we

denote r`(m) = [ r`(2m) r`(2m+ 1) ]T with r`(2m) defined in (2). To demonstrate the signal

structure, we illustrate the transmit signal at each relay in Figure 3. The corresponding receive
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Phase II :   Relay to Destination 

2

L

1

Fig. 3. The BFA AF signal structure for the MIMO relay.

signal at user-(k, i) is given in (20).

yk,i(m) (20)

= [ yk,i(2m), yk,i(2m+ 1) ]

=
L∑
`=1

(g`k,i)
∗

L∑
c=1

[v1
`,c, v

2
`,c]C(rc(m)) + [µk,i(2m), µk,i(2m+ 1)],

=
L∑
`=1

(g`k)
∗

L∑
c=1

[v1
`,c, v

2
`,c]

 rc(2m) rc(2m+ 1)

−rc(2m+ 1)∗ rc(2m)∗

+ [µk,i(2m), µk,i(2m+ 1)],

=
L∑
`=1

L∑
c=1

[(g`k,i)
∗v1
`,cf

c
k , (g

`
k,i)
∗v2
`,cf

c
k
∗]

 sk(2m) sk(2m+ 1)

−sk(2m+ 1)∗ sk(2m)∗


︸ ︷︷ ︸

desired signal

+
L∑
`=1

L∑
c=1

∑
j 6=k

[(g`k,i)
∗v1
`,cf

c
j , (g

`
k,i)
∗v2
`,cf

c
j
∗]

 sj(2m) sj(2m+ 1)

−sj(2m+ 1)∗ sj(2m)∗


︸ ︷︷ ︸

interference signal

+
L∑
`=1

L∑
c=1

[(g`k,i)
∗v1
`,c, (g

`
k,i)
∗v2
`,c]

 n`(2m) n`(2m+ 1)

−n`(2m+ 1)∗ n`(2m)∗

+ [µk,i(2m), µk,i(2m+ 1)]

︸ ︷︷ ︸
noise

.
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By using a similar approach in identifying the signal-to-noise ratio (SNR) for the Alamouti

coded signal in the point-to-point communication [41, Chapter 3.3.2], we can derive the SINR

expression from (20) by treating interference as white noise. Specifically, letting w1 = vec(V1)

and w2 = vec(V2), the SINR at user-(k, i) can be written as

wH
1 Ak,iw1 +wH

2 Āk,iw2

wH
1 Ck,iw1 +wH

2 C̄k,iw2 + 1
, (21)

where Ak,i, Āk,i, Ck,i and C̄k,i are defined in (9), (22), (10) and (23). More details of the BFA

AF detecting process can be found in the companion technical report [31]. Similarly, we can

obtain D̄` and Ḡu in (24) and (25).

B. The Beamformed Alamouti AF Scheme for the distributed relay

The BFA AF scheme for the distributed relay is similar to that for the MIMO case, and we

defer the details of the derivations to the the companion technical report [31]. Note that for

distributed relay network, we re-define w1 = Diag(V1) and w2 = Diag(V2), which is different

from that in MIMO relay network. Therefore, the design problem for both the MIMO relay and

distributed relay can be written as a two-variable fractional QCQP problem (R2BF) in Table II.

C. The SDR Technique for (R2BF)

Problem (R2BF) is a fractional QCQP with two variables. It subsumes Problem (R1BF) when

Ā = 0, C̄ = 0 and Ḡ = 0, and thus it is NP-hard. By applying SDR, we have the new AF

design problem shown in Table II, where (R2SDR) serves as a convex relaxation to (R2BF).

Define

θ(W1,W2) = min
i=1,...,mk
k=1,...,G

Ak,i •W1 + Āk,i •W2

Ck,i •W1 + C̄k,i •W2 + 1
. (30)

Clearly, we have

θ(W ?
1 ,W

?
2 ) ≥ θ(w?

1w
?
1
H ,w?

2w
?
2
H), (31)

and equality holds whenever Problem (R2SDR) returns rank-one solutions. If W ?
1 or W ?

2 is

non-rank-one, the Gaussian randomization algorithm in Algorithm 1 is applied to generate a

sub-optimal solution (ŵ1, ŵ2) to (R2BF) with θ(w?
1w

?
1
H ,w?

2w
?
2
H) ≥ θ(ŵ1ŵ

H
1 , ŵ2ŵ

H
2 ). To the

best of our knowledge, the approximation quality of the solution (ŵ1, ŵ2) has not been addressed

in the literature before. In the next sub-section, we shall establish the first provable bound on

the approximation quality of (ŵ1, ŵ2).
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TABLE II

SUMMARY OF THE DESIGN PROBLEM FOR BF ALAMOUTI AF SCHEMES

(R2BF) (w?
1 ,w

?
2)

= arg maxw1,w2∈CL min
i=1,...,mk
k=1,...,G

wH
1 Ak,iw

H
1 + wH

2 Āk,iw2

wH
1 Ck,iw1 + wH

2 C̄k,iw2 + 1

subject to wH
1 D`w1 + wH

2 D̄`w2 ≤ P̄`, ∀` = 0, 1, ..., L,

wH
1 Guw1 + wH

2 Ḡuw2 ≤ ηu, ∀u = 1, ..., U.

(R2SDR) (W ?
1 ,W

?
2 )

= arg maxW1,W2∈HL
+

min
i=1,...,mk
k=1,...,G

Ak,i •W1 + Āk,i •W2

Ck,i •W1 + C̄k,i •W2 + 1

subject to D` •W1 + D̄` •W2 ≤ P̄`, ∀` = 0, 1, ..., L,

Gu •W1 + Ḡu •W2 ≤ ηu, ∀u = 1, ..., U.

