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Abstract

This paper proposes a new algorithm for MIMO cognitive raB&condary Users (SU) to learn the
null space of the interference channel to the Primary Usé&l) (Rithout burdening the PU with any
knowledge or explicit cooperation with the SU. The knowledyf this null space enables the SU to
transmit in the same band simultaneously with the PU byzirilj separate spatial dimensions than the
PU. Specifically, the SU transmits in the null space of therfierence channel to the PU. We present a
new algorithm, called the One-Bit Null Space Learning Aigon (OBNSLA), in which the SU learns
the PU’s null space by observing a binary function that iaths whether the interference it inflicts on
the PU has increased or decreased in comparison to the StW®ps transmitted signal. This function is
obtained by listening to the PU transmitted signal or cdrthannel and extracting information from it
about whether the PU'’s Signal to Interference plus Noisegod®atio (SINR) has increased or decreased.

In addition to introducing the OBNSLA, this paper providesh@rough convergence analysis of
this algorithm. The OBNSLA is shown to have a linear convamgerate and an asymptotic quadratic
convergence rate. Finally, we derive bounds on the intenigg that the SU inflicts on the PU as a function
of a parameter determined by the SU. This lets the SU corteoirtaximum level of interference, which
enables it to protect the PU completely blindly with minima@emplexity. The asymptotic analysis and

the derived bounds also apply to the recently proposed Blinll Space Learning Algorithm.

. INTRODUCTION

Multiple Input Multiple Output (MIMO) communication opensew directions and possibilities for
Cognitive Radio (CR) netwoer[D—?]. In particular, in unidg CR networks, MIMO technology enables

the SU to transmit a significant amount of power simultanioimsthe same band as the Primary User
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(PU) without interfering with it, if the SU utilizes sepaeaspatial dimensions than the PU. This spatial
separation requires that the interference channel fromSteto the PU be known to the SU. Thus,
acquiring this knowledge, or operating without it, is a nidjapic of active research in CIJR:I[EI, ElS] and
in other fields IL_:LLB]. We consider MIMO primary and secondargtems defined as follows: we assume
a flat-fading MIMO channel with one PU and one SU, as depicte#ig.[1. LetH,, be the channel
matrix between the SU’s transmitter and the PU’s receivereéiter referred to as the SU-Tx and PU-
Rx, respectively. In the underlay CR paradigm, SUs are caingtd not to inflict “harmful” interference
on the PU-Rx. This can be achieved if the SU restricts itsaigm lie within the null space oH,;
however, this is only possible if the SU knowk,. The optimal power allocation in the case where the
SU knows the matrix¥,,, in addition to its own Channel State Information (CSI) wasial by Zhang
and Liang Iﬂl]. For the case of multiple SUs, Scutari at BI.f{B}nulated a competitive game between
the secondary users. Assuming that the interference mtattixe PU is known by each SU, they derived
conditions for the existence and uniqueness of a Nash Bquih point to the game. Zhang et [9]
were the first to take into consideration the fact that therfetence matrix,; may not be perfectly
known (but is partially known) to the SU. They proposed ralaeamforming to assure compliance with
the interference constraint of the PU while maximizing th&sthroughput. Another work on the case
of an unknown interference channel with known probabilitytribution is due to Zhang and Smll],
who optimized the SU’s throughput under a constraint on th&imum probability that the interference
to the PU is above a threshold.

The underlay concept of CR in general, and MIMO CR in particuis that the SU must be able to
mitigate the interference to the PU blindly without any cergiion. Zhang|]6] was the first to propose a
blind solution where the MIMO SU mitigates interference e PU by null space learning. This work
was followed by Yi ], Chen et aIHZ], and Gao et @[15]l these works exploit channel reciprocity:
specifically, where the SU listens to the PU’s transmitteghal and estimates the null space from the
signal’s second order statistics. Since these works reaiiannel reciprocity, they are restricted to PUs
that use Time Division Duplexing (TDD).

Unless there is channel reciprocity, obtainiHg, by the SU requires cooperation with the PU in the
estimation phase; e.g. where the SU transmits a trainingeseg, from which the PU estimatés,,
and feeds it back to the SU. Cooperation of this nature ise®#he system complexity overhead, since
it requires a handshake between both systems and, in agditie PU needs to be synchronized with
the SU’s training sequence. Zhar@[lO] was the first to prepos interference mitigation mechanism

in which a single antenna SU obtains the path-loss of theference channel to the PU under the
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condition that the SU can extract the PU’s Signal to Interfiee plus Noise Ratio (SINR) by listening to
its transmitted signal or control channel. By transmittang interfering signal, and measuring the effect
of this signal on the PU SINR, the SU obtains the path-losshefinterference channel. This enables
the SU to set its power low enough to maintain its interfeechelow some predefined level. However,
it does not enable the SU to exploit other spatial degreeseetibm than those used by the Pu.m [14],
we proposed the Blind Null Space Learning Algorithm (BNSL&hich enables a MIMO underlay CR
to learn the null space df,s by observing some unknown monotone continuous functiornefRU’s
SINR. For example, if the PU is using continuous power cdnthe PU’s signal power is a monotone
function of its SINR. During this learning, the PU does nobgerate at all with the SU and operates as
though there were no other systems in the medium (the wagruRUs operate today).

This paper makes two contributions. The first contributi®m@ inew algorithm, called the One-Bit Null
Space Learning Algorithm (OBNSLA), which requires muchsl@gormation than the BNSLA; namely,
the SU can infer whether the interference it inflicts on the iRld increased or decreased compared to
a previous time interval with a one-bit function. In otherrd®s, in the OBNSLA the SU measures a
one-bit function of the PU’s SINR, rather than a continugahted function as in the BNSLA. Using this
single bit of information, the SU learrd,,’s null space by iteratively modifying the spatial oriembat
of its transmitted signal and measuring the effect of thidifiwation on the PU’'s SINR. The second
contribution of the paper is to provide a thorough convecgeanalysis of the OBNSLA. We show that
the algorithm converges linearly and has an asymptotigaligdratic convergence rate. In addition, we
derive upper bounds on the interference that the SU inflintshe PU; these results enable the SU to
control the interference to the PU without any cooperatiarite part. Furthermore, all the bounds and

the convergence results apply equally to the BNSLA.

Il. THE ONE-BIT NULL SPACE LEARNING PROBLEM

Consider a flat fading MIMO interference channel with a sngU and a single SU without interference

cancellation; i.e., each system treats the other systagnsisas noise. The PU’s received signal is
Vp(t) = Hppx,(t) + Hpsxs(t) + vp(t), t €N (1)

wherex,, x, is the PU’s and SU’s transmitted signal, respectivély,, is the PU’s direct channeH,,,
is the interference channel between the PU Rx and the SU Tixy ) is a zero mean stationary noise.

In the underlay CR paradigm, the SU is constrained not to eckeemaximum interference level at the
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Fig. 1. Our cognitive radio schem&I, is unknown to the secondary transmitter angl () is a stationary noise (which
may include stationary interference). The interferencenfthe SU,H,.x(t), is treated as noise; i.e., there is no interference
cancellation.

PU Rx; i.e.,
[ Hpsxs (6)]1* < Mmax )

wheren,.x > 0 is the maximum interference constraint. In this paper, atftors are column vectors.
Let A be anl x m complex matrix; then, its null space is definedd$A) = {y € C™ : Ay = 0}
where0 = [0, ...,0]T € C.

Since our focus is on constraining the interference caugatid SU to the PU, we only consider the
term H,;x,(¢) in (I). Hence H,; andx, will be denoted byH andx, respectively. We also define the
Hermitian matrixG as

G=H'H (3)

The time lineN is divided into N-length intervals, each referred to as a transmission cfid®, as

depicted in Figurél2. For each TC, the SU’s signal is constant
Xs((n—1N+N)=x,((n—1)N+1)=--- =x,(Nn+ N —1) 2 x(n), (4)

where the time intervabk N < ¢t < nN + N’ — 1 is the snapshot in which the SU measures a sequence
q(n), where eacly(n) is a function of the interference that the SU inflicts on the ¢ assume that the
SU can extract one-bit of information from the sequeaqee), which indicates whether the interference
it inflicts on the PU, at thesth TC, has increased or decreased with respect to the peeVi@s. This
assumption is described in the following.

Observation Constraint (OC) on the function ¢(n): Let ¢(n), n =1,2,... be a sequence observed

by the SU wheren is the index of a TC, and ldx(n) be the interference that the SU inflicts on the
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Fig. 2.  The time indexing used in this papeindexes the basic time unit (pulse time) whéeY¥etime units constitute a TC
that is indexed byn. Furthermore K transmission cycles constitute a learning phase (not showinis figure).

PU at thenth TC. Then,g(n) is a function of the interference that the SU inflicts on the &Jfollows:
There exists some integéd > 1, such that fromg(n — m), ..., ¢(n), the SU can extract the following
function

L if [[Hx(n)|| = [[Hx(n — m)|

h(X(n),%(n —m)) = _ ()
—1, otherwise

for everym < M.

The SU’s objective is to learw/ (H) from {x(n), ¢(n)}nen. This problem, referred to as the One-bit
Blind Null Space Learning (OBNSL) problem, is illustratedRigure[3 forM = 1. The OBNSL problem
is similar to the Blind Null Space Learning (BNSL) problemd]lexcept for one important difference.
In the latter, the SU observes a continuous-valued funatiothe PU’s SINR whereas in the OBNSL
problem, it observes a one-bit function. In both problerhg, $U obtains;(n) by measuring the PU’s
transmit energy, or any other parameter that indicates the FINR (see Sec. II-B irm4] for examples).
However, in the OBNSL problem, the SU is more flexible sinceat obtaing(n) from, for example,
incremental power contlijlor other quantized functions of the PU’s SINR such as moauiasize.
Another way for the SU to extract information about the iféeFnce to the PU is by decoding the PU’s
control signal to obtain parameters such as channel quaditgator feedback or ACK/NAK feedbacu [8].
From a system point of view, the OC means that betw&eoonsecutive transmission cycles, the PU’s
SINR is mostly affected by variations in the SU’s signal. &lthat the OC is less restrictive for smaller
values ofm. The TC length is the minimum time it takes the SU to modifyl@arning signal. This

length must be equal or greater to the PUs interference atilmpinterval for the learning to be accurate.

In addition, variations in other sources of interference anthe PU’s direct channel should occur on

This is power control that is carried out using one-bit comchavhich indicates weather to increase or decrease the power
by a certain amount.
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Fig. 3. Block Diagram of the One-bit Blind Null Space Leamifroblem. The SU’s objective is to learn the null space
of H by inserting a series ofx(n)}.en and measuring:(x(n),X(n — 1)) as output. In practice, the SU does not measure
h(x(n),x(n — 1)) directly, but rather it measures a sequeg¢e), for eachx(n), and fromg(n), ¢(n — 1), the SU extracts

h(%(n), %(n — 1)).

a much slower timescale than the TC length or else the leganmiay not converge. It is important to
stress that the latter constraint applies only to the TC timeé not to the entire time it takes the SU to
learn the null space oH. This is because the OBNSL problem is based only on the i@mian the
interference with respect to the previous TC, andif > 1 it is with respect to the variations in the
Mth previous TCs. It is therefore possible that the enviromnaed the PU’s direct channel vary faster
thanH as long as these variations are slow with respect to the TGem[¥ we study the effect of a
time-varying environment on the proposed learning schesaesimulation, and show that it is possible
to learn the null space even when the PU direct channel viastsr therH. Note that in the case where
q(n) is not extracted from the PU’s SINR, the PU’s path-loss malyaii@ct the OC. Consider the case
where the PU constantly measures the interference powéneointerference spatial covariance matrix
at the Rx and feeds it back to its Tx. For example, such a mésas necessary if the PU has full CSI
at its Tx. In this case, if the SU can decode the PU’s contignhali it can extract(n) from it without
being affected by variations in the PU direct channel; &, ().

The learning process unfolds as follows. In the first TICH 1), the SU transmitsk(1), and measures
¢(1). In the next TC, the SU transmits(2) and measures(2) from which it extractsh(x(1),%(2)).
This process is repeated until the null space is approximatete that whileh(x(1),%(2)) requires two
TCs, h(x(n — 1),%(n)) for n > 2 requires a single TC. Note that the OC does not provide arigitxpl
relation betweerh(x(n), %(n — m)) andq(n). This is because the way(x(n),%(n —m)) is extracted
from ¢(n) depends on the PU’s communication protocol. For exampltheifPU is using incremental
power control, and the SU observes these power control comspae.,q(n) is equal to the PU’s power
command at thesith TC, thenh(x(n),x(n — 1)) will be equal tog(n), and M will be equal to one. On

the other hand, if the PU is using a continuous power contrdltheq(n) that the SU observes is some
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monotone function of the PUs pO\HethenE(i(n),i(n —m)) will be the difference betweef(n) and
g(n —m). The value ofM in this case will be the number of TCs in which the PU’s dirdearnel and

the interference from the rest of the environment remaimszmt.

[1l. THE ONE-BIT BLIND NULL SPACE LEARNING ALGORITHM (OBNSLA)

We now present the OBNSLA by which the SU approximaté&) from {x(n),q(n)}._; under
the OC, where the approximation error can be made arbjtraniall for sufficiently largel’. Once the
SU learnsV (H), it can optimize its transmitted signal, regardless of tpé&noization criterion, under
the constraint that its signal lies iV (H). Let UXV* be H's Singular Value Decomposition (SVD),
whereV andU aren; x n; andn, x n, unitary matrices, respectively, and assume that n,. The
matrix X is ann, x n; diagonal matrix with real nonnegative diagonal entrigs..., o4 arranged as
o1 > 09,> --- > oq > 0. We assume without loss of generality that = d(= Rank(H)). In this
caseN (H) = span(vy, 1, ..., Vs, ), Wherev; denotesV’s ith column. From the SU’s point of view, it

is sufficient to learn\V'(G) (recall, G = H*H), which is equal toV'(H) since
G =VAV*, (6)

where A = XT3, The decomposition i {6) is known as the Eigenvalue Decaitipa (EVD) of G.
In order to obtain\V' (H) it is sufficient to obtainG’s EVD. However, in the OBNSL problenG is not
observed, so the SU needs to obtain the EVD using only oniefbitmation.

To illustrate that\'(H) can be obtained via only one bit we consider a simple examphehich
H = o[V3,—1]T wherea > 0. In this case

21 3 -3 a? 0 11-v3 1
G= A= V=2 ()

V3 1 0 0 21 1 3

Note that the null space is spanned fy-7/6) wherer(f) = [sin(#), — cos(6)]. Thus, the null space
can be obtained by minimizing(6)*Gr(6) over @ € [—m,x]. The latter is true due to the fact that
r(—7/6)TGr(—m/6) = 0 is the global minimum of the function(d)"Gr(#). Becauser(0)"Gr(0) =

(V3sin(0) + cos(@))2 /4 is a sinusoidal function with a period af, it is possible to search for the null
space by transmitting(#) for different values of and receiving the one bit information given [d (5), with

linear complexity; i.e., a complexity that grows withie, wheree is the desired accuracy. The extension of

2See [14, Sec. 11-B] for examples and conditions under whith is possible.
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the above idea to practical MIMO channels, which are complek might have more than two antennas,
poses some challenges. The first challenge is that becaokesearch point is obtained via a TC, it is
highly desirable to reduce the search complexity. The sgpooblem is that even for the same dimensions,
i.e., a one dimensional null spaceGs, the null space cannot be parameterized by a single parafate
r(6) but must be parameterized by two parameters, @.g)) via r(6, ¢) = [cos(#), e~ sin(6)]. Thus,

it is necessary to perform an efficient two dimensional deaesed on the one bit of information [d (5).
This problem is even more complicated when the dimensioh@hull space is greater than one. In this
section we address these issues and present the OBNSL/Ae tatle of; > 2, to avoid searching over
more than a two dimensional parameter space, we will uttlimewell-known Cyclic Jacobi Technique
(CJT) for Hermitian matrix diagonalization, which is based two dimensional rotations. Then, we
show that for two dimensional rotations it is possible tousa the complexity of the search from a
linear complexity to a logarithmic complexity. The propdsagorithm is a blind realization of the CJT.
Because of the restriction to two dimensional rotationseex for the case af; = 2, the OBNSLA does
not obtain the null space after a finite amount of rotations,rather converges to the null space as the
number of rotations increases. Nevertheless, we will steec[([M) that the OBNSLA converges to the

null space very fast. We begin with a review the CJT.

A. Review of the Cyclic Jacobi Technique

The CJT [see e.£|17] obtains the EVD of thex n; Hermitian matrixG via a series of 2-dimensional
rotations that eliminates two off-diagonal elements athesiep (indexed byk). It begins by setting

A, = G and then performs the following rotation operatiohs,; = VA, V}, k= 1,2,..., where

Vi =Ryn(6,0) 8)

is ann; x n; unitary rotation matrix that is equal t,, except for itsmth andith diagonal entries that
are equal tacos(#), and its(m,1)th and (I, m)th entries that are equal 0 sin(#) and —e'® sin(f),
respectively. For each, the values off, ¢ are chosen such thaA,];,,, = 0, or stated differentlyf
and ¢ are chosen to zero thiem and m,( off diagonal entries ofA, (which are conjugate to each
other). Note that in am; x n, Hermitian matrix, there arén, — 1)n;/2 such pairs. The values éfm
are chosen in step according to a functio/ : N — {1,....,n:} x {1,...,n:}, i.e Jp = (lx, my). It is
the choice ofJ, that differs between different Jacobi techniques. In theicylacobi techniquéy, my
satisfyl < [, < n,—1 andl, < my < n; such that each paif, m) is chosen once in evety,, — 1)n;/2

rotations. Suchin, — 1)n;/2 rotations are referred to as a Jacobi sweep. An example ofgéessweep
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of the CJT forn, = 3 is the following series of rotationsf; = (1,2), Jo = (1,3), J3 = (2,3). The next
sweep is Jy = (1,2),J5 = (1,3), Js = (2,3) and so forth.

The convergence of the CJT has been studied extensivelytlwdast sixty years. The first proof of
convergence of the CJT for complex Hermitian matrices wasrgin [18]. However, this result did not
determine the convergence rate. The convergence rateepmolsds addressed in [19], which proved that
the CJT for real symmetric matrices has a global linear caarece rat@if 0, € [—n/4, /4] for every
k. This result was extended to complex Hermitian matrlce@] [It was later shown [ DZ] that
for a matrix with well separated eigenvalues, the CJT hasaa@iic convergence r eThls result was
extended |n|a3] to a more general case which includes idgngigenvalues and clusters of eigenvalues
(that is, very close eigenvalues). Studies have shown thatractice the number of iterations that is
required for the CJT to reach its asymptotic quadratic cayerece rate is a small number, but this has
not been proven rigorously. I|H24] it is argued heuristicghat this number i) (log,(n;)) cycles for
n; X n; Matrices. Extensive numerical results show that quadcativergence is obtained after three to
four cycles (see e.gl]l? page 42@[25 page 197]). Thasgeseach Jacobi sweep hagn; — 1)/2
rotations, the overall number of rotations in the CJT rougirows asn?. For further details about the
CJT and its convergence, the reader is referre&lolﬂ? 25].