MIMO relay:

L =L2

Āk,i = Pk(fk ⊗ gk,i)(fk ⊗ gk,i)
H/σ2

k,i (22)

C̄k,i =
∑
m 6=k

Pm(fm ⊗ gk,i)(fm ⊗ gk,i)
H/σ2

k,i

+ Σ⊗ (gk,igk,i)
H)/σ2

v,i, (23)

D̄` =

(
G∑

j=1

Pjfjf
H
j + Σ

)
⊗ (e`e

H
` ) (24)

Ḡu =

G∑
j=1

Pj(fj ⊗ hu)(fj ⊗ hu)H/σ2
u (25)

Distributed relay:

L =L

Āk,i =Pk(fk � gk,i)(fk � gk,i)
H/σ2

k,i (26)

C̄k,i =
∑
m 6=k

Pm(fm � gk,i)(fm � gk,i)
H/σ2

k,i

+ Diag(|g1k,i|2σ2
1 , |g2k,i|2σ2

2 , ..., |gLk,i|2σ2
L)/σ2

k,i,

(27)

D̄` =

(
G∑

j=1

PjDiag(fjf
H
j ) + Σ

)
� (e`e

H
` ) (28)

Ḡu =

G∑
j=1

Pj(fj � hu)(fj � hu)H/σ2
u (29)

D. SDR Approximation Bounds for BF Alamouti AF

In this sub-section, we turn our attention to the performance analysis of the proposed BFA

AF scheme. Specifically, we proceed by answering the following three questions.

1). What is the relationship between (R2SDR) and (R1SDR)?

2). When is (R2SDR) equivalent to (R2BF)?

3). What is the approximation quality of (R2SDR)?

Our recent works [22], [23] show that for the multigroup multicast network without relays, the

design problems for BF AF and BFA AF have the same SDR, and the BFA AF scheme admits

a rank-two approximate solution. However, the design problem for relay networks gives rise to

two different SDRs, namely, (R1SDR) and (R2SDR). To answer Problem 1), it is easy to see
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Algorithm 1 Gaussian Randomization for (R2BF)
1: input: optimal solutions W ?

1 ,W
?
2 to (R2SDR), number of randomizations N ≥ 1

2: for P = 1 to 2 do

3: if rank (W ?
p ) ≤ 1 then

4: let ŵn
p (ŵn

p )H = W ?
p

5: end if

6: end for

7: for n = 1 to N do

8: for any rank(W ?
p ) > 1, we generate ξnp ∼ CN (0,W ?

p ) and let ŵn
p = ξnp •

min {t1, t2} where t1 = min`

√
P̄`/

(
D` •

(
ξn1ξ

n
1
H
)

+ D̄` •
(
ξn2ξ

n
2
H
))
, and t2 =

minu

√
ηu/

(
G` •

(
ξn1ξ

n
1
H
)

+ Ḡ` •
(
ξn2ξ

n
2
H
))

9: set θn = θ
(
ŵn

1 (ŵn
1 )H , ŵn

2 (ŵn
2 )H
)

10: end for

11: set n? = arg maxn=1,...,N θn and output ŵ1 = ŵn?

1 and ŵ2 = ŵn?

2 .

that

Proposition 2 The optimal value of (R2SDR) is always no worse than that of (R1SDR).

The proof comes from the fact that (Ŵ ,0) must be a feasible solution to (R2SDR), given that

Ŵ is feasible to (R1SDR). Intuitively, the gain also comes from the employment of one more

DoF in the transmit structure.

To address Problem 2) and 3), we have the following theorem:

Theorem 1 Consider Problem (R2SDR). Let M ≥ 1 be the total number of users in the relay

network and J denote the total number of constraints in (R1BF), i.e., J = L+U +1 and J ≥ 1.

Let W ?
1 and W ?

2 be the optimal solutions to Problem (R2SDR) and we consider the cases of

both W ?
1 6= 0 and W ?

2 6= 0.3 Then, we have the following results:

a). Problem (R2SDR) can produce an optimal solution to Problem (R2BF) when M + J ≤ 5.

3It is a trivial case if W ?
1 = W ?

2 = 0. If either W ?
1 = 0 or W ?

2 = 0, it reduces to the rank-one case and (R2SDR) is

optimal for (R2BF) when M + J ≤ 4.
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b). When M + J > 5 and rank(W ?
p ) > 1 for some p = 1, 2 in (R2SDR), let ŵ1, ŵ2 be the

solutions returned by Algorithm 1, and J = L + U + 1 be the total number of power

constraints. Then, with probability at least 1− (7/8)N , we have

θ(ŵ1ŵ
H
1 , ŵ2ŵ

H
2 ) ≥ c · θ(w?

1w
?
1
H ,w?

2w
?
2
H),

where

c =
max

{
ω

7
√
M
, 1

8M

}
2 log(16J) + 1

, (32)

ω = min
k,i

{
min{Ak,i •W ?

1 , Āk,i •W ?
2 }

Ak,i •W ?
1 + Āk,i •W ?

2

}
, and N is the number of randomizations.

The proof of Theorem 1a) is similar to that for Theorem 1 in [10]; see details in Appendix A

in [10] and [42, Theorem 5.1]. We relegate the proof of Theorem 1b) in Appendix A at the

end of this paper. The significance of Theorem 1 is twofold. First, it shows that (R2SDR) is

optimal for BFA AF when M + J ≤ 5. Then, in conjunction with Proposition 2, the proposed

method must be better than BF AF in the case of M + J ≤ 5. Second, if (R2SDR) does not

have rank-one solutions, Theorem 1 specifies the quality of the SDR solution returned by the

Gaussian randomization algorithm—i.e., on the order of 1√
M log J

if ω
7
√
M
≥ 1

8M
; on the order of

1
M log J

if ω
7
√
M
< 1

8M
. If we fix the number of power constraints J and increase the number of

users in the system, then we see that Ω
(

1/
√
M
)

scales better than Ω (1/M). Moreover, we see

from (32) that the approximation quality is lower bounded by Ω (1/M). Hence, in conjunction

with Proposition 2, the performance of BFA AF is provably no worse than that of BF AF.