B. The One-Bit Line Search

The learning in the OBNSLA is carried out in learning stagesiexed byk, where each stage

performers one Jacobi rotation. The SU approximates thexmst by Wy, where
Wi = Wi 1Ry Ok, d1), k=1,.... ks, 9)
and W, = I. Recall that in the CJT, one observes the matrix
A1 =W,_ GW,;_,; (10)
and choosesy, = 0}, ¢, = ¢} such that

R, (607, 1) Ay 1Ry (08, 63)]1m = 0 (11)

A sequence, is said to have a linear convergence raté)af 8 < 1 if there existsno € N such thatlan+1| < f|ax| for
everyn > ng. If no =1, a,, has a global linear convergence rate.

A sequence is said to have a quadratic convergence rateréf #xists3 > 0,n9 € N such thatla, 1| < B8lan|?,Vn > no.
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In the OBNSL problem, the SU needs to perform this step usitg (), ¢(n)},—=1, without observing
the matrixA,_;. The following theorem, proved ill:L|14], is the first step todssuch a blind implemen-
tation of the Jacobi technique. The theorem converts thiel@mo of obtaining the optimal Jacobi rotation
angles into two one-dimensional optimizations of the florCiS(A_1,r;,,,(6, ¢)) (which is continuous,
as shown inH4 , wheré(A, x) = x*Ax andr;,,, (6, ¢) is R, (6, ¢)'s Ith column.

Theorem 1: dj Theorem 2] Consider the; x n; Hermitian matrixA,_; in (10), and letS(A, x) =
x*Ax andr;,, (0, ¢) be R, (0, 4)’s ith column. The optimal Jacobi parametéfsand 47, which zero

out the (/, m)th entry of R (6}, #})Ar_1Rim (6], 4}), are given by

qﬁi = 2r%mi1}5(Ak_l,rl7m(7r/4,qﬁ)) (12)
c|—m,T
0] = Tu(e}) (13)
where
o {gkw) ~ it~ <0u(0) <] s
Or(¢p) — sign(0x(¢))m/2 otherwise

wheresign(xz) = 1 if > 0 and—1 otherwise, and

Or (o) = in S (A1, 1m0, 15
k(@) =arg  min S (Ax-1,11m(0,0)) (15)

The theorem enables the SU to solve the optimization prablen{12) and[(15) via line searches
based on{x(n), ¢(n)}L_,. This is because under the OC, the SU can extiék{n), x(n — m)), which
indicates whethef (G, x(n)) > S(G,x(n—m)) is true or false. It is possible, however, to further reduce
the complexity of the line search, which is important, sieeeh search point requires a TC. To see this,
consider the line search ii(12) and denatep) = S(Ag,rm(7/4,0)) = |[HWr_1r,m(7/4,8)|%.
According to the OC, for each, ¢, the SU only knows whethew(¢;) > w(¢2) or not. Assume that
the SU tries to approximatﬁ,l by searching over a linear grid, with a spacing;obn the interval—m, .
The complexity of such a search is at leé¥tl /) since each point in the grid must be compared to
a different point at least once. The two line searche$ ih &) (15) would be carried out much more
efficiently if binary searches could be invoked. Howeverjraaly search is feasible only if the objective

function has a unique local minimum point, which is not theea [12) and[(15) because

S(G, 11, (0,9)) = cos?(0) |gua| + in®(0) [gimm| — |g1,m|5in(260) cos(d + Lgim) (16)
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Thus, before invoking the binary search, a single-minimaterval (SMI) must be determined; i.e, an
interval in which the target function in_(1L2) dr (15) has aginlocal minimum. This is possible via the
following proposition:

Proposition 2: Let w(¢) = ||Hr,,(7/4,$)||> wherer,,, is defined in Theoreil 1. Let € [, 7]

be a minimur point of w(¢), then

(@) ¢ [-3n/4,—m/4] if w(—m),w(0) > w(—m/2).

(b) ¢ € [~n/4,7/4] if w(—7) > w(—7/2) > w(0).

(©) ¢ € [n/4,3m/4] if w(—m),w(0) < w(—m/2).

(d) ¢ € [3n/4, 7] U [—m, —3n/4] if w(—7) < w(—7/2) < w(0).

Proof: From [16),w(¢) can be expressed ag¢) = B — Acos(¢ — @), A, B > 0. If B =0, every
¢ € [—m, ] is a minimum point and the proposition is true. We now assuraeR > 0. By substituting
w(0) = B— Acos(¢),w(n/2) = B— Asin(¢) andw(r) = B+ Acos(¢) into w(—n), w(0) > w(—mr/2),
one obtains that the latter is equivalenttoos(¢) > sin(¢) which is equivalent to(—37/4 < ¢ <
7/4) N ((—7 < ¢ < —m/4) U (31/4 < ¢ < 7)). The last set can be written @s< (—3r/4, —m/4),
which establishesya). The proof of (b)-(d) is similar. O

Note that unless is a horizontal line, it is &x periodical sinusoid. In the latter case, there cannot be

more than a single local (and therefor global) minimum withn interval ofr/2. If w is a horizontal
line, every point is a minimum point. In both cases the SU déiniently approximatedy, ¢}, by 8} and

¢i respectively, using a binary search, such that

108 — Tu(Sp)| <, |01 — o] <, (17)

wheren > 0 determines the approximation accuracy. The SU uses Ptapdgito determine an SMI via
(1, w/2) anduy, (/2,0), wherew, (dn, dn—1) = hn(tpm(7/4, ¢n), v (7/4, dn_1)), andh is defined

in (B). The one-bit line search is given in Algoritith 1. In elehining the SMI, the one-bit line search
requires 3 TCs: two TCs fot,(r,7/2), and one more fow,(x,0). Given an SMI of lengthz and
an accuracy of) > 0, it takes |—logy(n/a)] + 1 search points to obtain the minimum to within that
accuracy. In the search fer, a = 7/2, thus¢; € [¢} — 1, ¢}, + 7] is obtained using— log(2n/7)] + 1
TCs, plus the 3 TCs required for determining the SMI and 2 mi&@s to compare the initial boundaries

of the SMI. Theng; can be approximated to within in the same way.

®Sincew is a2r periodical sinusoid, such a point always exists, thoughhimimt be unique.
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We conclude with a discussion of parameiérin the OC. The proposed line search can obtaip)’s
minimum even forM = 1. However, the number of TCs is lower ff is larger. Assume that the SU
has obtained an SMp™®, ¢™ax], |t takes the SU two TCs to determine wheth&tpmay) > w(dmin),
where, in the first TC, it transmits ,,,(7/4, ¢max) and measureg(1), and in the second TC, it transmits
71m (7/4, dmin ), and measureg2). If the latter inequality is fals@pmax iS S€t a%max = (Gmin+Pmax)/2-

In the next phase of the binary search the SU cannoty(seand it needs an additional TC to do so.

In general,M > |—log(n/m) + 1] guarantees that each search point requires one TC.

C. The OBNSLA
Now that we have established the one-bit line search, we msept the OBNSLA. In the OBNSLA,

the SU performs two line searches for edchThe first search is carried out to firg, that minimizes

|HW ), m, (7/4,¢))||?, where each search point,, is obtained by one TC in which the SU transmits

xs(t) = x(n) = Wiry m, (7/4,05) € C™ [ ¥(n—1)N <t <nN, (18)

and measureg(n). In the first line search, the SU obtaiﬁ% which is then used in the second line
search to obtai,(¢}) according to[(I5), and then to obtay) according to[(IB). The indicedy,, my,)
are chosen as in the CJT. After performihgiterations the SU approximates the matkix(see [(6)) by

W,._. It then chooses its pre-coding matflX,. as

Ty, = [wks ...,Wks I, (19)

217 Ing—np

k H 3 . . B .
wherew; is W;’s ith column, andi, io, ..., i,

t

is an indexing such thatw/*)* Gw; < (w}*)*Gw;
for everyq < v. Thus, the interference power that the SU inflicts on the Pboisnded ag/Hx|? <
ks

ing—np

ps||Hw |2, V|Ix||? = ps, where p, is the SU’s transmit power. A high level description of the
OBNSLA algorithm is given in Figll4 and the exact algorithngisen in Algorithm[2.

Although the SU becomes “invisible” to the PU after it leai$H,,;), it interferes with the PU during
this learning process. Furthermore, this interferencenisngportant ingredient in the learning since it
provides the SU with the means to leaki(H,;), i.e. ¢(n). Nevertheless, the SU must also protect the
PU during the learning process. Hence we assume that thests ex additional mechanism enabling
the SU to choose&(n)'s power to be high enough to be able to extragt), but not too high, so as to

meet the interference constraihi (2). We give examplesuoh snechanisms irmm, Sec. II-C].
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Algorithm 1 [z, n] = OneBitLineSearch({A; }ien, Zmax, 1, 7, X(2))
Initialize: L < zmax,
un (21, 22) < hn(x(21),%(22))
a+ up(—L,—L/2),n+ +.
b up(0,—L/2), n+ +
Zmax < (3+ 20— 2a(1 + 2b))L/4;
Zmin € Zmaz — L/2-
while |Zmax - zmin| > do
Z = (Zmax + Zmin)/z
a <— u(zma)n zmin)> n—++
if a=1then
Zmax € %
else
Zmin < 2
end if
end while

Algorithm 2 The OBNSL Algorithm

Input: {h, }oen, defined in [(b).
Output:W

initialize: n =1

[W,n] = OBNSLF({hy }ven, ns, n)
End

Function: [W, n]= OBNSLF({h,}ven, ng, 1)

Initialize: k=1, W =1,,, A; =2n,Vj <0

while (Hlane{k_nt(m_1)/27_._7k} Aj > 77) do
x(¢) = Wry, o, (1/4, 9)
[q@k, n| + OneBitLineSearch ({le}leN, T,n, n,x(gzb))
X(H) <~ erk,mk (97 ¢k’)
[0, n] < OneBitLineSearch ({ﬁl}leN,ﬂ/Zn,n,x(ﬂ))
ék — ék if ék < |7T/4|, otherwiseék — ék — ﬂSign(ék)/Z
Ak — ‘Hk’ o
W < WRy, i, Ok, O1)
k+—k+1.

end while

DRAFT



14

Run Algorithm 1 —]
P with xn) = 1, (7 / 49, A -
[ i
Run Algorithm 1 '
with %(n) =1, (6,,6,) || ) Hz
y '

I
W, = Wk—lRIk,mk (ék7ék-)
k=k+1

o

NS

5
T : S |
<+—[HX(m) | S [ HE(n- D]

Go back to I

Fig. 4. High-level description of the One-bit Blind Null SgaLearning Algorithm. The gray arrows represent the peti)
undergoes beforg(n) is obtained by the SU. The dashed line represents the adtiopdating of the precoding matri¥V_.

IV. ALGORITHM CONVERGENCE

The OBNSLA is, in fact, a blind implementation of the CJT waa®nvergence properties have been
extensively studied over the last 60 years. However, thevargence results of the CJT do not apply
directly to the OBNSLA. This is because of the approximafioiI?); i.e., due to the fact that for every
k, the rotation angleég, q&i are obtained by a binary search of accuracyhus the off diagonal entries
are not completely annihilated; i.§Aj.1];,.m, ~ 0 instead of[Ay11];, m, = 0. Moreover, we would
like to make this line search accuracy as low as possiblg {#hao maken as large as possible) in
order to reduce the number of TCs. It is therefore crucialrideustand how, affects the performance
of the OBNSLA algorithm, in terms of convergence rate anditierference reduction to the PU. In this
section, we extend the classic convergence results of thiet@Cthe OBNSLA and indicate the required
accuracy in the binary search that assures convergencecamd$the maximum reduction level of the
interference inflicted by the SU on the PU. It will also be shothiat the same convergence analysis
applies to the BNSLA proposed iHM].

The following theorem shows that for a sufficiently good lisearch accuracy, the OBNSLA has a
global linear convergence rate.

Theorem 3: Let G be a finite dimensionah; x n; complex Hermitian matrix and®, denotes the
Frobenius norm of the off diagonal upper triangular (or lowengular) part ofA;, = W; _ GW;_;

where Wy, is defined in[(®) and letn = n.(n; — 1)/2. Let ) be the accuracy of the binary search (see
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(I2)), then the OBNSLA satisfies
P2, < PE(1—27(nmDem/2) 4 (0 — y) (7 + 2v/2)7 || G| (20)

Proof: See AppendiXA.

In what follows, it will be shown that for sufficiently smajl the OBNSLA has an asymptotic quadratic
convergence rate, but in order to obtain this, we modify thlgorithm slightly as follows. Letl :
{1,...,n¢} — {1,...,n,} be the identity operator, i.d.(z) = x. At the beginning of each sweep, i.e. for
everyk = q(n? —n;)/2 wereq € N, the SU setd, = I and for eachk € {qg(n? —ns)/2 +1,...,(q +
1)(n? —nt)/2}, the SU modified, as follows

U 1 ap, > amy my,

Iy(lk) = _ ; (21)
my, otherwise

whereq; ,,, is the (I, m)th entry of A;, (defined in [(ID)), andl;, m;) are determined by the rotation
function J, = (lx,m) of the CJT, as discussed in Section 1ll-A. At the end of eackeqwy i.e. for
k= (q+ 1)(n? —ny)/2, the SU permutes the columns W, such thatW,’s ith column becomes its
I,(1)’s column. Note that this modification does not require eXi@s and that the convergence result in
Theoren{B is still valid. We refer to the OBNSLA after this nifathtion as the modified OBNSLA.

Besides the fact that this modification is necessary forantaeing the quadratic convergence rate, as
will be shown in the following theorem, it will also be showmat it helps the SU to identify the null
space (the last, columns of W) blindly without taking extra measurements.

Theorem 4. Let n be the accuracy of the binary seardh; };*, be G’s eigenvalues and let

6 = min |\ — Ay 22
Alggl\z /3 (22)

s

Let P, be the Frobenius norm of the off diagonal upper triangulat phA;, = W;_,GW,_;, where
W, is defined in[(®) and letn = (n? — n;)/2. Assume that the modified OBNSLA has reached a stage
k, such thatP? < §2/8, then

2 2 3/2 2pl/2
P =0 (%)) v 0 (W55 ) vo (P42 ) v -m)Rlel @

Furthermore, the last,—n, columns ofW, ,,, inflict minimum interference to the PU; i.@lH,sw ™| <
HHpSW;HmH, V1<j<n,<i<ng.
Proof: See AppendixB.

Theorem# shows that to guarantee the quadratic convergateethe accuracy;, should be much
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smaller thanP;; that is, letk, be an integer such tha? < §2/8, then

Prysom <O ((P%mf) (24)

if n << P,fo. This implies that once’, becomes very small such th&f, = O(), one cannot guarantee

that Py, 5,, will be smaller thanP?

irem SiNCE atk + 1 it will be O(n).

The asymptomatic quadratic convergence rate of Theglemdétermined byl /6 where 34 is the
minimal gap betweeK’s eigenvalues. In addition, the quadratic convergenae taltes effect only after
P2 < §/8. Such a condition implies that &is very small, it will take the modified OBNSLA many cycles
to reach its quadratic convergence rate. This is problemsaice MIMO wireless channels may have very
close singular values (recall thkf;5's square singular values are equal@ds first n, eigenvalues). If
we were using the optimal Cyclic Jacobi technique (i.e. morerbecause of finite line search accuracy)
this would not have practical implications since a quadrdg@crease i, which is independent of,
occurs prior to the phase whef& < §/8 [E]. In the following theorem, we extend this result to the
modified OBNSLA.

Theorem 5: Let n be the accuracy of the line searchy;};”, be G’s eigenvalues such that there
exists a cluster of eigenvalues; i.e., there exists a supsgt;_, C {\;};"* such that\; = X\ + &, for
l € Ly = {i1,...,in }, where}";_, & = 0 and the rest of the non-equal eigenvalues safisfy 16,/ &7,
where

30, = min(A1 U Ag) (25)

Alz{’)\l_)\r‘ :ZEL\LQ, )\175)\,»}
Ay ={\ =)\ :l€eL\ Ly} (26)
L:{l,...,nt}

Then, once the modified OBNSLA reacheg auch that

20, |y &< P<6/8 (27)
€Ly
it satisfies

P =0 ((%52) ) + 0 ((%2)) + 0 ((75)) 2 —n) I @8

Proof: See Appendix .
Theorem[b states that in the presence of a single eigenvéliseer i.e. />, & << 4, and if
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n. = o(P), the modified OBNSLA has four convergence regions: The fieglian is P2 > §2/8,
the second i26.4/>",&7 < P2 < 62/8, the third is§/8 < P2 < 25.,/>,& and the fourth is
P,f < min; 512/8. In the first and the third regions, the modified OBNSLA hasast a linear convergence
rate while in the second and fourth regions, it has a quadcativergence rate. This means that from a
practical point of view, a close cluster of eigenvalues; '\7@/&; << 1, is not a problem. This is
because once the algorithm enters the second convergagion;ree., it reaches the stage= ko such
that2d.,/>, & << PZ < 6,./8, P will decrease quadratically until = k3 such thatP? < 26.4/>, 7.
But the latter inequality implies thaf,, << Py,, a fact that guarantees a significant reductian i.e.,
from Py, to P, with a quadratic rate. Neverthelesg, will eventually decrease quadratically &%
becomes smaller tha#/8 as required by Theorefd 4. This phenomenon is also a chastictef the
Cyclic Jacobi technique [23].

We now consider the maximum level of interference that their§licts on the PU. Our aim here is
to relate the asymptotic behavior of the maximum interfeeeto that ofP,, and to obtain bounds on
the maximum interference as a functionpfWe begin with the following proposition:

Proposition 6: Let T}, be the SU's pre-coding matrix defined in (19}, be itsith column,Q =
{1,...,ny — n,}, and P, be the norm of the off diagonal upper triangular (or loweangular) part of
Ay (where A, is defined in[(ID)). Then

H otk < 2P? 29
f;leaé(” 12t4||” < 28 (29)

Proof: This is an immediate result CJE[IZG, Corollary 6.3.4] whichtss that for every eigenvalue
of B+ E, whereB is ann; x n; Hermitian matrix with eigenvalues;,i = 1, ..., n;, there exists\; such
that |\ — \;|2 < ||E||2, where|| - || is the Forbinus norm. Thus, if one expresges as A, = B + E,
whereB = diag(Ay), E = offdiag(Ay), (29) follows. O
Since the maximum interference to the PU, for a single colwh, is bounded by2P? (from
Propositior6), it follows that the maximum interferencéisfees |H2 Ty |*> < 2(n, —n,)P2. Thus, it is
possible to apply the results of Theorems 4 @hd 5 and to bdwnchaximum interference. These bounds
are valuable since they relate the asymptotic level of fietence to the accuracy of the line search
(which is determined by the SU), thus enabling the SU to obnitre interference reduction to the PU.
Before obtaining the first bound on the interference, we rteedollowing corollary of Theorernl3:

Corollary 7:

2 2.2 2 G 2

k - 2—(m—2)(nt—1)/2 (30)
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Proof: See AppendixD.