Remark 2: One may observe that (R2BF) can be written in the form of (R1BF) by letting

w = [w1;w2] and Ãk,i = [Ak,i,0; 0, Āk,i]. Thus, it immediately admits the inferior bound in

Proposition 1. Moreover, if Āk,i = 0, the approximation bound in Theorem 1 reduces to that in

Proposition 1. Thus Theorem 1 can be seen as a generalization of Proposition 1 from one-variable

fractional QCQPs to two-variable fractional QCQPs.

Remark 3: If we let Āk,i = Ak,i and C̄k,i = Ck,i, Problem (R2BF) will be reduced to Problem

(R1BF) by replacing the rank-one variable w to a rank-two matrix B. We have studied the latter

in [22] by considering the multigroup multicast transmission in a network without relays, where

the SDR rank-two approximation bounds are provided based on Problem (R1SDR). Hence, our

results in Theorem 1 also generalize the approximation bounds in [22, Theorem 1].
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IV. SPECIAL CASES WITH DETERMINISTIC APPROXIMATION BOUNDS

In this section, by considering some special cases of (R2BF), we will demonstrate how the

two DoFs offered by the BFA AF scheme can lead to improved performance over the BF AF

scheme. In particular, we consider special cases in both distributed relay network and MIMO

relay network, where by exploiting the special structures of the problems, we can obtain various

strengthenings of Theorem 1.

A. Multicasting for Distributed Relay Networks

For the distributed relay case, by observing the structure of Ak,i and Āk,i, we can define

φ` = arg(f `k) and e = [ej2φ1 , ..., ej2φ` , ..., ej2φL ]T with j =
√
−1 such that

wH
2 Āk,iw2 = (w2 � e)HAk,i(w2 � e) (33)

and

wH
2 Ḡuw2 = (w2 � e)HGu(w2 � e). (34)

Then, letting w̄2 = w2 � e, we actually have

Āk,i •w2w
H
2 = Ak,i • w̄2w̄

H
2 (35)

and

Ḡu •w2w
H
2 = Gu • w̄2w̄

H
2 . (36)

On the other hand, we also have

C̄k,i • w̄2w̄
H
2 = Ck,i •w2w

H
2 , (37)

since Ck,i must be a diagonal matrix in the target relay network. Moreover, for distributed relays,

we have D̄` = D`, ∀` = 0, ..., L, and D`s are also diagonal. Therefore

D` • w̄2w̄
H
2 = D` •w2w

H
2 , ∀` = 1, ..., L, (38)

for the diagonal matrix D`. Thus, Problem (R2BF) can be rewritten as

max
w1,w2∈CL

min
i=1,...,mk
k=1,...,G

wH
1 Ak,iw1 + w̄H

2 Ak,iw̄2

wH
1 Ck,iw1 + w̄H

2 Ck,iw̄2 + 1
(39)

subject to wH
1 D`w1 + w̄H

2 D`w̄2 ≤ P̄`, ` = 0, 1, ..., L,

wH
1 Guw1 + w̄H

2 Guw̄2 ≤ ηu, u = 0, 1, ..., U,
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where we have L = L. Clearly, the resulting SDR of (39) has the same optimal value as that of

(R1SDR). Moreover, it is easy to see that we have ω = 1/2 here since Ak,i = Āk,i for all k, i.

Note that herein we have k = 1 for multicasting. Thus, we may conclude

Proposition 3 For distributed relay multicasting with generalized power constraints, Problem

(R2BF) can be rewritten as Problem (39), and therefore the approximation bound

θ(ŵ1ŵ
H
1 , ŵ2ŵ

H
2 ) = Ω

(
1√

M log J

)
θ(w?

1w
?
1
H ,w?

2w
?
2
H)

holds with probability at least 1− (7/8)N .

This result can also be obtained by applying the approximation bound results in [22] to (R1SDR).

It is worth mentioning that prior to this proposition, the authors in [24] have provided a

similar result by introducing a phase rotation at the AF process under a total power constraint.

Nevertheless, our derivation here reveals how the two DoFs lead to a gain in performance.

B. Multicasting for MIMO Relay Networks

We also have some interesting results for the MIMO relay multicasting network. It shows that

in this case, the AF scheme possesses some special structure, which leads to an approximation

bound of Ω( 1√
M log J

). We summarize the result in Proposition 4:

Proposition 4 For MIMO relay multicasting with generalized power constraints, Problem

(R2BF) can be rewritten as Problem (39) with proper parameter definitions for MIMO relays,

and therefore the approximation bound

θ(ŵ1ŵ
H
1 , ŵ2ŵ

H
2 ) = Ω

(
1√

M log J

)
θ(w?

1w
?
1
H ,w?

2w
?
2
H)

holds with probability at least 1− (7/8)N .

The proof is similar to that in Proposition 3, except that we now define φ` = arg(f `k) and

e = [ej2φ1 , ..., ej2φ` , ..., ej2φL ]T ⊗ 1 such that equations (33)-(38) hold for the MIMO relay case.