From Corollaries 6 and 7 we obtain the following bound:

2(nf — ) (7 + 2V2)0°|G|?
9—(n—2)(n,—1)/2 '

lim sup max Hngtl;H2 < (31)
k€@

We now derive a tighter bound thah {31) which is valid only htconditions of Theorerl 4 are
satisfied; i.e., that the OBNSLA is replaced by the modifiedNSBA and that there exists such that
P? < §%/8. In this case, by combining Propositibh 6 and Theokém 4, ditails

2\ 2 3/2 5 1/2
maxgeq [Hiath2 < 0 (%) + 0 (25=) + 0 (Z52) +2 (nF —n) PIGI2 (32)

Furthermore, ifP, becomes sufficiently small such that> P, the dominant term in the RHS df (32)

will be O(n?); i.e., we effectively have:
max [Hiot | < 2 (nf —ne) *lIGI* + O(?) (33)

Thus, the parameter gives the SU autonomous control on the maximum interfereéndbe PU.

We conclude with the following corollary, which extends tbenvergence analysis presented in this
section to the BNSLA.

Corollary 8: Theorem$13,14.15, Propositioh 6 and Corollaly 7 apply to theSBA presented inm4].

Proof: The proofs of Theorems] 8] &] 5, Proposition 6 and Corolldnely on the fact that the

only difference between the CJT and the OBNSLA is in the iotafngles. In the OBNSLA, the CJT'’s
rotation angles e,g, gbi, are approximated according {0 117). Furthermore, notetteaBNSLA and the
OBNSLA are identical except for the way in which each aldoritdetermines its SMI (which are not
identical SMIs) before invoking the binary search. Howe{&l) is satisfied as long as each SMI contains
the desired minimum point. Because the latter is satisfieddbly algorithms, as indicated by Proposition
for the OBNSLA and by Proposition 3 iﬂm] for the BNSLA, Tdrems[ B[ }#[5, Propositidd 6 and
Corollary[? apply to the BNSLA. O

We conclude this section with a discussion of the effectiterference channel between the SU-Tx and
the PU-Rx E}]. In many MIMO communication systems the PU-RRplaes a spatial decoding matr to
its received signal, e.d3 might be a projection matrix into the column space of the Rii¥ect channel
Hj,. In this case, the equivalent received signay,i$t) = By,(t). Thus, the SU’s effective interference
to the PU-Rx isBHx(n), rather tharHx(n). We now discuss the effect @ on the OBNSLA algorithm
and on the bounds i (B1) anid (33), in different cases. Theisithe case where the SU extragits:)
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from the PU’s SINR and the PU calculates its SINR based onfteetize interference; i.e BH, x(n).
In this caseg(n) will be a one-bit function of|BHx(n)||, rather than|Hx(n)|. Thus, the OBNSLA
will converge to the null space of the effective interferer@hannét i.e., N (BH) and the bounds in
(31) and [(3B) will be valid by replacingl with BH and settingG = H*B*BH. Note that for the
OBNSLA to work, the matrixB must be constant during the learning process. If the PU nesdsi
due to the madifications in the SU’s learning signal, the OBASvill not converge to the null space.
The second case is where the SU obsenes which carries information only ofjHx(n)||, while the
effective interference i§BHx(n)||. In this case, the OBNSLA will converge & (H), but the bounds
will not necessarily hold. IfB is a projection matrix; i.e., it projects to some subspac&€®f and it
does not amplify the signal, the bounds [n](31) and (33) wdlldatisfied. The SU can lose degrees of
freedom by restricting its signal t& (H) rather than\/(BH) becauseV (H) C N (BH).

V. SIMULATIONS

In this section we study the performance of the OBNSLA viawations. We first compare the
OBNSLA to the OBNSLA Iaﬁl] in the non-asymptotic regime. Weaexne the effect of important
practical aspects, such as time-varying environments aadtgation. In the second part of this section,
we compare the asymptotic properties of the two algorithrite vespect to the asymptotic analysis in
Sec[1V.

A. Non-Asymptotic Comparison of the BNSLA and the OBNSLA

We now examine the OBNSLA and BNSLA in time-varying enviramts where the SU measures
the PU’s transmitted signal and extrag{s:) from it. Recall that it takes the SU some time to learn the
null space of the interference channel. Thus, if the chamas faster than the SU’s learning period, it
will not be able to effectively mitigate interference to tR&). Another problem that we address in this
section is the effect of the variations in the PU direct ling;, H,,, on the performance of the OBNSLA
and the BNSLA. We assume that the primary user performs a padeptation every 1 msec and that
the SU sets this as the TC's length; the considerations ferdfwoice are the following. Lel), be the
time cycle in which the PU performs power contr@k;,  and 7y, be the coherence times &f,,(t)
andH,,(t), respectively, and’rc be the length of the TC (which is equal 16 time units, as depicted
in Fig.[d). Note thatl'r¢ > T,. Because the OBNSLA is based on the OC, the SU must chibpse

® The channeBH is a special case of the effective interference channel wisiaddefined inl[[6] for the case for a MIMO
TDD PU, where the SU interferes with both the PU-Rx and theTRUk.e., uplink and downlink.
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such thatl'r¢ << Tg,., where the variations in the SU’s signal must be the domifector affecting
the PU’s SINR. If the PU adapts its transmission scheme sasty thatl}, is smaller than typical values
of Ty, andTy, , the SU can selrc = 7). In LTE, for example, the PU can adapt its signal’s power,
modulation and coding every 1 mge©ther examples are all the third generation cellular sgstevhich
perform power control every 2/3 msec (W-CDMA) or 5/4 msec WARO0OQK (see e.g.B8], Appendix
D).

Figure[® presents simulation results where the PU performeveer adaptation to maintain a target
10 dB SINR at the receiver, and the SU inflicts interferencehenPU and measuregn) by listening
to the PU signal's power at the SUHZxFig.@. presents the interference reduction of the BAISL
and the OBNSLA as a function d&,,'s Doppler spread. The results show that both algorithm&par
similarly but the BNSLA shows a slightly better interferenceduction than the OBNSLA for higher
values of Doppler spread and vice-versa. The fact that th8LBNis slightly better than the OBNSLA
in low Doppler spread can be explained by the fact that the BN a little faster than the OBNSLA,
as we discuss below. In_[14, Proposition 3] it was shown thatBNSLA determines a/4-length SMI

usingwy(0), wi(m/2), wg(—m/2) if
[wi(0) — wr(w/2)| = |wi(7/2) — wi(7)], (34)

where wy(¢) is some monotone function of the PU SINR such that obtainisgralue for a giveny
requires a TC. Thus, if(34) is true, the BNSLA is faster thhe OBNSLA by one TC. This is due to
the fact that although both algorithms require three TCsetieitnine an SMI, the BNSLA's SMI is half
the length of the OBNSLA SMI. If[{34) is false, the SU will deteine ax/4-length SMI by testing a
similar condition to[(3¥) usinguy(0), wy(—7/2), wx(—m). This requires one more TC to obtair(—).
The same phenomenon occurs in the search fo{heén the other hand, the inequality in{34) also
suggests a possible explanation for the slightly bettefopmance of the OBNSLA for low Doppler

spread. The fact that the BNSLA, in order to determine an SMlst check a condition that involves

"The power control in LTE is typically no more than a few hurntitéz. [see e.d. 27, Section. 20.3]. However, in the future it
may be possible to have power control every 1 msec, sincastti® length of a Transmission Time Interval (TTI), the del
interval in which a base station can schedule any user fasinégsion (uplink or downlink).

8Note that CDMA channels are not necessarily narrow-bandveder, the SU can still learn the null space of a narrow-band
portion since the PU will perform power adaptation in thesprece of narrow-band interference as long as it is not tomwar
For instance the bandwidths of most CDMA2000 systems is MP&, but the coherence bandwidth typically varies between
50 KHz and 3 MHz.

The SU setg(n) = & S 7N 71 ||y, (t)—y. %, wherey, is the average of , (¢) overt = N (n—1)+N’,... Nn+N'—1.
The consideration for choosing sughare described if [14, Sec II-B1].
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three noisy search points, while the OBNSLA does so via twisyneearch points, which makes the
OBNSLA more robust to noise. In low Doppler spread, this atlyge compensates for the fact that the
OBNSLA is slightly slower than the BNSLA. However, as the P&gy spread increases, the BNLSAS
interference reduction becomes equal to that of the OBNSh& eventually becomes better.

An important practical issue in the implementation the OBN&nd the BNSLA is the granularity in
the PU’s SINR, which prevents the SU from detecting smaliatens in the PU SINR. A full theoretical
convergence analysis of this problem is an important topiddture research. In this paper, we test this
problem using simulation. Fig. 5(b) presents simulatiosults for a scenario where the PU’s power
control process is based on a quantized measurement of tseSIIR in the range-5 dB to 20 dB. It
is shown that the interference reduction is not improvedore than 4 bits of quantization. This means
that small granularity does have a practical affect on théopmance of the OBNSLA and BNSLA.

In the last simulation we investigate the effect of variasian the PU direct channel on the performance
of the OBNSLA and BNSLA. Recall that the OC requires that thiEsPSINR be mostly affected by the
variations in the interference inflicted by the SU. Howevethe PU direct channel varies, it will be
impossible for the SU to distinguish whether the variationthe PU SINR are due to the SU interference
signal or to the PU’s direct channel path loss, and will leacetrors. To study this phenomenon we
run a simulation for the case where the PU experiences fdsigaFig.[5(c) presents the interference
reduction of the two algorithms as a function Hi,,'s Doppler spread, wher#l,, is Rayleigh fading.
The result shows that OBNSLA outperforms the BNSLA at alfjfrencies. Even for a 150 Hz doppler

spread, the OBNSLA achieves a 10 dB interference reduction.

B. Asymptotic analysis

We now compare the asymptotic properties of the OBNSLA to libands derived in SectidnJV
under optimal conditions; i.ej(n) is perfectly observed. Figufe 6(a) depidés and the bound on it
as given in[(3L), versus complete OBNSLA sweeps; (i€.— n;)/2 learning phases. It shows that for
sufficiently smalln the OBNSLA converges quadratically. The quadratic deeéasaks down when the
value of P, becomes as small as the order of magnitude.ofhis result is consistent with Theordm 4.
Figure[6(b) depicts the interference decrease and the bomriidas given in[(3B) versus the number of
transmission cycles. It shows that the asymptotic levehefinterference to the PU 8(n?). Note that
because the simulations in FIg. 6 are under optimal conmdifioe.,q¢(n) is not noisy and the channel is
not time-varying, we would obtain the same results if we eggpthe BNSLA instead of the OBNSLA.

In what follows, we study asymptotic performance under optimal conditions.
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antennas ane, = 2 antennas at the PU receiver. The matiix= H*H was normalized such thiG||?> = 1. The unmarked
lines in (a) and (b) represent the asymptotic upper boun@@¥ &nd [3B) respectively on the corresponding marked Bng;
the solid unmarked line is a bound on the solid line with sgeakVe used 200 Monte-Carlo trials where the entrieblcdire
i.i.d. complex Gaussian random variables.
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Fig. 7. Interference reduction (marked lines) of the OBNSEA a function of Jacobi Sweeps (a), and of the OBNSLA and
BNSLA as a function ofy (b). H,s was generated according fol[30], which represents a fixedRehannel where one antenna
is 1.75 m in height and the second antenna is 25 m in heightRItian factor and the Doppler spreadHf,; were determined
according to Equations (13) and (14) inl[30]. The unmarkadsdirepresent the bound [A]33) for the corresponding maditkes!
with the same pattern, e.g., in Subfigure (a) the dottedethshmarked line represent the bound on the OBNSLA's intenfge

reduction withn = —8 dB, which is represented by the dotted-dashed line that rkedawith circles. The numbers of antennas
areny, =2 ng, = 2, nr, = 1 n,, = 2. The results were averaged over 1000 Monte-Carlo trials.

The bounds in this paper are derived under the assumptiothtn@C holds perfectly. In practice, how-
ever,q(n) is affected by measurement error such as noise. Furtheytiherehannel matriceH,,,, H,,
vary with time, a fact that may also affect the functigfr). For example, variations i, affect the
PU’s SINR. In additionH,,, is also time-varying, which leads to some discrepancy betviee estimated
null space and the true null space. In what follows, we showirimulations that the derived bounds are
still useful in practice. A full theoretical convergenceayysis of the O/BNSLA in practical conditions,
which extends the bounds derived in this paper to accounnasurement noise and time variations in
the channel is a topic for future research, beyond the scbgi@sopaper.

Figure[T presents simulation results for an identical sgeres in Figurd b except faH,s which is
generated assuming that both the SU-Tx and PU-Rx are fixesl r83$ult shows that for an interference
reduction smaller or equal to 37 dB, the bound[in| (33) predice behavior of the interference reduction
(i.e., it decreases ag) of both the OBNSLA and the BNSLA. Furthermore, it is showattthe BNSLA

and the OBNSLA have the same asymptotic properties; i.evcezgence rate and asymptotic interference

reduction.

VI. SUMMARY AND FUTURE RESEARCH

This paper proposed the OBNSLA, which enables a MIMO CR SUeton the null space of the
interference channel to the PU by observing a binary functiwt indicates the variations (increase or

decrease) in the PU’s SINR. Such information can be exidadte instance, from the quantized version
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of the variation in the PU’s SINR, or in the PU’s modulatione\&lso provided a convergence analysis
of the OBNSLA, which also applies to the BNSLBM]. It was shothat the two algorithms have
a global linear and an asymptotically quadratic convergaate. It was also shown in simulations that
just like in the Cyclic Jacobi technique, the OBNSLA and tHéR.A reach their quadratic convergence
rates in only three to four cycles. In addition, we deriveginagtotic bounds on the maximum level of
interference that the SU inflicts on the PU. The derived bsumave important practical implications.
Due to the fact that these bounds are functions of a parardetermined by the SU, it enables the SU
to control the maximum level of interference caused to the Pk gives the OBNSLA (or the BNSLA)
a useful stopping criterion which guarantees the protaatibthe PU. The analytical convergence rates
and interference bounds were validated by extensive stinota

We consider the theoretical analysis of the OBNSLA and BNSidler measurement noise as an
important topic for future research. Note that in the presesf noise, the analysis of the two algorithms
is not identical since the BNSLA relies on a continuous-gdlfunction of the PU’s SINR, whereas the
OBNSLA relies on a binary function. Noise, which is contiigevalued, will thus affect these functions

and hence the performance and convergence of the two dlgsriguite differently.

APPENDIXA

Consider the first sweep of the BNSL algorithm; ike= 1,2, ...,n.(n; — 1) /2. Denote the number of

rotated elements in thih row by b, = n; — [ and let

=350 = 2ne—1=D1/2 Z(1Lk) = X505 AWl WILE) = 550 Z20,k) - (35)

Note thatW (0, k) = P,f. In every sweep, each entry is eliminated once; we therefermteA.’s p, g
entry before its annihilation ag, ,(t) wheret denotes the number of changes sikce 0. After g, ,(t)
is annihilated once, it will be denoted gy ,(f) wheret is the number of changes after the annihilation.

The diagonal entries oA, will be denoted byr since we are not interested in their values in the course
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of the proof. This is illustrated in the following example @t x 4 matrix

1,3(0 0

25

) (0) g1,5(0) g1,4(0) T € g1,3(1)  g1,4(1)
92,1(0)  92,2(0)  g2,3(0) g2,4(0) € T g2,3(1)  g2,4(1)
Ay = ; A=
93,1(0)  g32(0) g33(0) g3,4(0) gs,1(1)  g32(1) T 93,4(0)
94,1(0)  g4,2(0)  g4,3(0)  ga,4(0) ga,1(1)  ga2(1) g4,3(0) T
T G1,2(0) € g1,4(2) @ g1,2(1)  g1,3(0) €
G2,1(0) T 92,3(2)  g2,4(1) g2, (1) T 92,3(2)  g2,4(2)
A, = ; Ajz =
€ 93,2(2) T gs,4(1) G3,1(0)  g32(2) T 93,4(2)
921(2)  ga2(1)  gas(1) @ € g4,2(2)  94,3(2) T
(36)
For arbitraryn,, after the firstc; sweepsA.,’s first column is equal to the following vector:
[, G2,1(n¢ = 3), ey G —1,1(0), €,] (37)
and
Z(1,e1) < g2 (e = ) + oo+ |G, 1,1 (0)* + e, |? (38)
From [10) it follows that forg = 2, ..., n;
Gaa(ne—q—1) = cos (0, 1) Gg1(n —q—2) — errgg,, (1) sin (6, 1)
. (39)
gq,l(l) = COos (9q+1) gq,l(o) - el¢39q,q+2(1) sin (93)
9q,1(0) €g—1¢0s () — em"gq,q%—l(l) sin (0q)

whereg, 1(—1) = ;. The following bounds 0/ g, 1 () 7;aq_1 are obtained recursively (i.e., by obtaining

a bound ong, ;(0), substituting and obtaining a bound gn;(1) and so on)

Jaa(ne —q —1) < leg-1 T3, cos (60) — 3277, €% sin (6;) ggj1(1) T 541 cos (60) |
<Iv(g)"

1 (40)
y(9)] + eITpe," cos (6,)

where v,y € C"=1 such that[v(g)l; = ¢+ g,54q(1), [y(@); = sin(0;1q-1) [

v jtq €08 (00),
j = 1, ey Nt

— ¢, ande = max, |¢,|. It follows that

g1 (e —a =D <[y (@v(@) + [P TT5, cos® (80) < [y @I IIV(@)1* + el TTo5, " cos® (6,)

(41)
Proposition 9:

y(@)[* = 1= [T;Z, cos(é:) (42)
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Proof: This is shown by induction. By definition

Iy (@)1 = 3215, sin®(0;) TTo =ik cos(6,) (43)

where[[, v; £ 1,if I > m. Assume that[{42) is true for = m € N, then, form + 1 (@2) and [4B)
yields

Z?;q sinZ(Qi) H:;n:i—i-l COS2(9v) = Z?Z;l sin2(9i) H:;n:i—i-l COS2(9v) + sinz(Qm) H:)n:m—i-l COS2(9v)
= cos?(0,n) Zﬁ;l sin?(6;) va:_iil cos?(0,) + sin?(6,,),

According to the supposition (#2)
cos?(0,,) (1 — H;’le cos2(¢9i)) +sin®(0,,) = 1= [T;Z, cos?(6), (44)

which establishes the desired result. O

By substituting Proposition] 9 int¢_(#1) one obtains

ng—1
[9g.1(ne =g = 1) < ( >ty 9g+a (DI ) (1 o N i 0052(9z')) +le[* T cos® (60) 45)
=Z(q,cl) &S,l_/
thus,
|Gg,1(ne —q =P < (1 o | 0052(92‘)) Z(q,c1) + |ef? (46)

and by summing both sides df (46) owerE 2, ..., n;

Z(1,e1) € Xty (1= I ok, c0s?(6)) Z(g,e1) + (ma = 1)l

< (1 =TT 0c08%(0:)) Y Z(g,e1) +(ne — D]el* < (1= TT5L,, 1o cos*(0:)W(0,0) + (ny — 1)]e|* (47)
q=2

N ——’
W(lvcl)

where the last inequality is due t8,, = W (l,¢1) + Z(1,¢1), W(0,0) = Py, and becausé’; is a

monotonically decreasing sequelitdt follows that
Z(1,¢1) = sin® (Wey12.6,) W(0,0) + (ny — 1)]e|? (48)

where

sin? (Ve ,406) =1 - [I5,, 4ocos?(6;) (49)