This proposition reveals that for MIMO relay multicasting, the SDR approximation bound is on

the order of 1/(
√
M log J), which is definitely better than that for the BF AF counterpart. It

is worth noting that the optimal values for (R1SDR) and (R2SDR) are the same, and thus the

SINR performance is improved due to the better approximation quality. This demonstrates how

the proposed BFA AF scheme benefits the system performance.
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V. NUMERICAL SIMULATIONS

In this section, we provide numerical simulations to compare the performance of different

AF schemes and demonstrate the superiority of the proposed BFA AF scheme. We show the

numerical results for the distributed relay network in this section and defer the results for the

MIMO relay network and the comparison with the feasible point pursuit (FPP) algorithm [28],

[29] in the the companion technical report [31]. We assume w.l.o.g. that each multicast group

has an equal number of users (i.e., mk = M/G for k = 1, . . . , G). The channels fk, gk,i, where

k = 1, . . . , G and i = 1, . . . ,mk, are identical independently distributed (i.i.d.) according to

CN (0, I). The transmitted signal at each transmitter is with power 0dB (i.e., Pj = 0dB for

j = 1, . . . , G). Each single-antenna relay has the same noise power (i.e., σ2
` = σ2

ant, where

` = 1, . . . , L), and all users have the same noise power (i.e., σ2
k,i = σ2

user for k = 1, . . . , G and

i = 1, . . . ,mk). We assume that σ2
ant > 0 and σ2

user > 0. The total power threshold for all the

relays is P̄0; the power threshold at `th relay is P̄`, where ` = 1, . . . , L. For each AF scheme,

100 channel realizations were averaged to get the plots, and the number of randomizations for

generating BF AF weights and BFA weights is 1, 000.

A. Worst User’s SINR versus Total Power Threshold

In this simulation, we vary the total power budget at relays to see the worst user’s SINR

performance in different relay networks. For ease of exposition, we consider the scenario where

only the total power constraint is present. In Figure 4, we assume that there are L = 8 single-

antenna relays and G = 2 multicast groups with a total of M = 16 users. For both cases, we

set σ2
ant = σ2

user = 0.25. It shows that the objective value (obj.) of (R1SDR) and (R2SDR) serve

as an upper bound for the SDR-based BF AF scheme and the SDR-based BFA AF scheme,

respectively. Moreover, based on randomization, the BFA AF scheme shows a significant SINR

improvement over the BF AF scheme in all the power regions.

B. Worst User’s SINR versus Number of Users

In this simulation, we show how the worst user’s SINR scales with the number of users served

in the relay system. We consider the problem formulation with one total power constraint present.

In Figure 5, we have L = 8, G = 2, σ2
ant = σ2

user = 0.25 and the total power threshold at relays

is set to be P̄0 = 10dB. From the figure, we see that (R2SDR) serves as an upper bound of
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Total Power Allowed at the Relays (in dB)
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Fig. 4. Worst user’s SINR versus total power threshold at the distributed relay: L = 8, G = 2, M = 12, σ2
ant = σ2

user = 0.25.

(R1SDR), which is consistent with Propositions 2 and 3. Moreover, it shows that BFA AF can

own better SINR performance than the BF AF scheme for all the values of M , which verifies

the results in Proposition 1 and Theorem 1.
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Fig. 5. Worst user’s SINR versus number of users in the distributed relay system: L = 8, G = 2, P̄0 = 10dB, σ2
ant = σ2

user =

0.25.

C. Worst User’s SINR versus Number of Per-relay Power Constraints

In this simulation, we consider the scenario where both the total power constraint and per-

antenna power constraints are present and the primal users are absent. Our purpose is to see how

the worst user’s SINR scales with the number of per-relay power constraints. Specifically, Figure

6 shows the distributed relay case with L = 8, G = 2, M = 16, where the total power threshold

is P̄0 = 7dB and per-relay power threshold is also P̄` = −5dB. We set σ2
ant = σ2

user = 0.25

July 27, 2021 DRAFT



22

and vary the number of per-relay power constraints from 0 to L to compare SINR performances

of different AF schemes. It shows that the BF Alamouti AF scheme outperforms the BF AF

scheme. As the number of per-relay power constraints increases, the SINRs diverge from their

SDR upper bounds, and both BF AF and BF Alamouti AF exhibit the same scaling with L,

which is consistent with the approximation bounds in terms of J in Proposition 1 and Theorem

1.

Number of Per-relay Power Constraints
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obj. of (R2SDR)
SDR-based BF AF
SDR-based BF Alamouti AF

Fig. 6. Worst user’s rate achieved by different AF schemes versus number of per-antenna power constraints in the distributed

relay network: L = 8, G = 2, M = 16, P̄0 = 7dB, P̄` = −5dB for ` = 1, . . . , L, σ2
ant = σ2

user = 0.25.

D. Worst User’s SINR versus Number of Primal Users

Similar to previous simulations, here we show the worst user’s SINR scaling with the number

of primal users. To set up the problem, we consider the scenario where the total power constraint

and the primal users’ interference constraints are present. We assume that L = 8, G = 2 and

M = 12 and set σ2
ant = σ2

user = 0.25, the total power budget P̄0 = 10dB, and the noise power at

all primal users to be σ2
u = 0.25. Moreover, we assume that the primal users are subject to an

interference power threshold equaling to bu = 3dB. We then increase the number of primal users

to see the SINR scaling in Figure 7. It shows that as the primal users increases, both the BF AF

scheme and BFA AF scheme diverge from their SDR bounds and BFA AF shows a significant

improvement over BF AF. These results further validate Proposition 1 and Theorem 1 in terms

of the scaling of J .
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Fig. 7. Worst user’s SINR versus number of primal users in the distributed relay CR network: L = 8, G = 2, M = 12,

P̄0 = 10dB, bu = 3dB for u = 1, . . . , U , σ2
ant = σ2

user = 0.25 and σ2
u = 0.25.

E. Simulation Results for Multicasting Relay Networks

In this sub-section, we provide numerical results for the special cases of multicasting. In both

Figures 8 and 9, we consider the problem formulation with the total power constraint and one

primal user’s temperature constraint and show the worst user’s SINR scaling with the number

of users. Specifically, in Figure 8, we set L = 8, P̄0 = 10dB and σ2
ant = σ2

user = 0.25. The

simulation results show that the obj. of (R1SDR) and (R2SDR) coincide with each other, and

the curve of BFA AF scales better than that for BF AF, which is consistent with results in

Proposition 3. In Figure 9, we have L = 4, P̄0 = 10dB and σ2
ant = σ2

user = 0.25. It shows that

the obj. of (R2SDR) equal to that of (R1SDR). Moreover, BFA AF exhibits better scaling than

BF AF as the number of users increases. This verifies results in Proposition 4.

F. Actual Bit Error Rate (BER) Performance

To further demonstrate the efficacy of the proposed AF scheme, we study the actual coded

bit error rate (BER) performance of the scenario setting in Figure 4. Specifically, for each time

slot, we simulate the actual AF process by generating sj(t), n`(t) according to the SISO model

in (4) and (20) and detecting and decoding sj(t) at each receivers. The resulting BERs are shown

in Figures 10. To simulate the SDR bound in the BER plots, we assume that there exists an

SISO channel whose SINR is equal to γ(W ?) or θ(W ?
1 ,W

?
2 ). In our simulations, we adopt a

gray-coded QPSK modulation scheme and a rate-1/3 turbo code in [43] with a codelength of
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Fig. 8. Worst user’s SINR versus the number of users in the distributed relay multicast network: L = 8, G = 1, M = 16,

P̄0 = 10dB, bu = 3dB, σ2
ant = σ2

user = 0.25 and σ2
u = 0.25.
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Fig. 9. Worst user’s SINR versus the number of users in the MIMO relay multicast network: L = 4, G = 1, M = 16,

P̄0 = 10dB, bu = 3dB, σ2
ant = σ2

user = 0.25 and σ2
u = 0.25

2880 bits. We simulate 100 code blocks for each channel realization and thus the BER reliability

level is 10e−4. We see that the actual BER performance of the proposed BFA AF scheme indeed

outperforms the BF-AF scheme at almost all power thresholds. The results are consistent with

those SINR results in Figure 4 and show that BFA AF can achieve a good performance in real

applications.

VI. CONCLUSIONS

In this work, we have studied the AF design problem in both the MIMO relay network and

the distributed relay network. We considered different power constraints and tried to maximize

the worst user’s SINR under these power constraints in the multigroup multicasting scenario.
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Fig. 10. Worst user’s BER achieved by different AF schemes versus total power threshold in the distributed relay network:

L = 8, G = 2, M = 12, σ2
ant = σ2

user = 0.25. A rate- 1
3

turbo code with codelength 2880 is used.

A novel BFA AF scheme was proposed, for which the design problem is formulated as a two-

variable fractional QCQP. Our main contributions lie in two aspects. First, we analyzed the new

two-variable fractional SDR problem. The results show that by introducing 2-DoF in the AF

structure, we can increase the optimal objective value of the SDR problem. Moreover, the quality

the SDR solution also improves, and therefore system performance can be enhanced. Second,

we showed in some special cases of relay multicasting that how the introduced one more DoF

benefits the system performance and derived some interesting results, which can facilitate the

system design. In summary, we demonstrate from both theoretical and numerically ways that the

proposed BFA AF scheme can outperform the traditional BF AF scheme, especially in large-

scale systems. Our future work is the AF design under imperfect CSI scenarios and other types

of relay cloud networks with limited link capacity.

APPENDIX

A. Proof of Theorem 1

In this appendix, we provide the proof of Theorem 1 in four steps. Specifically, we begin by

considering a specific randomization time n in Algorithm 1. W.l.o.g, we let Rj and R̄j denote

the matrices associated with the power constraints, e.g., Rj = Gu, R̄j = Ḡu or Rj = R̄j = D`.

Hence, herein J is the total number of generalized power constraints. Letting W1 = (ξn1 )(ξn1 )H

and W2 = (ξn2 )(ξn2 )H , our purpose in Steps 1-3 is to prove that for any proper ρ, v > 0, the
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probability

P , Pr
(
{θ (W1,W2) ≥ ρ · θ (W ?

1 ,W
?
2 )}

∧
{
Rj •W1 + R̄j •W2 ≤ v(Rj •W ?

1 + R̄j •W ?
2 ),

∀j = 1, ..., J
})

is always positive. Based on this result, in Step 4, we could further identify the approximation

bounds.

Step 1: To proceed the proof for P > 0, we define

θk,i(X1,X2) =
Ak,i •X1 + Āk,i •X2

Ck,i •X1 + C̄k,i •X2 + 1
.

Then, let us consider the events

Ek,i = {θk,i(W1,W2) ≤ ρ · θk,i(W ?
1 ,W

?
2 )} ,

Fj =
{
Rj •W1 + R̄j •W2 ≥ v

(
Rj •W ?

1 + R̄j •W ?
2

)}
,

and define Eck,i and F cj to be the complement of Ek,i and Fj . It is easy to see that

P ≥1− Pr

 ⋃
k=1,...,G
i=1,...,mk

Ek,i

− Pr

(
J⋃
j=1

Fj

)
.