Forsythe and Henricl [18] showed that the sequefigds a monotonically decreasing sequence.
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and; is an angle that satisfig8;| < |0;|. Thus,
Pey =W(l,c1) + Z(1,¢1) < W(0,0) = Py (50)

substituting [(4B) we obtain

W (1,¢c1) <W(0,0) cos? (Ua ) — (ng — 1)]e]? (51)

Now that this relation is established, it can be appliedtg's lower (n; —1) x (n; — ) block-diagonal,
thus
W(l,e) <W(I—1,¢-1)cos” (Vg 10) — (e —1)]e]? (52)

By substituting [(ER) recursively into itself, one obtains

! !
W(l, ) <W(0,0) H cos? (\I’ijﬁg ) — Z

H cos? ‘Ijv71+2,cu) (53)
J=1 J+1

v=

Thus

Z(l,c) =sin® (Vg 40.0) Wl —1,¢- 1) + (nt - 1)|62| < W(0,0)sin? (Ve, ,12.,) Hé.;ll cos? (We, ,42.c;)

(54)
After a complete sweep
P2 = St Z(ea,—) + el = X007 Z(e) < W(0,0) o1 sin (Ve v2) TTjZh cos? (U, o)
= e S by T cos® (P, o) + [€2 300 (e — 1)
(55)

where the first equality is due to the fact that for= ¢; + 1, ..., ¢,,,, the sum of squares of thitgh column

remains unchanged; thug,(l,k) = Z(l,¢),Vk > ¢. Similar to propositiori19, it can be shown that
S sin? () Hé “tcos? (1) =1 - J cos? (15). Thus

Pc2n71 < W(07O) (1 o H;L IZCOS (\I/Cj—l‘f‘zvcj)) N Zln:_12 € Z b Hv =j+1C08 (\I’CU71+2,CU) + ‘62’ Zlnz_ll by
(56)
From [49) we haveos? (U, ,1a.,) > [[, ., cos?(6,), therefore
PC2 < W(0,0)(1- cosZ (0
< W(0,0) ( [T T, w2 co0s2(6,) )

Z | |22j 1(n_j)1_[v j-‘rlHT’ —Cy 1+2COS (0)+M
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Recall that|¢;| < /4, therefore

2

Cn—1

W(0,0) (1= 2 (= 20-D/2) 2] (2 30 (s i o= )

< o]
< W(0) (1 . 2—(n—2)(n—1)/2) + ’62’ (n? 2—%)
(58)

It remains to relate to the accuracy of the line seargh Note that the erroe in (58) is due to[(1l7)
which is a result of the two finite-accuracy (gfaccuracy) line-searches ih{12), and](13)zlivere

zero,A,’s I, m off diagonal entry would be zero after thig¢h sweep, i.e.
u(6y, $i) =0 (59)

where

w(6,0) = Ry (0, 0) ARR], (0, 0)]1m|> = u1(6,0) + ua (6, 6), (60)

ui (6, ¢) = 4(aﬁm) sin? (ym + 0)
0

uz (0, ¢) = (2 cos(29)al’ cos <4alm + ¢) + sin(26) (a” a,:n’m)>2 (61)

and (6}, ¢}) is the value given in Theorefl 1 when substitutiig= A ;.. Recall that(d;, ¢]) (see [IV))
is the non optimal value that is obtained by the two line deescthen

el = maxu (0}, é3) (62)
The erroru(6y, 4}) can be bounded becaugg = Zaf,, thus ¢}, = —Zaf, + 1, wherel|n,| <7, and
wn (B, 61) = 4(af,,) P sin? (Zaf,, + 61) < Aaf,) PP < 2]Gln? (63)
L 2
(ekv ¢k) (2@1 m €08 (1)) cos (29k) + Sln(29k) ( 1~ am,m)) (64)

To boundus(}, $1), note that ifal, = ak,,., thend] = 6} € {0, 7/4} since the line search will not miss

mm?

these points. Now for the case wheig # a¥,,, we haved] = 63 + ns where
s 1 -1
0; = 3 tan™ " (z) (65)

and i
_ 2lag, | cos(ny)

k

66
a'fn,m —ap (69)
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Note that

us(B], 3}) = (208 (ne) af,, (cos (26) — 2mpsin (26°)) + (afy — a, . ) (sin (267) + 2cos (26 mg) )

where (6*, ¢*) is a point on the line that connects the poitdg, 1), (4}, #}). By substituting [(65) we
obtain

2

A7 2 2cos(ng)ay , +rraf , —wrak, « «
us (07, 1) = < ) l\/xi+1” — 4mp sin (20%) cos (ny) af . + 2ng cos (20%) ( 1= a’fn’m>
(67)

Using [66) and the fact that the sinusoidal is bounded by and,becauséy| < 7, it follows that

2
k k
arp — CLm,mD

us (8, d}) < 4n? (2\ sin(20*)|ay’,,, + cos(26*)

< 4n? <4 sin®(20%)|ay,,[**2sin(46%)|ay,, |laf; — ay,,,| + cos®(20%)|af; — ay,,[? (68)
< 4772 <2|a;€,m|2 + QSID(40*)|aﬁm||a£€l - alrgnm| + |a£€l - alrgnm|2 + 2|aﬁm|2)
up(6),4)) < 4n* (2|GI* + V2G| G + |G]?) (69)
Thus
€[> = max, (8], $1) < 2(7 +2v/2)*| G| (70)
This expression is substituted info [58) and the desiredltrésliows. O

APPENDIX B

Without loss of generality, we assume tH&t(0,0) < §2/8 where W (k,1) is defined in IBM We

first prove the theorem assuming th@ts eigenvalues are all distinct. From {40) it follows that

|Gg1(ne —q — 1)[* < 320 T sin? (6)) |gg,41(1)] 2 + € [To2, cos? (6,) (71)

Similar to the derivation of[{46), but without applying Posgition[9, one obtains

1Gg1(ne —q—1)|? < Z(q,c1) Z?;}l sin? (6;) + || < Z(g, 1) > s 21 sin? (6;) + |€|? (72)

™ J.e. letko be the smallest integer such thgt, < §*/8 and (Ix,,mk,) = (1,2), we setAx, = G).
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and by summing both sides ¢f {72) (similar to the derivatiorfdd])) overq = 2, ..., n; it follows that

Z(1,¢1) < (Z"t 21 sin? ) ZZ q,c1) +(ng — 1)e? < (Z;“ 21 sin? (0 )) W(0,0) + (ng — 1)e|?

%,_/
W (1,c1)

Now that we have established this relation we can apply ithe reducedr; — [ + 1 lower block
diagonal matrix and obtai (I, ¢;) < (Z?;CHH sin? (Hj)> W (0,0) + (ny — 1)|e|2. After a complete

sweep we have

P2 < YD en) F e = 07 20 ) + el

(73)
< W(0,0) 00D sin?(8)) + 1€ 2 (e — 1)

ng( nt 1)/2

We now relate) -~

sin?(0;) to W (0,0) ( recall thatP? = W (0,0)). Note that|al; — |2 =

mm
\all—)\l—amm+)\m+)\l—)\m12 > |\ = Am|? = |af — N\ —|ak,,,, — A\ |?, furthermore, byl[21, Theorem

1], there exists a permutation {o\;};*, such that

lal — \i| < V2P, (74)
thus,
laf; — i < 6/2, (75)
and

Recall that the optimal rotation angle satisfiea(20;) = 2[a; . |/|a}; — am,m,| While the actual the

rotation angel is

0] =0} +ny (77)
It follows that

|sin?(6})] < | sin?(6)| + |ng sin(26)] < }1|20k|2 + |ng| tan(20])| < 35 tan®(26) + |ng| tan(26})|
I + 2’ ’| U, mkl < |af, ar,, 'm.k 2‘779|\/ W(0,k)|

< I

(78)

Therefore

ny(ne—1)/2 . A ny(ng—1)/2 ‘“zk m,C 2 o \/ 0,k) _ o (n;—n;
kz(l / sin®(6}) < Zkz(l !/ < e e |> = #W(0,k) + % W (0, k)
(79)
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By substituting [ZP) into[{73) one obtains

P2 < W(0,0) (EW(0,0) + AT R) + 15l (12 ) (80)

It remains to relatey, in (77) ton. Recall that the calculation af! relies on the calculation odbi
Thus,ny depends omy as well, as we now show. Form the proof bf|[14, Theorem 2] wenktimat if
an accurate line search were invoked, it would prodéite- —Zay,,. However, the actual line search
yields ¢i = —4afm+n¢, where|n,| < 7. Thus,6; is obtained by searching the minimum of a perturbed

version of S(Ag, 1. (0, ¢})), i.e.

S'(Ak, rm (0, (ﬁi)) — hk(cosz(Q)affl — cos(ny) sin(29)af’m + sinz(ﬂ)afmm) (81)
We first assume that{fl # aF . From the proof ofH4, Theorem 2], the optimal value tbofs 6] =

2[a |

k"
Qoo — @

Stan~! (py), wherez), = If one takes into consideration the non-optimality of timieisearch
which obtain&;@i and ignores the non-optimality of the line search that mistag then the minimizer

of B1) would bed; = 1 tan~"! (x4 cos(n,)) and

J —[Lian-l 1 —1 |n sin (5 )pr| 2
|0z — 05| = |§ tan~! (zj, cos(ng)) — 5 tan (mk)‘ < 0052(772);?%1 < ¢6052(1‘72’3‘wi+1 (82)
x |z 1 53 — pJ J
where|ng| < ny. It can be shown thatr 0 < -, and becausé;, = 0 + 0} — 0;; + n, and

Ing| < n, the accumulated effect of the finite accuracy of both lirerslees is bounded by < n+%.