Step 2: We intend to use the following Lemma 1 to bound Pr
(⋃

k=1,...,G
i=1,...,mk

Ek,i
)

.

Lemma 1 Given Hermitian positive semidefinite matricesA, Ā,C, C̄ with rank(A) = rank(Ā) =

1, let ξ ∼ CN (0,X?
1 ), η ∼ CN (0,X?

2) be independent random vectors. Assume that A•X?
1 > 0

and Ā •X?
2 > 0. Then,

1). For any ρ < 1/2, it holds that

Pr

(
ξHAξ + ηHĀη

ξHCξ + ηHC̄η + 1
≤ ρ

A •X?
1 + Ā •X?

2

C •X?
1 + C̄ •X?

2 + 1

)
≤ 4ρ

1− 2ρ
, (40)

2). For for any ρ < ω/2 where ω =
min{A•X?

1 , Ā•X?
2 }

A•X?
1+Ā•X?

2
, it holds that

Pr

(
ξHAξ + ηHĀη

ξHCξ + ηHC̄η + 1
≤ ρ

A •X?
1 + Ā •X?

2

C •X?
1 + C̄ •X?

2 + 1

)
≤
(

4ρ

ω − 2ρ

)2

. (41)
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Proof: We delegate the proof in the the companion technical report [31]. We remark that the

upper bounds in (40) and (41) hold simultaneously.

In our problem, we have rank(Ak,i) = rank(Āk,i) = 1. Denoting ck,i =
min{Ak,i•W ?

1 , Āk,i•W ?
2 }

Ak,i•W ?
1 +Āk,i•W ?

2
,

we can apply (40) to bound event Ek,i as Pr (Ek,i) ≤
(

4ρ
ck,i−2ρ

)2

, ∀k, i. Then, by choosing

ρ = ω/(7
√
M) with ω = min

k,i
{ck,i}, we may apply Lemma 1 to obtain

Pr

 ⋃
k=1,...,G
i=1,...,mk

Ek,i

 ≤∑
k,i

Pr (Ek,i) ≤M

(
4ρ

ck,i − 2ρ

)2

<
3

4
.

On the other hand, we can also consider the second upper bound in Lemma 1. By choosing

ρ = 1/(8M) we have

Pr

 ⋃
k=1,...,G
i=1,...,mk

Ek,i

 ≤∑
k,i

Pr (Ek,i) ≤M
4ρ

1− 2ρ
<

3

4
.

Note that these two bounds hold simultaneously given that we pick different values for ρ.

Step 3: We then bound Pr
(⋃J

j=1Fj
)

by Lemma 2.

Lemma 2 Let D and D̄ be Hermitian positive semidefinite matrices and ξ ∼ CN (0,X?
1 ), η ∼

CN (0,X?
2 ) be independent random vectors. If D•X?

1 +D̄•X?
2 = 0, then ξHDξ+ηHD̄η = 0

almost surely. Otherwise, for any v ≥ 2, we have

Pr
(
ξHDξ + ηHD̄η ≥ v(D •X?

1 + D̄ •X?
2 )
)
≤ 2 exp(−v

2
).

Proof: We delegate the proof in in the the companion technical report [31].

Similar to Step 2, by choosing v = 2 log(16J), we can bound Pr
(⋃J

j=1Fj
)

as

Pr

(
J⋃
j=1

Fj

)
≤

J∑
j=1

Pr (Fj) ≤ 2J · exp(−v
2

) =
1

8
.

In this way, we can bound the probability P as

P ≥ 1− Pr

 ⋃
k=1,...,G
i=1,...,mk

Ek,i

− Pr

(
L⋃
`=0

F`

)
>

1

8
.

Step 4: Now it is ready for us to show that based on the fact P > 0, the desired approximation

bounds can be derived. In particular, letting Ŵ1 = W1/v and Ŵ2 = W2/v, previous discussions
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imply that with probability at least 1/8, the rank-one solutions
(
Ŵ1, Ŵ2

)
are feasible for

Problem (R2SDR) and we have

θ
(
Ŵ1, Ŵ2

)
= min

k=1,...,G
i=1,...,mk

Ak,i • (W1/v) + Āk,i • (W2/v)

Ck,i • (W1/v) + C̄k,i • (W2/v) + 1

≥ρ
v
· θ (W ?

1 ,W
?
2 ) .

Therefore, we have

θ
(
Ŵ1, Ŵ2

)
≥ ω

7
√
M(2 log(16J) + 1)

· θ (W ?
1 ,W

?
2 ) (42)

and

θ
(
Ŵ1, Ŵ2

)
≥ 1

8M(2 log(16J) + 1)
· θ (W ?

1 ,W
?
2 ) (43)

hold simultaneously. Since (42) and (43) are true for each randomization n ∈ {1, . . . , N}, it

follows that

Pr
({
∃n : θ

(
ŵn

1 (ŵn
1 )H , ŵn

2 (ŵn
2 )H
)
≥ c · θ (W ?

1 ,W
?
2 )
})

≥ 1− (7/8)N ,

where ŵn
1 and ŵn

2 are extracted by eigen-decomposition from rank-one matrices Ŵ1 and Ŵ2

at randomization time n, and c is defined in Theorem 1. This, together with (31), completes the

proof of Theorem 1. �

REFERENCES

[1] J. Chamberland, P. Eedara, and A. Taghavi, “Occupancy estimation using distributed WiFi monitoring,” in ITA Workshop

2016, Feb. 2016.

[2] M. N. Tehrani, M. Uysal, and H. Yanikomeroglu, “Device-to-device communication in 5G cellular networks: challenges,

solutions, and future directions,” IEEE Communications Magazine, vol. 52, no. 5, pp. 86–92, 2014.

[3] T. Hynek, D. Halls, and J. Sykora, “Practical implementation of cloud initialization procedure for wireless physical layer

network coding clouds,” in 20th European Wireless Conference; Proceedings of European Wireless 2014, May 2014, pp.

1–6.

[4] Y. Li, T. Wu, P. Hui, D. Jin, and S. Chen, “Social-aware D2D communications: qualitative insights and quantitative

analysis,” Communications Magazine, IEEE, vol. 52, no. 6, pp. 150–158, 2014.

[5] K. C. et al., “C-RAN: the road toward green RAN, white paper,” in China Mobile Research Institute, 2011.

[6] Y. Shi, J. Zhang, and K. Letaief, “Group sparse beamforming for green Cloud-RAN,” IEEE Trans. Wireless Commun.,

May 2014.

[7] V. N. Ha, L. B. Le, and N.-D. Dao, “Cooperative transmission in cloud RAN considering fronthaul capacity and cloud

processing constraints,” in Proc. IEEE Wireless Communications and Networking Conference (WCNC), 2014.

July 27, 2021 DRAFT



29

[8] S. X. Wu, A. M.-C. So, and W.-K. Ma, “A beamformed Alamouti amplify-and-forward scheme in multigroup multicast

cloud-relay networks,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2015.

[9] S. X. Wu, Q. Li, W.-K. Ma, and A. M.-C. So, “Stochastic amplify-and-forward schemes for multigroup multicast

transmission in a distributed relay network,” in Proc. 15th IEEE Int. Workshop Signal Process. Advances in Wireless

Commun. (SPAWC), Jun. 2015.

[10] S. X. Wu, Q. Li, A. M.-C.So, and W.-K. Ma, “A stochastic beamformed amplify-and-forward scheme in a multigroup

multicast MIMO relay network with per-antenna power constraints,” submitted to IEEE Trans. Wireless Commun., 2015,

available online at http://arxiv.org/abs/1510.02448.

[11] S. Fazeli-Dehkordy, S. Shahbazpanahi, and S. Gazor, “Multiple peer-to-peer communications using a network of relays,”

IEEE Trans. Signal Process., vol. 57, no. 8, pp. 3053–3062, 2009.

[12] B. K. Chalise and L. Vandendorpe, “MIMO relay design for multipoint-to-multipoint communications with imperfect

channel state information,” IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2785–2796, 2009.

[13] B. K. Chalise, L. Vandendorpe, and J. Louveaux, “MIMO relaying for multi-point to multi-point communication in

wireless networks,” in Computational Advances in Multi-Sensor Adaptive Processing, 2007. CAMPSAP 2007. 2nd IEEE

International Workshop on. IEEE, 2007, pp. 217–220.

[14] Z. Ding, W. H. Chin, and K. K. Leung, “Distributed beamforming and power allocation for cooperative networks,” IEEE

Trans. Wireless Commun., vol. 7, no. 5, pp. 1817–1822, May 2008.

[15] V. Havary-Nassab, S. Shahbazpanahi, A. Grami, and Z.-Q. Luo, “Distributed beamforming for relay networks based on

second-order statistics of the channel state information,” IEEE Trans. Signal Process., vol. 56, no. 9, pp. 4306–4316, 2008.

[16] I. Jimenez, M. Barrenechea, M. Mendicute, and E. Arruti, “Non-linear precoding approaches for non-regenerative multiuser

MIMO relay systems,” in Signal Processing Conference (EUSIPCO), 2012 Proceedings of the 20th European. IEEE,

2012, pp. 1399–1403.

[17] K. Gomadam and S. Jafar, “Optimal distributed beamforming in relay networks with common interference,” in Global

Telecommunications Conference, 2007. GLOBECOM ’07. IEEE, Nov 2007, pp. 3868–3872.

[18] M. R. Khandaker and Y. Rong, “Joint transceiver optimization for multiuser MIMO relay communication systems,” IEEE

Trans. Signal Process., vol. 60, no. 11, pp. 5977–5986, 2012.

[19] R. Muhammad, A. Khandaker, and Y. Rong, “Transceiver optimization for multi-hop MIMO relay multicasting from

multiple sources,” IEEE Trans. Wireless Commun., vol. 13, no. 9, pp. 5162–5172, Sep. 2014.

[20] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,”

IEEE Signal Process. Mag., vol. 27, no. 3, pp. 20–34, May 2010.

[21] T.-H. Chang, Z.-Q. Luo, and C.-Y. Chi, “Approximation bounds for semidefinite relaxation of max-min-fair multicast

transmit beamforming problem,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3932–3943, 2008.

[22] S. Ji, S. X. Wu, A. M. C. So, and W.-K. Ma, “Multi-group multicast beamforming in cognitive radio networks via rank-

two transmit beamformed Alamouti space-time coding,” in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Process.

(ICASSP), May 2013, pp. 4409–4413.

[23] S. X. Wu, W.-K. Ma, and A. M. C. So, “Physical-layer multicasting by stochastic transmit beamforming and Alamouti

space-time coding,” IEEE Trans. Signal Process., vol. 61, no. 17, pp. 4230–4245, Sept. 2013.

[24] A. Schad, K. L. Law, and M. Pesavento, “A convex inner approximation technique for rank-two beamforming in multicasting

relay networks,” in Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 2012, pp. 1369–1373.

July 27, 2021 DRAFT

http://arxiv.org/abs/1510.02448


30

[25] A. Schad, K. L. Law and M. Pesavento, “Rank-two beamforming and power allocation in multicasting relay networks,”

IEEE Trans. Signal Process., vol. 63, no. 13, pp. 3435–3447, 2015.