For sufficiently smally (e.g.n < 7/20) we obtain
g < 61/5 (83)

By substituting [(8B) and_(70) int¢ (BO) it follows that

P2, <W(0,0) (FW(0,0) + 5" /W(0,0)) + (10 +2v2)(nF — )P GI (84)

Thus, as long ag is negligible with respect téV'(0,0), the BNSLA will have a quadratic convergence
rate for G whose all eigenvalues are distinct. This is not sufficientsiwe are interested in a matrix
G n; — n, with zero eigenvalues.

To extend the proof to the case where the mathixhasn; — n, zero eigenvalues and, distinct
eigenvalues we use the following theorem:

Theorem 10 ([] Theorem 9.5.1): Let A be ann; x n; Hermitian matrix with eigenvalueg\;},",
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that satisfy

MAENE - F X, FAr1 =Apg2="=Xp, = A (85)
Consider the following partition:
A; B
A = (86)
B A,

whereA is n, x n, and Ay is (ny — n,) x (n; —n,) and lets’ > 0. If ||(A; — AI)7!|| < 1/§, then
1Az = AL|| < [|BJ?/d' (87)

To apply Theorerh 10 to the modified OBNSLA, we need to show tasatisfies its conditions. This
however is only satisfied b, with £ > m + 1. To show this, note thaf(¥5) and (76) are satisfied by
Ay, k < m for some permutations of the eigenvalues. Thus, due to thauiation in [21),A;, k > m
satisfies[(76) and (T6), for the ordering bf(85). For the cdshe proof, it is assumed that> m. Let
A% Ak B* be A;’s submatrices that correspond to the partition[in (86).dRethat in our case) = 0,
thus, [75) implies thati A%|| > 4, and also implies that} > 55/2,V¥0 < I < n,. Furthermore, byIEG,
Corollary 6.3.4]| A (AY) — afi| < |Akllog < 6/2, thus

N(AK) >0, VO <1 <n, (88)

and therefore, the matriA¥ is invertible, and becauspA’|| > 6, it follows that ||(A%)~!|| < 1/6, and
by Theoreni_I0 we obtain
IAS] < [IBk]?/6 (89)

To show that[(89) leads to quadratic convergence, one must #at the affiliation of the diagonal
entries in the uppen, x n, -block of A, remains unchanged and that the eigenvalue that correspond

are arranged in decreasing order, i.e.
] = : k _ : k+1
=arg min |\ —ay,,|=arg min |\ —a |, VI€e{l,...n.} (90)
1<m<n; 1<m<n,

and
A2 A, YIS m (91)
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To show [[QD), note that

2 2
‘ai,lk — aﬁmmk‘ < sin? (0k) (2 cos(@k)aimk cos ((ﬁk - éaimk) + sin (6) (af)ﬁlk — afmk,mk)>
(92)
and that for every, such thatl, < n,, (78) is satisfied. Thus

k k+1

jak o, —alt, © < sin’ (60) (a5 (00) (k= by, )) 2
< sin? () (alk e + ((alk’mk) 16+ 29 af, L, / 5) 1/25) 2
< sin? (0) (af, i, + (@ n, ) 2+ 20m008 0, ) 1/2) 2 < sin? (04) (a1, + (62/ 4+ 20m00/2) 1/2) 2
< sin? (6y) (alk my +0(1/4+ng) 1/2)2 < 8 (1 4 4n) (1/2 + \/W)

(93)
By restrictingn < 1/100 and considerind (83) it follows that

laf. 1, — ay ] < 0.656 (94)

which establisheg (90).
Now that [90) is established,_(91) immediately follows amd évery/,m such thatl # m and

1 <1 <n,, we havelal —ak, .| > 6. And (Z3) can be written as

Pepym < S0 Z(1en, +m) + €] 00 (g — 1)
< W(0,m) 5t sin (0;) + 3270, 4y Z(L n, +m) + €3] 00 (e = 1)
Recall thate|?> < mazpu(y, or) Whereus (0, ¢1.) andus (g, ¢) are defined in[(683) and(64). From (63)
and [B8)u(0k, o) < 4n*(5P¢ + 4P| G| + ||G|1?). Becauséa ; —
(79) is satisfied and similar t@_(B4) we obtain

(95)

| >0 form <k <m+cy,

mkmk

Pa i < W(0,m) ( LW (0,m) + @) | /W0, k;))

(96)
+2 (2neny — n2 — ny) 2 (5W(0,m) + 4/ W0, m) |G| + |G)1?) + 1 Z(1, en, +m)

It remains to bound the ter@:""1 Z(l,cn,+m). Note that for everyy, such thatn < k < ¢,,, +m,

(79) is satisfied. Le®) = {(I,m) : 1 <1 < n, < m < n;}. Note that for every: such that(l;, mx) € Q,

af, andaf, . —are located inA} and A} respectively. Thus,
k41 (2 < 2 | in? ko2
|aqf{nk| < |aq my |2 sin (Hk)|alk7q| , forn, < g < my

97)
|a’f,j:q|2 < |amk7q|2 + Sinz(ﬁk)|afk7q|2, for my, < q < my
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and from [Z8)
laki lgl? < lag, o> + <7| el 4 o —I kg ) laf ,|? for my, < ¢ < my (98)
\a’;fn}kﬁ < \aq mk\2 + (M + 27 M) ]alk q\2 for n, < g < my
These can be bounded by
2
]a'ﬁnﬂqﬁ, ]a';fn%klz < W?2(0,m) (1 + 5%) + %W?’M(O,m) (99)

Thus, for everyk € {m,....m + ¢, },
nyg—1 2
n,—1 2 < (0,04+m) e W3/2(0,04+m)
il Al +m) = %M;Hyaqty o((i) >+O((7é )) @oo)

This, together with[(36) and (83) show

rz <o (o)) o (2 o (P 2 () IGE

(101)

Since P, is a decreasing sequence, the desired result follows. O

APPENDIXC

We first prove the theorem for the case where the non-club®igenvalues are the largest; i.8;,>
Air1+0d. andX;— A > 4. fori = 1,...,n,—v. Note that\; = \+§;_,, _, fori € Ly = {n,—v+1,...,n,}
and\; = 0 for i = n, + 1,...,n;. Without loss of generality, we assume th&t(0,0) < §2/8 where
W (k,1) is defined in[(3b). LetV, AV} = A; be Ay’s EVD, and letAF = V, AV}, AF = V, AV}

where
A =diag(M, - Ao do A, 0---0)
e N~
A v Ng—V—", (102)
A:dlag(\O---Q,ﬁl,--- 76117 ‘0"'0, 7)

Let L, = {1,...,n, —v}, Ly = L\ (L ULy) andL, = (Ly x L)U(Ly x L3), L. = LyN{(l,m) : I < m}.
By combining [7%#) and the conditio®? < ¢2/8, it follows that [7%) and[{76) hold fo6 = .. Thus,
due to the permutation im(R1), the inequalities] (75) dnd @te satisfied forA,, k > m, V(I,m) € L.
ando = d.. In the rest of the proof we assume that- m. Becauseal —ak, | < &.,Y(l,m) € L, Ay
can be partitioned to block§A%}? .|, where A, € Cn-=v)x(n-=v) Ak € C**v, and A;; and A,

has the same number of rowsiit= ¢ and same number columnsjif= ¢. In this partition, the diagonal

entries of A¥, are separated by more than and in addition, two diagonal entries where each belongs
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to a different diagonal block (i.eA 11, Aoy, A33) are also separated by more than Now it is possible
to apply , Lemma 2.3] which asserts that

P
|AE|or < =& % Jfori =23, (103)

where|| - |og IS the sum of squares of the off-diagonal entries.
To show that[(I03) establishds [28) we first show that theiaiffih of the diagonal entries in the
upperA%, -block remains unchanged and that no diagonal entry ledeeA, and A%, blocks; i.e., for

i=1,2,3
Rk+1(v) e L;ifve L;, and Rk(v) =vifve Ly, (104)
S.t. R (v) = arg rlnl]{l Ay — al| (105)
€

This follows from [92) and because for evénsuch that(ly, my) € L., QE) is satisfied with replacing
by d.. Thus, similar tol(3B), for every such thatly, my) € Ly |af , — aflfli < % (1 4 4ny) (1/2 + \/1/2T776>2
By taking n < 1/100 and considering[(83) it follows thdrtzlh aﬁly < 0.656., which establishes
(I08); and therefore, for every, m) € L, |a}, — aF,,,| > 6.
Similar to the derivation of_ (96),
P m <W(0,m ( W (0,m) + 05" /W0, k:))
+ den,—o—gt” (SW(0,m) + 4/ WO, m)|GI| + | GI1*) + 3745 s Z(Ls oy + )

and similar to the derivation of (101), we obtain

P2 <0 <(%m>)2) O ((Bom)) Lo ((EELOMY)) 4o (12 ) 2 G

Since P, is a decreasing sequence, the desired result follows.

(106)

APPENDIXD

The corollary follows from Theoreiin 3 and from the followingoposition:
Proposition 11: Let b > 0,0 < p < 1 and leta,, be a non-negative sequence that satisfigs, <
pan, + b, VYn € N, thenl]imsup,, a,, < 1%‘/).
Proof: We first assume that for some e N qa,, > 1%[). In this case we have,; < a, which
means that,, is a monotonic decreasing sequence as long,as 1%‘/). In the case where,, < 1%[)
we havea,; < 1%,)- These mean that eithet, converges to a limitt > f‘p, or that it satisfies

limsup,, a, < 1pr- Assume that the previous statement is true, then for every, there exist:. € N
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such thatt — e < a, < { + ¢, VYn > n.. By substituting it intoa,,+1 < pa, + b, i.e., substituting — ¢

for a,+1 and¢ + ¢ for a,, it follows that for everye > 0, £(1 — p) < b+ €(1 + p). This is equivalent to

£<

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

b e(1+p)

1% + {r24s Ve > 0 which is a contradiction. O
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