[26] N. Bornhorst, M. Pesavento, and A. B. Gershman, “Distributed beamforming for multi-group multicasting relay networks,”

IEEE Trans. Signal Process., vol. 60, no. 1, pp. 221–232, 2012.

[27] L.-N. Tran, M. F. Hanif, and M. Juntti, “A conic quadratic programming approach to physical layer multicasting for

large-scale antenna arrays,” IEEE Signal Process. Lett., vol. 21, no. 1, pp. 114–117, 2014.

[28] D. Christopoulos, S. Chatzinotas, and B. Ottersten, “Multicast multigroup beamforming for per-antenna power constrained

large-scale arrays,” Proc. of IEEE Int. Work-shop on Signal Process. Advances for Wirel. Commun (SPAWC), Jun. 2015.

[29] O. Mehanna, K. Huang, B. Gopalakrishnan, A. Konar, and N. Sidiropoulos, “Feasible point pursuit and successive

approximation of non-convex QCQPs,” IEEE Signal Process. Lett., vol. 22, no. 7, pp. 804–808, 2015.

[30] B. Gopalakrishnan and N. Sidiropoulos, “High performance adaptive algorithms for single-group multicast beamforming,”

IEEE Trans. Signal Process., vol. 63, no. 16, pp. 4373–4384, Aug 2015.

[31] S. X. Wu, J. Pan, A. M.-C. So, and W.-K. Ma, “Some proof derivations and further simulation results for “Strategies for

Exploring Two Degrees-of-freedom in Relay Beamforming Networks and the Performance Analysis”,” Technical Report,

Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Feb 2016.

Available online at http://arxiv.org/abs/1602.06500.

[32] Y. Huang, Q. Li, W.-K. Ma, and S. Zhang, “Robust multicast beamforming for spectrum sharing-based cognitive radios,”

IEEE Trans. Signal Process., vol. 60, no. 1, pp. 527–533, 2012.

[33] K. T. Phan, S. Vorobyov, N. D. Sidiropoulos, C. Tellambura et al., “Spectrum sharing in wireless networks via qos-aware

secondary multicast beamforming,” IEEE Transactions on Signal Processing, vol. 57, no. 6, pp. 2323–2335, 2009.

[34] Y. J. Zhang and A. M.-C. So, “Optimal spectrum sharing in mimo cognitive radio networks via semidefinite programming,”

IEEE Journal on Selected Areas in Communications, vol. 29, no. 2, pp. 362–373, 2011.

[35] E. Karipidis, N. D. Sidiropoulos, and Z.-Q. Luo, “Quality of service and max-min-fair transmit beamforming to multiple

co-channel multicast groups,” IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1268–1279, Mar. 2008.

[36] Z.-Q. Luo, N. D. Sidiropoulos, P. Tseng, and S. Zhang, “Approximation bounds for quadratic optimization with

homogeneous quadratic constraints,” SIAM J. Optim., vol. 18, no. 1, pp. 1–28, 2007.

[37] L. R. Varshney, “Transporting information and energy simultaneously,” in Information Theory, 2008. ISIT 2008. IEEE

International Symposium on. IEEE, 2008, pp. 1612–1616.

[38] P. Grover and A. Sahai, “Shannon meets tesla: Wireless information and power transfer.” in ISIT, 2010, pp. 2363–2367.

[39] R. Zhang and C. K. Ho, “Mimo broadcasting for simultaneous wireless information and power transfer,” Wireless

Communications, IEEE Transactions on, vol. 12, no. 5, pp. 1989–2001, 2013.

[40] S. He, Z.-Q. Luo, J. Nie, and S. Zhang, “Semidefinite relaxation bounds for indefinite homogeneous quadratic optimization,”

SIAM Journal on Optimization, vol. 19, no. 2, pp. 503–523, 2008.

[41] D. Tse and P. Viswanath, Fundamentals of wireless communication. Cambridge university press, 2005.

[42] Y. Huang and S. Zhang, “Complex matrix decomposition and quadratic programming,” Math. of Oper. Research, vol. 32,

pp. 758–768, 2007.

[43] IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless

Access Systems, IEEE Std. 802.16e, 2005.

July 27, 2021 DRAFT


	I Introduction
	II System Model and the Beamformed Amplify-and-Forward Schemes
	II-A The Beamformed AF Scheme
	II-B Generalized Power Constraints
	II-C A Unified AF Design Problem
	II-C1 Problem Formulation for the MIMO CR Relay Network
	II-C2 Problem Formulation for the Distributed CR Relay Network
	II-C3 Problem Formulation for Other One-hop Relay Networks

	II-D The SDR Technique and Approximation Bounds for One-variable QCQPs

	III The Rank-Two Beamformed Alamouti AF Scheme in the Relay Networks
	III-A The Beamformed Alamouti AF Scheme for the MIMO relay
	III-B The Beamformed Alamouti AF Scheme for the distributed relay
	III-C The SDR Technique for (R2BF)
	III-D SDR Approximation Bounds for BF Alamouti AF

	IV Special Cases with Deterministic Approximation Bounds
	IV-A Multicasting for Distributed Relay Networks
	IV-B Multicasting for MIMO Relay Networks

	V Numerical Simulations
	V-A Worst User's SINR versus Total Power Threshold
	V-B Worst User's SINR versus Number of Users
	V-C Worst User's SINR versus Number of Per-relay Power Constraints
	V-D Worst User's SINR versus Number of Primal Users
	V-E Simulation Results for Multicasting Relay Networks
	V-F Actual Bit Error Rate (BER) Performance

	VI Conclusions
	Appendix
	A Proof of Theorem 1

	References

